Academic literature on the topic 'Mantle fluids'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mantle fluids.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mantle fluids"

1

Rosenbaum, Jeffrey M., Alan Zindler, and James L. Rubenstone. "Mantle fluids: Evidence from fluid inclusions." Geochimica et Cosmochimica Acta 60, no. 17 (1996): 3229–52. http://dx.doi.org/10.1016/0016-7037(96)00167-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bureau, Hélène, Daniel J. Frost, Nathalie Bolfan-Casanova, Clémence Leroy, Imène Esteve, and Patrick Cordier. "Diamond growth in mantle fluids." Lithos 265 (November 2016): 4–15. http://dx.doi.org/10.1016/j.lithos.2016.10.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hu, Wenxuan, Xiaolin Wang, Dongya Zhu, Donghua You, and Haiguang Wu. "An overview of types and characterization of hot fluids associated with reservoir formation in petroliferous basins." Energy Exploration & Exploitation 36, no. 6 (2018): 1359–75. http://dx.doi.org/10.1177/0144598718763895.

Full text
Abstract:
Increasing petroleum explorations indicate that the formation of many reservoirs is in close association with deep hot fluids, which can be subdivided into three groups including crust-derived hot fluid, hydrocarbon-related hot fluid, and mantle-derived hot fluid. The crust-derived hot fluid mainly originates from deep old rocks or crystalline basement. It usually has higher temperature than the surrounding rocks and is characterized by hydrothermal mineral assemblages (e.g. fluorite, hydrothermal dolomite, and barite), positive Eu anomaly, low δ18O value, and high 87Sr/86Sr ratio. Cambrian an
APA, Harvard, Vancouver, ISO, and other styles
4

Tiraboschi, Carla, Francesca Miozzi, and Simone Tumiati. "Carbon-saturated COH fluids in the upper mantle: a review of high-pressure and high-temperature ex situ experiments." European Journal of Mineralogy 34, no. 1 (2022): 59–75. http://dx.doi.org/10.5194/ejm-34-59-2022.

Full text
Abstract:
Abstract. High-pressure COH fluids have a fundamental role in a variety of geological processes. Their composition in terms of volatile species can control the solidus temperature and carbonation/decarbonation reactions, as well as influence the amount of solutes generated during fluid–rock interaction at depth. Over the last decades, several systems have been experimentally investigated to unravel the effect of COH fluids at upper-mantle conditions. However, fluid composition is rarely tackled as a quantitative issue, and rather infrequently fluids are analyzed in the same way as the associat
APA, Harvard, Vancouver, ISO, and other styles
5

Halpaap, Felix, Stéphane Rondenay, Alexander Perrin, et al. "Earthquakes track subduction fluids from slab source to mantle wedge sink." Science Advances 5, no. 4 (2019): eaav7369. http://dx.doi.org/10.1126/sciadv.aav7369.

Full text
Abstract:
Subducting plates release fluids as they plunge into Earth’s mantle and occasionally rupture to produce intraslab earthquakes. It is debated whether fluids and earthquakes are directly related. By combining seismic observations and geodynamic models from western Greece, and comparing across other subduction zones, we find that earthquakes effectively track the flow of fluids from their slab source at >80 km depth to their sink at shallow (<40 km) depth. Between source and sink, the fluids flow updip under a sealed plate interface, facilitating intraslab earthquakes. In some locations, th
APA, Harvard, Vancouver, ISO, and other styles
6

Pal'yanov, Yu N., A. G. Sokol, Yu M. Borzdov, A. F. Khokhryakov, and N. V. Sobolev. "Diamond formation from mantle carbonate fluids." Nature 400, no. 6743 (1999): 417–18. http://dx.doi.org/10.1038/22678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

KAWAMOTO, Tatsuhiko. "Chemical Composition of Mantle Wedge Fluids." Journal of Geography (Chigaku Zasshi) 124, no. 3 (2015): 473–501. http://dx.doi.org/10.5026/jgeography.124.473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Frezzotti, Maria-Luce, Jacques L. R. Touret, Wim J. Lustenhouwer, and Else-Ragnild Neumann. "Melt and fluid inclusions in dunite xenoliths from La Gomera, Canary Islands: tracking the mantle metasomatic fluids." European Journal of Mineralogy 6, no. 6 (1994): 805–18. http://dx.doi.org/10.1127/ejm/6/6/0805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Frezzotti, Maria Luce, Ernst A. J. Burke, Benedetto De Vivo, Barbara Stefanini, and Igor M. Villa. "Mantle fluids in pyroxenite nodules from Salt Lake Crater (Oahu, Hawaii)." European Journal of Mineralogy 4, no. 5 (1992): 1137–54. http://dx.doi.org/10.1127/ejm/4/5/1137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gao, Yun, Bailin Chen, Liyan Wu, Jianfeng Gao, Guangqian Zeng, and Jinghui Shen. "Mantle-Derived Noble Gas Isotopes in the Ore-Forming Fluid of Xingluokeng W-Mo Deposit, Fujian Province." Minerals 12, no. 5 (2022): 595. http://dx.doi.org/10.3390/min12050595.

Full text
Abstract:
China has the largest W reserves in the world, which are mainly concentrated in south China. Although previous studies have been carried out on whether mantle material is incorporated in granites associated with W deposits, the conclusions have been inconsistent. However, rare gas isotopes can be used to study the contribution of mantle-to-W mineralization. In this paper, we investigated the He and Ar isotope compositions of fluid inclusions in pyrite and wolframite from the Xingluokeng ultra-large W-Mo deposit to evaluate the origin of ore-forming fluids and discuss the contribution of the ma
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Mantle fluids"

1

Frost, Daniel James. "The properties of C-O-H fluids under upper mantle conditions." Thesis, University of Bristol, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

REMIGI, SAMANTHA. "On the application of Raman micro-spectroscopy to the characterization of Earth's CO2 fluids." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/325898.

Full text
Abstract:
Questa tesi indaga l'applicabilità della micro-spettroscopia Raman per migliorare la caratterizzazione dei fluidi a CO2 terrestri, intrappolati come inclusioni fluide (FI) nelle peridotiti. Nello spettro Raman della CO2, la distanza delle due vibrazioni fondamentali è densità (d) dipendente, inoltre sono visibili le vibrazioni 13CO2 e 12CO2. Ciò permette alla micro-spettroscopia Raman di avere il potenziale per caratterizzare in situ FI a CO2, consentendo di comprendere meglio i meccanismi di trasporto del C all'interno della Terra. La proporzionalità tra le aree 13CO2 e 12CO2 con la loro conc
APA, Harvard, Vancouver, ISO, and other styles
3

Tiraboschi, C. "COH FLUIDS AT UPPER-MANTLE CONDITIONS: AN EXPERIMENTAL STUDY ON VOLATILE SPECIATION AND MINERAL SOLUBILITY IN THE MS+COH SYSTEM." Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/260613.

Full text
Abstract:
COH fluids play a fundamental role in many geological processes, controlling the location of melting in subduction zones and promoting mass transfer from the subducting lithosphere to the overlying mantle wedge. The properties of COH fluids are strictly dependent on the composition of the fluid in subduction systems, i.e., the speciation of the volatile components of the fluid itself and the presence of solutes deriving from the dissolution of rock-forming minerals. In the scientific literature, the speciation of COH fluids has been generally determined through thermodynamic calculations using
APA, Harvard, Vancouver, ISO, and other styles
4

Amann, Méderic. "Evolution du magmatisme et du métasomatisme dans une marge passive pauvre en magma durant l'initiation de l'accrétion océanique : exemple de la marge fossile de la Platta (Alpes suisses) et comparaison avec le système actuel Ibérie-Terre Neuve." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAH014/document.

Full text
Abstract:
Les parties distales des marges passives pauvres en magma représentent la transition complexe entre les domaines continentaux et océaniques. Ces zones encore peu étudiées sont pourtant des endroits clefs pour comprendre les processus impliqués durant les premiers stades de l’accrétion océanique, et plus particulièrement ceux du magmatisme et du métasomatisme. Durant ces premiers stades, ces deux processus sont gouvernés par l’exhumation mantellique. L’interaction entre les liquides magmatiques, les roches du manteau et les fluides marins vont affecter le régime thermique de la marge. De par le
APA, Harvard, Vancouver, ISO, and other styles
5

Davies, Nigel Howard. "Numerical representations of fluid mixing." Thesis, University of South Wales, 1993. https://pure.southwales.ac.uk/en/studentthesis/numerical-representations-of-fluid-mixing(3bf1cb31-ec80-49f2-95ae-a2f56eeeeec2).html.

Full text
Abstract:
The work contained within this thesis is concerned with a theoretical investigatiop of both laminar and thermally driven types of cavity flow, together with an analysis of their associated mixing processes which find applications to Industrial mixing and also to the environment. The mixing efficiency has been viewed from two perspectives namely the tracking of a selection of fluid particles, and also the simulation of the dispersive mixing of a coloured fluid element as carried along by the flow. This thesis also incorporates features of both Newtonian and a wide range of non-Newtonian fluids.
APA, Harvard, Vancouver, ISO, and other styles
6

Freeman, Jonathan. "Mantle-melt and mantle-fluid interactions in suprasubduction zones : evidence from the Troodos Massif, Cyprus." Thesis, Durham University, 1996. http://etheses.dur.ac.uk/1220/.

Full text
Abstract:
The Troodos Massif exposes an intact section of harzburgitic mantle from its contact with crustal lithologies to a depth of approximately 3 km, where it is faulted out against a mass of heavily fractured and serpentinised peridotites: the serpentinite diapir. The harzburgites are host to several generations of pyroxenitic and dunitic intrusives, many of which have features suggestive of a reaction relationship with the enclosing harzburgites such as resorbed harzburgite xenoliths and marginal dunites. Mineral chemistry and whole-rock data suggest that the harzburgites in the Troodos sequence a
APA, Harvard, Vancouver, ISO, and other styles
7

Wiersberg, Thomas. "Edelgase als Tracer für Wechselwirkungen von Krusten- und Mantelfluiden mit diamantführenden Gesteinen des östlichen Baltischen Schildes." Phd thesis, Universität Potsdam, 2001. http://opus.kobv.de/ubp/volltexte/2005/27/.

Full text
Abstract:
In der vorliegenden Arbeit werden anhand der Edelgaszusammensetzung von Kimberliten und Lamproiten sowie ihrer gesteinsbildenden Minerale die Wechselwirkungen dieser Gesteine mit Fluiden diskutiert. Die untersuchten Proben stammen vom östlichen Baltischen Schild, vom Kola-Kraton (Poria Guba und Kandalaksha) und vom karelischen Kraton (Kostamuksha). Edelgasanalysen nach thermischer oder mechanischer Gasextraktion von 23 Gesamtgesteinsproben und 15 Mineralseparaten ergeben folgendes Bild: Helium- und Neon-Isotopendaten der Fluideinschlüsse von Lamproiten aus Kostamuksha lassen auf den Einfluss e
APA, Harvard, Vancouver, ISO, and other styles
8

Pinto, Victor Hugo. "Linking tectonic evolution with fluid history in hyperextended rifted margins : examples from the fossil Alpine and Pyrenean rift systems, and the present-day Iberia rifted margin." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAH018/document.

Full text
Abstract:
Cette thèse est centrée sur la caractérisation des traceurs des fluides qui interagissent avec les roches du socle et les roches sédimentaires dans les systèmes riftés hyper-amincis exposés dans la Téthys alpine, les Pyrénées et Ibérie-Terre Neuve. L’étude de ces fluides est basée sur les observations géologiques, les analyses géochimiques et les données géophysiques. Deux types de fluides ont été identifiés : les fluides associés à la croûte continentale, avec une signature caractérisée par Si et Ca, ainsi que les fluides liés au manteau en exhumation, avec une signature caractérisée par Si,
APA, Harvard, Vancouver, ISO, and other styles
9

Kumagai, Yoshitaka. "Carbon dioxide bearing saline fluid inclusions in mantle xenoliths from the Ichinomegata volcano, the Northeast Japan arc and their evolution in the mantle wedge." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pears, M. I. B. "Stall and collapse in mantle plumes : an experimental and numerical fluid dynamics perspective." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1465981/.

Full text
Abstract:
Collapsing thermal plumes were investigated through experimental and numerical simulations. Collapsing plumes are an uncommon fluid dynamical phenomenon, usually observed when the heat source is removed. A series of fluid dynamical experiments were conducted on thermal plumes at a variety of temperature and viscosity contrasts, in a cubic plexiglas tank of inner side dimension 26.5cm and no-slip sides. The fluid was heated by a small 2cm diameter heater. Experimental fluids included Lyle’s Golden syrup and ADM’s Liquidose 436 syrup, which have strongly temperature-dependent viscosities and hig
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Mantle fluids"

1

Axel, Liebscher, and Heinrich Christoph A. 1953-, eds. Fluid-fluid interactions. Mineralogical Society of America, Geochemical Society, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Plates vs plumes: A geological controversy. Wiley-Blackwell, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vserossiĭskiĭ, simpozium "Glubinnye fli︠u︡idy i. geodinamika" (2003 Moscow Russia). Fli︠u︡idy i geodinamika: Materialy Vserossiĭskogo simpoziuma "Glubinnye fli︠u︡idy i geodinamika", Moskva, 19-21 noi︠a︡bri︠a︡, 2003 g. Nauka, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

B, Holness M., and Mineralogical Society (Great Britain), eds. Deformation-enhanced fluid transport in the earth's crust and mantle. Chapman & Hall, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

B, Holness Marian, ed. Deformation-enhanced fluid transport in the Earth's crust and mantle. Chapman & Hall, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hauri, Erik Harold. Geochemical and fluid dynamic investigations into the nature of chemical heterogeneity in the earth's mantle. Massachusetts Institute of Technology, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Voorhies, Coerte V. Simultaneous solution for core magnetic field and fluid flow beneath an electrically conducting mantle. National Aeronautics and Space Administration, Goddard Space Flight Center, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Blatter, Daniel. Constraining fluid properties in the mantle and crust using Bayesian inversion of electromagnetic data. [publisher not identified], 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Voorhies, Coerte V. Simultaneous solution for core magnetic field and fluid flow beneath an electrically conducting mantle. National Aeronautics and Space Administration, Goddard Space Flight Center, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Keken, Peter Edwin van. Numerical modelling of thermochemically driven fluid flow with non-Newtonian rheology: Applied to the earth's lithosphere and mantle. Faculteit Aardwetenschappen der Rijksuniversiteit te Utrecht, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Mantle fluids"

1

Manning, Craig E. "5. Thermodynamic Modeling of Fluid-Rock Interaction at Mid-Crustal to Upper-Mantle Conditions." In Thermodynamics of Geothermal Fluids, edited by Andri Stefánsson, Thomas Driesner, and Pascale Bénézeth. De Gruyter, 2013. http://dx.doi.org/10.1515/9781501508295-005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lliboutry, Louis A. "Thermal convection in an isoviscous layer and in the Earth’s mantle." In Mechanics of Fluids and Transport Processes. Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3563-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Unsworth, Martyn, and Stéphane Rondenay. "Mapping the Distribution of Fluids in the Crust and Lithospheric Mantle Utilizing Geophysical Methods." In Lecture Notes in Earth System Sciences. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28394-9_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Newton, R. C., and C. E. Manning. "Role of Saline Fluids in Deep-Crustal and Upper-Mantle Metasomatism: Insights from Experimental Studies." In Frontiers in Geofluids. Wiley-Blackwell, 2011. http://dx.doi.org/10.1002/9781444394900.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Katsura, Tomoo, and Eiji Ito. "The System MgO-SiO2-CO2-H2O at High Pressure: a Preliminary Investigation of CO2Concentration in Mantle Fluids." In High-Pressure Research: Application to Earth and Planetary Sciences. American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm067p0275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Manning, Craig E., Everett L. Shock, and Dimitri A. Sverjensky. "5. The Chemistry of Carbon in Aqueous Fluids at Crustal and Upper-Mantle Conditions: Experimental and Theoretical Constraints." In Carbon in Earth, edited by Robert M. Hazen, Adrian P. Jones, and John A. Baross. De Gruyter, 2013. http://dx.doi.org/10.1515/9781501508318-007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schettino, Antonio. "Flow and Fluid Behaviour of the Mantle." In Quantitative Plate Tectonics. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09135-8_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bailey, D. K. "Fluid Transport and Metasomatic Storage in the Mantle." In Chemical Transport in Metasomatic Processes. Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4013-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Eggler, David H. "Influence of H2O And CO2 on Melt and Fluid Chemistry in Subduction Zones." In Crust/Mantle Recycling at Convergence Zones. Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0895-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Manning, Craig E. "Coupled Reaction and Flow in Subduction Zones: Silica Metasomatism in the Mantle Wedge." In Fluid Flow and Transport in Rocks. Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1533-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mantle fluids"

1

Burgess, R., and G. Turner. "Halogen geochemistry of mantle fluids in diamond." In Volatiles in the Earth and solar system. AIP, 1995. http://dx.doi.org/10.1063/1.48753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Matthews, Simon, and Dimitri A. Sverjensky. "Modelling Zr Transport in Crustal and Mantle Fluids." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hunt, Lindsey E., and William M. Lamb. "USING MINERAL EQUILIBRIA TO CONSTRAIN THE NATURE OF MANTLE FLUIDS." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-284074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

de Obeso, Juan Carlos, Peter Kelemen, Manuel D. Menzel, et al. "Deep sourced fluids for peridotite carbonation in the shallow mantle wedge." In Goldschmidt2022. European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.10623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Kun, and Dmitri Ionov. "Potassium isotope evidence for slab-derived fluids in the sub-arc mantle." In Goldschmidt2022. European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.9823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kempton, Pamela D., Ryan Mathur, and Grant Zweifelhofer. "CU-ISOTOPE HETEROGENEITY IN THE LITHOSPHERIC MANTLE: A ROLE FOR SUBDUCTION-DERIVED FLUIDS?" In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-318235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hartley, Elena Sohn, Ines Pereira, Evan D. Cameron, F. Zeb Page, Craig Storey, and John Valley. "TRACING MANTLE FLUIDS: TRACE ELEMENT SIGNALS IN METASOMATIC GARNET IN QUARTZITES FROM THE CATALINA SCHIST (CALIFORNIA, USA)." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-302998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Teboul, Pierre-Alexandre, Neilma Lima, Eric Gaucher, and Laury Araujo. "Fluid/rock interaction in extensional setting: a complex contribution from exhumed mantle and crustal fluids – Case study of the Aptian “Pre-salt” carbonates." In Goldschmidt2022. European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.10164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Scott, Brandt E., Dennis L. Newell, and Micah J. Jessup. "TRACING VOLATILE AND ISOTOPE GEOCHEMISTRY WITHIN MANTLE- AND SLAB-DERIVED FLUIDS IN A FLAT-SLAB SUBDUCTION ZONE, PERU." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-295791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abe, Ryuta, Yuji Tasaka, Ichiro Kumagai, Yuichi Murai, and Takatoshi Yanagisawa. "Dynamics of Cell Pattern Formation in Internally Heated Convection Viewed From Local to Global Particle Image Thermometry." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-11014.

Full text
Abstract:
Internally heated convection is a fundamental phenomenon, largely governing the dynamics of natural systems such as the atmosphere and Earth’s mantle. It also plays an important role in industrial applications. Here we have investigated the separation of the top thermal boundary layer in order to understand the cell enlargement and the dynamics of the cell pattern formation. To observe the development of the thermal boundary layer non-invasively, the temperature distribution of the vertical plane in a convective cell was visualized by particle image thermometry (PIT). Micro-encapsulated thermo
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Mantle fluids"

1

Aulstead, K. L., and R. Spencer. Fluid Inclusion Evidence On the Diagenesis of the Manetoe Facies, Yukon and Northwest Territories. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/130032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Welp, Timothy, and Michael Tubman. Present practice of using nautical depth to manage navigation channels in the presence of fluid mud. Environmental Laboratory (U.S.), 2017. http://dx.doi.org/10.21079/11681/22539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Harris, L. B., P. Adiban, and E. Gloaguen. The role of enigmatic deep crustal and upper mantle structures on Au and magmatic Ni-Cu-PGE-Cr mineralization in the Superior Province. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328984.

Full text
Abstract:
Aeromagnetic and ground gravity data for the Canadian Superior Province, filtered to extract long wavelength components and converted to pseudo-gravity, highlight deep, N-S trending regional-scale, rectilinear faults and margins to discrete, competent mafic or felsic granulite blocks (i.e. at high angles to most regional mapped structures and sub-province boundaries) with little to no surface expression that are spatially associated with lode ('orogenic') Au and Ni-Cu-PGE-Cr occurrences. Statistical and machine learning analysis of the Red Lake-Stormy Lake region in the W Superior Province con
APA, Harvard, Vancouver, ISO, and other styles
4

Matte, S., M. Constantin, and R. Stevenson. Mineralogical and geochemical characterisation of the Kipawa syenite complex, Quebec: implications for rare-earth element deposits. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329212.

Full text
Abstract:
The Kipawa rare-earth element (REE) deposit is located in the Parautochton zone of the Grenville Province 55 km south of the boundary with the Superior Province. The deposit is part of the Kipawa syenite complex of peralkaline syenites, gneisses, and amphibolites that are intercalated with calc-silicate rocks and marbles overlain by a peralkaline gneissic granite. The REE deposit is principally composed of eudialyte, mosandrite and britholite, and less abundant minerals such as xenotime, monazite or euxenite. The Kipawa Complex outcrops as a series of thin, folded sheet imbricates located betw
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!