Academic literature on the topic 'Marangoni-convection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Marangoni-convection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Marangoni-convection"
Buyevich, Yu A., L. M. Rabinovich, and A. V. Vyazmin. "Chemo-Marangoni Convection." Journal of Colloid and Interface Science 157, no. 1 (April 1993): 202–10. http://dx.doi.org/10.1006/jcis.1993.1177.
Full textBuyevich, Yu A., L. M. Rabinovich, and A. V. Vyazmin. "Chemo-Marangoni Convection." Journal of Colloid and Interface Science 157, no. 1 (April 1993): 211–18. http://dx.doi.org/10.1006/jcis.1993.1178.
Full textRabinovich, L. M., A. V. Vyazmin, and Yu A. Buyevich. "Chemo-Marangoni Convection." Journal of Colloid and Interface Science 173, no. 1 (July 1995): 1–7. http://dx.doi.org/10.1006/jcis.1995.1289.
Full textWagner, Alfred. "Nonstationary Marangoni convection." Applicationes Mathematicae 26, no. 2 (1999): 195–220. http://dx.doi.org/10.4064/am-26-2-195-220.
Full textBOECK, THOMAS, and ANDRÉ THESS. "Inertial Bénard–Marangoni convection." Journal of Fluid Mechanics 350 (November 10, 1997): 149–75. http://dx.doi.org/10.1017/s0022112097006782.
Full textRiahi, N. "Nonlinear Benard-Marangoni Convection." Journal of the Physical Society of Japan 56, no. 10 (October 15, 1987): 3515–24. http://dx.doi.org/10.1143/jpsj.56.3515.
Full textIIDA, Seiichi. "Microgravity and Marangoni Convection." Journal of the Japan Society for Aeronautical and Space Sciences 45, no. 525 (1997): 543–52. http://dx.doi.org/10.2322/jjsass1969.45.543.
Full textHaga, Masakazu, Tsuyoshi Kondo, and Takayuki Hamauchi. "Experimental and Numerical Analyses of the Flow and Temperature of Buoyancy-Marangoni Convection in a Liquid." Applied Mechanics and Materials 880 (March 2018): 27–32. http://dx.doi.org/10.4028/www.scientific.net/amm.880.27.
Full textChen, Jie, Ai Wu Zeng, and Li Ming Yu. "Linear Stability Analysis of Marangoni Effect on Desorption Liquid Layer." Advanced Materials Research 479-481 (February 2012): 1380–86. http://dx.doi.org/10.4028/www.scientific.net/amr.479-481.1380.
Full textGOLOVIN, A. A., A. A. NEPOMNYASHCHY, and L. M. PISMEN. "Nonlinear evolution and secondary instabilities of Marangoni convection in a liquid–gas system with deformable interface." Journal of Fluid Mechanics 341 (June 25, 1997): 317–41. http://dx.doi.org/10.1017/s0022112097005582.
Full textDissertations / Theses on the topic "Marangoni-convection"
Hoefsloot, Hubertus Cornelis Josef. "Marangoni convection under microgravity conditions." [S.l. : [Groningen : s.n.] ; University of Groningen] [Host], 1992. http://irs.ub.rug.nl/ppn/.
Full textMelnikov, Denis. "Development of numerical code for the study of marangoni convection." Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211178.
Full textThe development of thermocapillary convection inside a cylindrical liquid bridge is investigated by using a direct numerical simulation of the 3D, time-dependent problem for a wide range of Prandtl numbers, Pr = 0.01 - 108. For Pr > 0.08 (e.g. silicon oils), above the critical value of temperature difference between the supporting disks, two counter propagating hydrothermal waves bifurcate from the 2D steady state. The existence of standing and traveling waves is discussed. The dependence of viscosity upon temperature is taken into account. For Pr = 4, 0-g conditions, and for Pr = 18.8, 1-g case with unit aspect ratio an investigation of the onset of chaos was numerically carried out.
For a Pr = 108 liquid bridge under terrestrial conditions ,the appearance and the development of thermoconvective oscillatory flows were investigated for different ambient conditions around the free surface.
Transition from 2D thermoconvective steady flow to a 3D flow is considered for low-Prandtl fluids (Pr = 0.01) in a liquid bridge with a non-cylindrical free surface. For Pr < 0.08 (e.g. liquid metals), in supercritical region of parameters 3D but non-oscillatory convective flow is observed. The computer program developed for this simulation transforms the original non-rectangular physical domain into a rectangular computational domain.
A study of how presence of a bubble in experimental rectangular cell influences the convective flow when carrying out microgravity experiments. As a model, a real experiment called TRAMP is numerically simulated. The obtained results were very different from what was expected. First, because of residual gravity taking place on board any spacecraft; second, due to presence of a bubble having appeared on the experimental cell's wall. Real data obtained from experimental observations were taken for the calculations.
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Becerril, Bárcenas Ricardo. "Instabilities and onset in double diffusive and long-wavelength Marangoni convection /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Full textYuan, Zhe. "The effect of surfactant vapor on Marangoni convection in absorption and condensation." College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/3106.
Full textThesis research directed by: Mechanical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Boeck, Thomas. "Bénard-Marangoni convection at low Prandtl numbers : results of direct numerical simulations /." Aachen : Shaker, 2000. http://www.gbv.de/dms/ilmenau/toc/31785867X.PDF.
Full textLi, Yaofa. "Experimental studies of Marangoni convection with buoyancy in simple and binary fluids." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53893.
Full textBoeck, Thomas. "Benard-Marangoni convection at low Prandtl numbers : results of direct numerical simulations /." Aachen : Shaker, 2000. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=009061205&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textRongy, Laurence. "Influence of Marangoni and buoyancy convection on the propagation of reaction-diffusion fronts." Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210495.
Full textIn this context, we first address the propagation of a model autocatalytic front in a horizontal solution layer, in the presence of pure Marangoni convection on the one hand and of pure buoyancy convection on the other hand. We evidence that, in both cases, the system attains an asymptotic dynamics characterized by a steady fluid vortex traveling with the front at a constant speed. The presence of convection results in a deformation and acceleration of the chemical front compared to the reaction-diffusion situation. However we note important differences between the Marangoni and buoyancy cases that could help differentiate experimentally between the influence of each hydrodynamic effect arising in solutions open to the air. We also consider how the kinetics and the exothermicity of the reaction influence the dynamics of the system. The propagation of an isothermal front occurring when two diffusive reactants are initially separated and react according to a simple bimolecular reaction is next studied in the presence of chemically-induced buoyancy convection. We show that the reaction-diffusion predictions established for convection-free systems are modified in the presence of fluid motions and propose a new way to classify the various possible reaction-diffusion-convection dynamics./En induisant des changements de composition et de température, une réaction chimique peut modifier les propriétés physiques (densité, viscosité, tension superficielle,…) de la solution dans laquelle elle se déroule et ainsi générer des mouvements de convection qui, à leur tour, peuvent affecter la réaction. Les deux sources de convection les plus courantes en solution ouverte à l’air sont les gradients de tension superficielle, ou effets Marangoni, et les gradients de densité. Comme ces deux sources sont en compétition et peuvent toutes deux résulter de différences de concentration ou de température, les dynamiques observées expérimentalement sont souvent complexes. Le but de notre thèse est de contribuer à la compréhension de telles dynamiques par une étude théorique analysant des modèles réaction-diffusion-convection simples. En particulier, nous étudions numériquement l’évolution spatio-temporelle de fronts chimiques résultant du couplage entre chimie non-linéaire, diffusion et hydrodynamique. Ces fronts constituent l’interface auto-organisée entre les produits et les réactifs qui typiquement ont des densités et tensions superficielles différentes. Des mouvements du fluide peuvent dès lors être spontanément initiés dus à ces différences au travers du front.
Dans ce contexte, nous étudions la propagation d’un front chimique autocatalytique se propageant dans une solution aqueuse horizontale, d’une part en la seule présence d’effets Marangoni, et d’autre part en présence uniquement d’effets de densité. Nous avons montré que dans les deux cas, le système atteint une dynamique asymptotique caractérisée par la présence d’un rouleau de convection stationnaire se propageant à vitesse constante avec le front. Ce front est à la fois déformé et accéléré par les mouvements convectifs par rapport à la situation réaction-diffusion. Nous avons mis en évidence d’importantes différences entre les deux régimes hydrodynamiques qui pourraient aider les expérimentateurs à différencier les effets de tension superficielle de ceux de densité générés par la propagation de fronts chimiques en solution. Nous avons également considéré l’influence de la cinétique de réaction ainsi que de l’exothermicité sur la dynamique de ces fronts. Enfin, nous avons étudié la propagation en présence de convection d’un front de réaction impliquant deux espèces de densités différentes, initialement séparées et réagissant selon une cinétique bimoléculaire. Nous avons montré que la convection modifie les propriétés réaction-diffusion du système et nous proposons de nouveaux critères pour classifier les dynamiques réaction-diffusion-convection.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Carvalho, Victor. "Mise en oeuvre de méthodes optiques de vélocimétries 2D et 3D appliquées à l’étude de l’effet Marangoni autour d’une bulle unique." Thesis, Besançon, 2014. http://www.theses.fr/2014BESA2073/document.
Full textThe Marangoni convection is a phenomenon that appears in the presence of a tension surface gradient along an interface between two immiscible fluids. It is possible to observe that appear convection around vapor bubbles in the heat exchangers with the phase change. However, the Marangoni convection has been neglected to other phenomena involved in the heat transfer. In the age of miniaturization, it becomes impossible to overlook this micro convection. The aim of this thesis si to characterize the dynamics of Marangoni convection around a bubble. The first part deals with the 2D results around an air bubble in the presence of a temperature gradient. This case is easier to implement and allows having a better knowledge with the Marangoni convection. The second part focuses on the two-dimensional study of the convection around a vapor bubble The results showed that the phenomenon quickly became three-dimensional. The last section therefore presents a method for measuring optical innovative 3D3C
Nagy, Peter Takahiro. "Investigation of Nonwetting System Failure and System Integration." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/13958.
Full textBooks on the topic "Marangoni-convection"
Hirashima, Naoki. The role of Marangoni convection in steelmaking reactions. Ottawa: National Library of Canada, 1993.
Find full text(Japan), Uchū Kaihatsu Jigyōdan. Marangoni convection modeling research: Annual report April 1, 2002-March 31, 2003. Ibaraki, Japan: National Space Development Agency of Japan, 2003.
Find full text1951-, Simanovskii Ilya B., and Legros, J. C. (Jean Claude), 1942-, eds. Interfacial convection in multilayer systems. New York: Springer, 2012.
Find full textLee, Benjamin Chi-Pui. Temperature gradient-driven Marangoni convection of a spherical liquid-liquid interface under reduced gravity conditions. Ottawa: National Library of Canada, 1999.
Find full textRegelʹ, L. L. Modeling of detached solidification: Final report. [Washington, D.C: National Aeronautics and Space Administration, 1996.
Find full textG, Velarde Manuel, and Colinet P, eds. Interfacial phenomena and convection. Boca Raton: Chapman & Hall/CRC, 2002.
Find full textNaumann, Robert J. USML-1 glovebox experiments: Final report. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textJ, Lugt Hans, Naval Surface Warfare Center (U.S.). Carderock Division., and United States. National Aeronautics and Space Administration., eds. Marangoni convection in a gravity-free silicon float zone. Bethesda, Md: Carderock Division, Naval Surface Warfare Center, 1994.
Find full textCenter, Lewis Research, ed. Convective instability of a gravity modulated fluid layer with surface tension variation. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textCenter, Lewis Research, ed. Symbolic computational approach to the marangoni convection problem with soret diffusion. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textBook chapters on the topic "Marangoni-convection"
Baroud, Charles N. "Marangoni Convection." In Encyclopedia of Microfluidics and Nanofluidics, 1705–11. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_852.
Full textBaroud, Charles N. "Marangoni Convection." In Encyclopedia of Microfluidics and Nanofluidics, 1–8. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-3-642-27758-0_852-4.
Full textCröll, Arne, Taketoshi Hibiya, Suguru Shiratori, Koichi Kakimoto, and Lijun Liu. "Marangoni Convection in Crystal Growth." In Crystal Growth Processes Based on Capillarity, 413–64. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9781444320237.ch7.
Full textNitschke, K., A. Thess, and G. Gerbeth. "Linear Stability of Marangoni-Hartmann-Convection." In Microgravity Fluid Mechanics, 285–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-50091-6_31.
Full textVynnycky, M. "Marangoni Convection in a Weld Pool." In Proceedings of the Fifth European Conference on Mathematics in Industry, 381–85. Wiesbaden: Vieweg+Teubner Verlag, 1991. http://dx.doi.org/10.1007/978-3-663-01312-9_68.
Full textHoogstraten, H. W., H. C. J. Hoefsloot, and L. P. B. M. Janssen. "Marangoni convection in V-shaped containers." In Problems in Applied, Industrial and Engineering Mathematics, 21–37. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2440-9_2.
Full textPetri, B., A. Delgado, and H. J. Rath. "Marangoni Convection in Drops under Microgravity Conditions." In Microgravity Fluid Mechanics, 81–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-50091-6_8.
Full textDrezet, Jean-Marie, and Sélim Mokadem. "Marangoni Convection and Fragmentation in LASER Treatment." In Materials Science Forum, 257–62. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-991-1.257.
Full textSathish Kumar, M., C. S. K. Raju, S. U. Mamatha, B. Rushi Kumar, and G. Kumaran. "Nonlinear Unsteady Marangoni Convection with Variable Properties." In Advances in Fluid Dynamics, 327–41. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4308-1_26.
Full textMittelmann, Hans D. "Stability of Marangoni Convection in a MicroGravity Environment." In Continuation and Bifurcations: Numerical Techniques and Applications, 363–77. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0659-4_24.
Full textConference papers on the topic "Marangoni-convection"
Subramanian, Pravin, and Abdelfattah Zebib. "Marangoni Convection in Spherical Shells." In 56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.iac-05-a2.4.07.
Full textKanamori, Yuichi, and Yukitoshi Otani. "Driving droplet by photo-thermal Marangoni convection." In 2012 International Symposium on Optomechatronic Technologies (ISOT 2012). IEEE, 2012. http://dx.doi.org/10.1109/isot.2012.6403281.
Full textMikishev, Alexander B., Alexander A. Nepomnyashchy, and Boris L. Smorodin. "Parametric Excitation of a Longwave Marangoni Convection." In Selected Papers from the 2nd Chaotic Modeling and Simulation International Conference (CHAOS2009). WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814299725_0025.
Full textSaghir, M. Z., M. Hennenberg, J. C. Legros, and M. R. Islam. "RAYLEIGH-MARANGONI CONVECTION IN A POROUS CAVITY." In CHT'97 - Advances in Computational Heat Transfer. Proceedings of the International Symposium. Connecticut: Begellhouse, 1997. http://dx.doi.org/10.1615/ichmt.1997.intsymliqtwophaseflowtranspphencht.690.
Full textChristopher, David, and Bu-Xuan Wang. "MARANGONI CONVECTION AROUND A BUBBLE IN MICROGRAVITY." In International Heat Transfer Conference 11. Connecticut: Begellhouse, 1998. http://dx.doi.org/10.1615/ihtc11.3520.
Full textYANG, H. "Suppression of Benard-Marangoni convection in microgravity environment." In 30th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-608.
Full textYan Zhang, Guohua Song, and Shixiang Liu. "Analysis of solutal Marangoni convection boundary layer flow." In 3rd International Conference on Contemporary Problems in Architecture and Construction. IET, 2011. http://dx.doi.org/10.1049/cp.2011.1297.
Full textO'Shaughnessy, Seamus M. "NUMERICAL INVESTIGATION OF MARANGONI CONVECTION AROUND A BUBBLE." In Proceedings of CHT-08 ICHMT International Symposium on Advances in Computational Heat Transfer. Connecticut: Begellhouse, 2008. http://dx.doi.org/10.1615/ichmt.2008.cht.1300.
Full textBuffone, C., and K. Sefiane. "Marangoni Convection in Capillary Tubes Filled With Volatile Liquids." In ASME 2003 1st International Conference on Microchannels and Minichannels. ASMEDC, 2003. http://dx.doi.org/10.1115/icmm2003-1082.
Full textAbidin, Nurul Hafizah Zainal, Nor Fadzillah Mohd Mokhtar, Norazam Arbin, Junaida Md Said, and Norihan Md Arifin. "Marangoni convection in a micropolar fluid with feedback control." In 2012 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA). IEEE, 2012. http://dx.doi.org/10.1109/isbeia.2012.6422949.
Full textReports on the topic "Marangoni-convection"
Barney, R. Investigation of Marangoni convection with high-fidelity simulations for metal melt pool dynamics. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1573160.
Full textMoir, R. Marangoni Convection Induced Ripple on Grazing Incidence Liquid Metal Mirror (GILMM) Used for Laser Inertial Fusion Energy. Office of Scientific and Technical Information (OSTI), August 2001. http://dx.doi.org/10.2172/15013419.
Full text