To see the other types of publications on this topic, follow the link: Marin Mersenne.

Journal articles on the topic 'Marin Mersenne'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 35 journal articles for your research on the topic 'Marin Mersenne.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Haidar, Riad. "Marin Mersenne." Photoniques, no. 72 (July 2014): 17–19. http://dx.doi.org/10.1051/photon/20147217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shirali, Shailesh A. "Marin Mersenne, 1588–1648." Resonance 18, no. 3 (March 2013): 226–40. http://dx.doi.org/10.1007/s12045-013-0034-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Palmerino, Carla Rita. "Infinite Degrees of Speed Marin Mersenne and the Debate Over Galileo's Law of Free Fall." Early Science and Medicine 4, no. 4 (1999): 269–328. http://dx.doi.org/10.1163/157338299x00076.

Full text
Abstract:
AbstractThis article analyzes the evolution of Mersenne's views concerning the validity of Galileo's theory of acceleration. After publishing, in 1634, a treatise designed to present empirical evidence in favor of Galileo's odd-number law, Mersenne developed over the years the feeling that only the elaboration of a physical proof could provide sufficient confirmation of its validity. In the present article, I try to show that at the center of Mersenne's worries stood Galileo's assumption that a falling body had to pass in its acceleration through infinite degrees of speed. His extensive discussions with, or his reading of, Descartes, Gassendi, Baliani, Fabri, Cazre, Deschamps, Le Tenneur, Huygens, and Torricelli led Mersenne to believe that the hypothesis of a passage through infinite degrees of speed was incompatible with any mechanistic explanation of free fall.
APA, Harvard, Vancouver, ISO, and other styles
4

Granger, Robert. "Could, or should, the ancient Greeks have discovered the Lucas-Lehmer test?" Mathematical Gazette 97, no. 539 (July 2013): 242–55. http://dx.doi.org/10.1017/s0025557200005830.

Full text
Abstract:
The Lucas-Lehmer (LL) test is the most efficient known for testing the primality of Mersenne numbers, i.e. the integers Ml = 2l − 1, for l ≥ 1. The Mersenne numbers are so-called in honour of the French scholar Marin Mersenne (1588-1648), who in 1644 published a list of exponents l ≤ 257 which he conjectured produced all and only those Ml which are prime, for l in this range, namely l = 2,3,5,7, 13, 17, 19,31,67, 127 and 257 [1]. Mersenne's list turned out to be incorrect, omitting the prime-producing l = 61, 89 and 107 and including the composite-producing l = 67 and 257, although this was not finally confirmed until 1947, using both the LL test and contemporary mechanical calculators [2]. The LL test is based on the following theorem.
APA, Harvard, Vancouver, ISO, and other styles
5

RAPHAEL, RENEE. "GALILEO'S DISCORSI AND MERSENNE'S NOUVELLES PENSEES: MERSENNE AS A READER OF GALILEAN 'EXPERIENCE'." Nuncius 23, no. 1 (2008): 7–36. http://dx.doi.org/10.1163/182539108x00012.

Full text
Abstract:
Abstracttitle ABSTRACT /title This study examines Marin Mersenne's 1639 Nouvelles Pensees de Galilee, a translation and adaptation of Galileo Galilei's 1638 Discorsi. I use the translation as a window into how Mersenne, a reader trained in natural philosophy, read and understood Galileo's text and, in particular, Galileo's use of experience to support his claims. This analysis reveals that Mersenne drew on a variety of techniques and conceptions of experience in rendering Galileo's individual accounts of experience and experiment. The differences in the way the two authors relate discourse and experience is shown to be linked to their choices of genre and the varying motivations each brought to their texts.
APA, Harvard, Vancouver, ISO, and other styles
6

Wollock, Jeffrey. "John Bulwer (1606–1656) and Some British and French Contemporaries." Historiographia Linguistica 40, no. 3 (September 3, 2013): 331–76. http://dx.doi.org/10.1075/hl.40.3.02wol.

Full text
Abstract:
Summary John Bulwer’s (1606–1656) work was unknown in 17th–18th century France. In 1827, when Joseph-Marie Degérando (1772–1842) became curious about the relation between the methods respectively of Bulwer and John Wallis (1616–1703), the pioneer oral instructor of the deaf in Britain, he had to query Charles Orpen, M. D. (1791–1856) in Dublin because no copy of Bulwer’s Philocophus (1648) could be found in Paris. In fact, Theodore Haak (1605–1690) had sent a copy of this book from London to Père Marin Mersenne (1588–1648) in Paris in July 1648, but none of Mersenne’s circle could read English, and Mersenne died several weeks later. In that context, this paper presents a comparison of Bulwer’s views with those of the Cartesians and Port-Royalists. Wallis claimed he knew of no work on speech for the deaf prior to his own, but he must have known about the Philocophus from the time of its publication, five years before his De Loquela (1653) and nearly 14 years before he began teaching the deaf.
APA, Harvard, Vancouver, ISO, and other styles
7

Shea, William R. "Correspondance du P. Marin Mersenne, religieux minime. Volume XVI: 1648. P. Marin Mersenne , Cornelis de Waard , Armand Beaulieu." Isis 78, no. 2 (June 1987): 303–4. http://dx.doi.org/10.1086/354451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shea, William R. "Correspondance du P. Marin Mersenne, religieux minime. Volume XVII: Supplements, tables et bibliographie. P. Marin Mersenne , Armand Beaulieu." Isis 81, no. 3 (September 1990): 571–72. http://dx.doi.org/10.1086/355492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Silva, Paulo Tadeu da. "A harmonia mecanicista em Mersenne." Discurso, no. 37 (December 8, 2007): 75–102. http://dx.doi.org/10.11606/issn.2318-8863.discurso.2007.62919.

Full text
Abstract:
A relação entre música e ciência é um capítulo importante na história da ciência e da filosofia. Este artigo procura discutir alguns aspectos das investigações de Marin Mersenne sobre a música e a acústica, tendo em vista o desenvolvimento da teoria da coincidência da consonância e seu compromisso com uma visão mecânica da natureza, pela qual ele estabeleceu as propriedades físicas do som e proporções matemáticas dos intervalos musicais.
APA, Harvard, Vancouver, ISO, and other styles
10

Garber, Daniel. "O que Mersenne aprendeu na Itália." Discurso, no. 31 (December 9, 2000): 89–114. http://dx.doi.org/10.11606/issn.2318-8863.discurso.2000.38035.

Full text
Abstract:
Estudos sobre Marin Mersenne enfatizam freqüentemente o serviço prestado por ele à ciência européia, por ajudar na circulação das idéias, tanto pela correspondência como por suas publicações. Mas o próprio Mersenne foi uma figura importante na Revolução Científica com seu próprio programa intelectual. O propósito do artigo é discutir o papel que o contato epistolar com a Itália exerceu no seu próprio desenvolvimento intelectual. Quero discutir também que a transmissão da ciência italiana para a França feita por Mersenne, no final do anos 1620 e início dos anos 1630, precisamente no momento em que Galileu estava em dificuldades em Roma, foi crucial para a derradeira transformação da ciência e filosofia européias. Minha tese é que por causa de seus contatos com a Italia Mersenne continua, de certo modo, a tradição jesuítica das matemáticas mistas que, em virtude da condenação de Galileu em 1633, não poderia por muito tempo ser praticada na Itália, uma tradição que conduzirá a Descartes, Gassendi, e à filosofia mecânica que dominará o restante do século.
APA, Harvard, Vancouver, ISO, and other styles
11

Hunt, Edgar H., and Wolfgang Kohler. "Die Blasinstrumente aus der 'Harmonie Universelle' des Marin Mersenne." Galpin Society Journal 44 (March 1991): 180. http://dx.doi.org/10.2307/842233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Grosslight, Justin. "Small Skills, Big Networks: Marin Mersenne as Mathematical Intelligencer." History of Science 51, no. 3 (September 2013): 337–74. http://dx.doi.org/10.1177/007327531305100304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

MALCOLM, NOEL. "Five Unknown Items from the Correspondence of Marin Mersenne." Seventeenth Century 21, no. 1 (March 2006): 73–98. http://dx.doi.org/10.1080/0268117x.2006.10555568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Manrique, Juan Francisco. "CARTA SOBRE EL PROYECTO DE UN LENGUAJE UNIVERSAL." Praxis Filosófica, no. 29 (December 13, 2011): 165–78. http://dx.doi.org/10.25100/pfilosofica.v0i29.3294.

Full text
Abstract:
La carta del 20 de noviembre de 1629 dirigida al famoso padre franciscano Marin Mersenne puede ser considerada como el documento en que Descartes consigna su opinión respecto al proyecto de un lenguaje universal. emprender la búsqueda de un lenguaje universal, artificial y perfecto, era una meta muy popular en el siglo XVII, que según algunos es la que mejor refleja el ideal filosófico de la época.
APA, Harvard, Vancouver, ISO, and other styles
15

Urreiztieta, Carlos Calderón. "The Monochord according to Marin Mersenne: Bits, Atoms, and some Surprises." Perspectives on Science 18, no. 1 (May 2010): 77–97. http://dx.doi.org/10.1162/posc.2010.18.1.77.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Rolla, Chiara. "Marin Mersenne, La vérité des sciences contre les Sceptiques ou Pyrroniens." Studi Francesi, no. 144 (XLVIII | III) (December 15, 2004): 602–3. http://dx.doi.org/10.4000/studifrancesi.37581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Velázquez Zaragoza, Soledad Alejandra. "La naturaleza de las entidades matemáticas. Gassendi y Mersenne: objetores de Descartes." Revista de filosofía DIÁNOIA 65, no. 84 (May 27, 2020): 111. http://dx.doi.org/10.22201/iifs.18704913e.2020.84.1613.

Full text
Abstract:
La naturaleza de las entidades matemáticas ha sido un problema filosófico recurrente en diversas épocas; aquí mostraré que fue una pieza clave en la definición de las posturas ontológicas durante la Modernidad temprana. La piedra de toque para la fundamentación de los conocimientos científicos fue el carácter que se atribuyó a las entidades matemáticas —y, en general, a las entidades abstractas, incluidas las lógicas— en la filosofía natural. Expongo dos posiciones de la Modernidad: la que defendió René Descartes, quien las concibió como entidades perennes, inherentes a la propia constitución y funcionamiento de la mente y la de autores como Pierre Gassendi y Marin Mersenne, quienes defendieron el origen empírico e instrumental de esas entidades.
APA, Harvard, Vancouver, ISO, and other styles
18

Gómez, Carlos. "Marin Mersenne (1588-1648): apologética tradicional cristiana frente a la crisis religiosa de 1623." Enrahonar. An international journal of theoretical and practical reason 28 (January 21, 1997): 55. http://dx.doi.org/10.5565/rev/enrahonar.474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Brito, Anderson Odair de Melo, João Silva Rocha, and José Eduardo Silva. "Modelos matemáticos para calcular números primos: Proposta de um critério didático para o ensino fundamental." Research, Society and Development 10, no. 5 (May 9, 2021): e35910515171. http://dx.doi.org/10.33448/rsd-v10i5.15171.

Full text
Abstract:
No ensino de matemática, em nível de Ensino Fundamental, são desenvolvidos diversos conteúdos matemáticos tais como: Números Inteiros e Critérios de Divisibilidade, são conteúdos necessários para o desenvolvimento de novos conceitos matemáticos, nesta perspectiva esta pesquisa propôs refletir sobre o desenvolvimento de cálculos para encontrar Números Primos Sequenciados, tomando como base as propostas dos matemáticos Pierre de Fermat, Marin Mersenne e Eratóstenes. Desta forma, a pesquisa tem por objetivo propor um critério matemático para encontrar Números Primos Sequenciados de maneira mais prática para o ensino aos estudantes do Ensino Fundamental. Sendo assim, realizou-se um levantamento bibliográfico por meio da plataforma Google Acadêmico, considerando o período de publicação entre 2017-2021, totalizando vinte artigos, oito livros e uma monografia, selecionados devido a relevância com o tema. Os resultados demonstraram que a abordagem para números primos é verificada em diversos eixos temáticos, como matemática e números primos, além de referenciar a complexidade no desenvolvimento matemático para os cálculos. Após a demonstração do critério proposto e sua comparação com os modelos de Fermat, Mersenne e Eratóstenes, evidencia-se que a proposta se enquadra numa didática para as aulas de matemática, sendo de fácil compreensão para os estudantes, prático e eficiente para o ensino de cálculo de como encontrar números primos sequenciados.
APA, Harvard, Vancouver, ISO, and other styles
20

Konoval, Brandon. "Pythagorean Pipe Dreams? Vincenzo Galilei, Marin Mersenne, and the Pneumatic Mysteries of the Pipe Organ." Perspectives on Science 26, no. 1 (February 2018): 1–51. http://dx.doi.org/10.1162/posc_a_00266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Giles, Roseen H. "The Inaudible Music of the Renaissance: From Marsilio Ficino to Robert Fludd." Renaissance and Reformation 39, no. 2 (July 27, 2016): 129–66. http://dx.doi.org/10.33137/rr.v39i2.26857.

Full text
Abstract:
This article revaluates the significance of musical treatises written by the Ficinian physician Robert Fludd (1574–1637). By reconsidering the implications of Fludd’s interpretation of Marsilio Ficino’s musical philosophy, I propose that his “reconstruction” of the Renaissance outlook in the seventeenth century is not merely a backward-looking oddity, but is rather indicative of a long-standing and pervasive history of inaudible music (i.e., the “silent” harmony of the universe and of the human body). Music played a central role in Fludd’s polemics with the scientists Johannes Kepler (1571–1630) and Marin Mersenne (1588–1648), regarding not the composition of art music but rather the understanding of the composition of the universe itself. The societal tensions evident in Fludd’s musical books reveal that it is not only musical practice but also broad scientific, medical, and philosophical conceptions of sound that comprise musical understanding in the early seventeenth century. Cet article propose de réévaluer la signification des traités de musique du médecin ficinien Robert Fludd (1574–1637). En reconsidérant ce qu’implique l’interprétation par Fludd de la philosophie musicale de Marsile Ficin, il avance que cette « reconstruction » d’une perspective issue de la Renaissance au XVIIe siècle ne correspond pas seulement à un excentrique retour en arrière; elle réfère plutôt à la longue et omniprésente histoire de cette musique inaudible qu’est l’harmonie des sphères (comprise comme harmonie silencieuse de l’univers et du corps humain). La musique a en effet joué un rôle important dans les échanges polémiques entre Fludd, Johannes Kepler (1571–1630) et Marin Mersenne (1588–1648), qui ne portent pas tant sur la composition musicale que sur la compréhension de la composition de l’univers lui-même. Les tensions sociétales, bien perceptibles dans les traités de musique de Fludd, montrent qu’au delà de la pratique musicale, c’est une conception scientifique générale, médicale et philosophique qu’engage la pensée musicale du début du XVIIe siècle.
APA, Harvard, Vancouver, ISO, and other styles
22

Wanko, Jeffrey J. "The Legacy of Marin Mersenne: The Search for Primal Order and the Mentoring of Young Minds." Mathematics Teacher 98, no. 8 (April 2005): 525–29. http://dx.doi.org/10.5951/mt.98.8.0525.

Full text
Abstract:
The search for prime numbers has long held a great fascination for mathematicians and for mathematics enthusiasts. Whether as a mathematical recreation or as a serious study within number theory, this quest has resulted in some profound mathematical advances and in a few surprising results that held some unforeseen applications and connections to other areas. For example, the problems of finding perfect numbers and constructible regular polygons have both been simplified through the search for prime numbers (Bell 1937, Clawson 1996).
APA, Harvard, Vancouver, ISO, and other styles
23

Buccolini, Claudio. "« Rem totam more geometrico... concludas ». La recherche d'une preuve mathématique de l'existence de Dieu chez Marin Mersenne." École pratique des hautes études, Section des sciences religieuses 116, no. 112 (2003): 423–28. http://dx.doi.org/10.3406/ephe.2003.12276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bianchi, E. "Bad Latin, Bad Manners: Giovanni Battista Doni, Marin Mersenne, and Literary Style in Seventeenth-Century Music Theory." Music and Letters 96, no. 2 (May 1, 2015): 167–84. http://dx.doi.org/10.1093/ml/gcv037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Roberts, Michael B. "Genesis Chapter 1 and geological time from Hugo Grotius and Marin Mersenne to William Conybeare and Thomas Chalmers (1620–1825)." Geological Society, London, Special Publications 273, no. 1 (2007): 39–49. http://dx.doi.org/10.1144/gsl.sp.2007.273.01.04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hall, Marie Boas. "Marin Mersenne, Correspondance, XV (1647). Edited by Cornelis de Waard and Armand Beaulieu. Paris: Centre National de la Recherche Scientifique, 1983." British Journal for the History of Science 18, no. 1 (March 1985): 100. http://dx.doi.org/10.1017/s0007087400021865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Nellen, Henk. "Minimal Religion, Deism and Socinianism: On Grotius’s Motives for Writing De Veritate." Grotiana 33, no. 1 (2012): 25–57. http://dx.doi.org/10.1163/18760759-03300006.

Full text
Abstract:
This article goes into the intentions and motives behind De veritate (1627), famous apologetic work by the Dutch humanist and jurisconsult Hugo Grotius (1583-1645). De veritate will be compared with two other seminal works written by Grotius, De iure belli ac pacis (1625) and the Annotationes in Novum Testamentum (1641-1650). The focus will be on one particular aspect that comes to the fore in all three works: the way Grotius reduced the Christian faith to a minimal religion by singling out the essential tenets this faith had in common with other religions. The core of Grotius’s argumentation consists in the idea that believers and, in particular, civil authorities have to distinguish between a few essential religious tenets that could be made rationally acceptable, and a set of supernatural dogmas, derived from divine revelation, that did not pass a certain, albeit very high degree of probability. As far as the second category was concerned, civil tolerance was called for. As becomes clear from contemporary correspondences, Grotius did not develop these rather controversial ideas in an intellectual vacuum. During his exile in Paris, he fostered contacts with members of the circle that formed around the French monk Marin Mersenne (1588-1648). This circle functioned as a kind of hothouse for the development of a minimal Christian creed. Members of this group saw promotion of a minimal creed as a solution to current religious controversies and the ensuing political turmoil and (civil) war, which were abhorred for their detrimental effects on the advancement of learning in the first place. On the other hand, it is also apparent that overt adherence to such an ideal was considered to be dangerous, because it would at least evoke the embarrassing and even repressive attention of the authorities in Church and government. An additional problem was that by defending such a religious stance, members of Mersenne’s circle laid themselves open to accusations of endorsing ‘rational beliefs’ like Socinianism, generally considered to be the worst heresy among all Christian denominations.
APA, Harvard, Vancouver, ISO, and other styles
28

Oliveira, Zaqueu Vieira, and Thomás A. S. Haddad. "Adriaan van Roomen e sua Correspondência: desafios e controvérsias matemáticas no século XVI." Revista Brasileira de História da Matemática 18, no. 36 (October 21, 2020): 77–115. http://dx.doi.org/10.47976/rbhm2018v18n3677-115.

Full text
Abstract:
A correspondência foi um dos meios de comunicação mais utilizados por cientístas e estudiosos durante o renascimento. Além de encontrarmos evidências dos interesses científicos e matemáticos de cada autor, são nessas cartas que encontramos também evidências das práticas consideradas válidas dentro do ambiente científico e matemático daquele tempo. Em um trabalho recente, Catherine Goldstein (2013) considera a rede de correspondentes de Marin Mersenne (1588-1648) como uma instituição, termo utilizado para mostrar as relações entre os interlocutores, as práticas consideradas válidas e as polêmicas e as discórdias sobre os modos de se resolver problemas matemáticos, fatos evidenciados nas cartas. Neste artigo, apresentamos a tradução de quatro cartas de Adriaan van Roomen (1561-1615) e um ensaio sobre duas controvérsias em que o autor figura como um dos protagonistas: o debate entre van Roomen e François Viète (1540-1603) e os desafios trocados por eles em suas obras publicadas no final do século XVI e a batalha de Joseph Justus Scaliger (1540-1609) tentando se defender de um grupo de matemáticos, que inclui van Roomen, que refutaram os erros na sua solução para o clássico problema da quadratura do círculo. Apontaremos como estas e outras questões que aparecem na Correspondência de van Roomen nos demonstrando como se dava a prática matemática no século XVI e como podemos considerá-la como uma instituição, no sentido exposto por Goldstein.
APA, Harvard, Vancouver, ISO, and other styles
29

Watling, John. "René Descartes." Royal Institute of Philosophy Lecture Series 20 (March 1986): 55–56. http://dx.doi.org/10.1017/s0957042x00004016.

Full text
Abstract:
René Descartes (1596–1650) was born at La Haye, near Tours in France. He entered the Jesuit School at La Flèche in 1606, where he studied Latin and Greek and the classical authors, and acquired respect for the certainty of mathematics and distaste for the theories of Aristotle as developed by medieval commentators. In 1616, he took a degree in law at the University of Poitiers. There followed a period during which he travelled, for some of the time as a gentleman-officer in the armies of Maurice of Nassau, Prince of Orange, and Maximilian, Duke of Bavaria. In 1625 he returned to Paris and renewed his acquaintance with Father Marin Mersenne, who was later instrumental in making his views known to many of the famous intellectuals in Europe. From 1628 to 1649 he lived in Holland and worked out in detail the scientific, philosophical and mathematical ideas that had engaged him during his travels. His main philosophical works are Rules for the Direction of the Mind, written in 1629–30 but not published until 1684, Discourse on Method, 1637, Meditations, 1641, Principles of Philosophy, 1644, and The Passions of the Soul, 1649. In 1649, Descartes accepted an invitation to visit the Queen of Sweden and instruct her in philosophy. He succumbed to the rigorous climate, and died in February 1650.
APA, Harvard, Vancouver, ISO, and other styles
30

Jesseph, Douglas. "Hobbes on the Ratios of Motions and Magnitudes." Hobbes Studies 30, no. 1 (March 13, 2017): 58–82. http://dx.doi.org/10.1163/18750257-03001004.

Full text
Abstract:
Hobbes intended and expected De Corpore to secure his place among the foremost mathematicians of his era. This is evident from the content of Part iii of the work, which contains putative solutions to the most eagerly sought mathematical results of the seventeenth century. It is well known that Hobbes failed abysmally in his attempts to solve problems of this sort, but it is not generally understood that the mathematics of De Corpore is closely connected with the work of some of seventeenth-century Europe’s most important mathematicians. This paper investigates the connection between the main mathematical chapters of De Corpore and the work of Galileo Galilei, Bonaventura Cavalieri, and Gilles Personne de Roberval. I show that Hobbes’s approach in Chapter 16 borrows heavily from Galileo’s Two New Sciences, while his treatment of “deficient figures’ in Chapter 17 is nearly identical in method to Cavalieri’s Exercitationes Geometricae Sex. Further, I argue that Hobbes’s attempt to determine the arc length of the parabola in Chapter 18 is intended to use Roberval’s methods to generate a more general result than one that Roberval himself had achieved in the 1640s (when he and Hobbes were both active in the circle of mathematicians around Marin Mersenne). I claim Hobbes was convinced that his first principles had led him to discover a “method of motion” that he mistakenly thought could solve any geometric problem with elementary constructions.
APA, Harvard, Vancouver, ISO, and other styles
31

Rodríguez, Carlos. "Marin Mersenne : la polémica acerca de la pluralidad de los mundos en las "Quaestiones celeberrimae in Genesim" y sobre el intinitismo de Giordano Bruno en "L'impiété des déistes, athées et libertins de ce temps"." ENDOXA 1, no. 8 (January 1, 1997): 163. http://dx.doi.org/10.5944/endoxa.8.1997.4884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

"Concluding a CorrespondenceCorrespondance du P. Marin Mersenne, religieux minime. Marin Mersenne, Cornelis de Waard, Armand Beaulieu." Isis 76, no. 1 (March 1985): 75–80. http://dx.doi.org/10.1086/353740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bardelmann, Claire. "Poésie et musique dans l’Harmonie Universelle de Marin Mersenne : une poétique de l’unité." Études Épistémè, no. 18 (October 1, 2010). http://dx.doi.org/10.4000/episteme.647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Basílico, Brenda. "L’harmonia mundana au xviie siècle. Les critiques de Marin Mersenne adressées au monocorde du monde de Robert Fludd." L'Atelier du CRH, no. 17 (May 9, 2017). http://dx.doi.org/10.4000/acrh.7910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

"René Descartes." Royal Institute of Philosophy Lecture Series 20 (March 1986): 55–56. http://dx.doi.org/10.1017/s135824610000401x.

Full text
Abstract:
René Descartes (1596–1650) was born at La Haye, near Tours in France. He entered the Jesuit School at La Flèche in 1606, where he studied Latin and Greek and the classical authors, and acquired respect for the certainty of mathematics and distaste for the theories of Aristotle as developed by medieval commentators. In 1616, he took a degree in law at the University of Poitiers. There followed a period during which he travelled, for some of the time as a gentleman-officer in the armies of Maurice of Nassau, Prince of Orange, and Maximilian, Duke of Bavaria. In 1625 he returned to Paris and renewed his acquaintance with Father Marin Mersenne, who was later instrumental in making his views known to many of the famous intellectuals in Europe. From 1628 to 1649 he lived in Holland and worked out in detail the scientific, philosophical and mathematical ideas that had engaged him during his travels. His main philosophical works are Rules for the Direction of the Mind, written in 1629–30 but not published until 1684, Discourse on Method, 1637, Meditations, 1641, Principles of Philosophy, 1644, and The Passions of the Soul, 1649. In 1649, Descartes accepted an invitation to visit the Queen of Sweden and instruct her in philosophy. He succumbed to the rigorous climate, and died in February 1650.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography