Academic literature on the topic 'Marine diesel motors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Marine diesel motors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Marine diesel motors"
Bayraktar, Murat, and Mustafa Nuran. "An assessment of electric motors from the point of marine propulsion systems." World Journal of Environmental Research 12, no. 1 (May 31, 2022): 43–49. http://dx.doi.org/10.18844/wjer.v12i1.7733.
Full textSagin, Sergey Viktorovich, and Oleksandr Vladymyrovich Semenov. "Motor Oil Viscosity Stratification in Friction Units of Marine Diesel Motors." American Journal of Applied Sciences 13, no. 2 (February 1, 2016): 200–208. http://dx.doi.org/10.3844/ajassp.2016.200.208.
Full textMaya Kerimova, Sakina Abbasova, Maya Kerimova, Sakina Abbasova. "IMPROVEMENT OF INTELLIGENT INTERNAL COMBUSTION ENGINES." PIRETC-Proceeding of The International Research Education & Training Centre 27, no. 06 (August 25, 2023): 65–72. http://dx.doi.org/10.36962/piretc27062023-65.
Full textSavenko, A. E., and P. S. Savenko. "Improving the operational characteristics of electrical power systems of marine vessels." Power engineering: research, equipment, technology 25, no. 6 (January 12, 2024): 78–88. http://dx.doi.org/10.30724/1998-9903-2023-25-6-78-88.
Full textZelinsky, Michail Mikhailovich, Nickolay Gennadievich Romanenko, and Egor Aleksandrovich Nenastiev. "Modeling load effect of marine diesel engines on cooling system operation." Vestnik of Astrakhan State Technical University. Series: Marine engineering and technologies 2022, no. 4 (November 30, 2022): 89–96. http://dx.doi.org/10.24143/2073-1574-2022-4-89-96.
Full textFaіtar, Catalіn, Liviu-Constantin Stan, and Nicolae Buzbuchi. "Performance and reliability of exhaust gas recovery units for marine engines." Technium: Romanian Journal of Applied Sciences and Technology 4, no. 8 (August 25, 2022): 23–32. http://dx.doi.org/10.47577/technium.v4i8.7262.
Full textPeng, Baolong. "A Review of Research on Marine Main Propulsion Systems." Journal of Education and Educational Research 9, no. 1 (June 25, 2024): 189–92. http://dx.doi.org/10.54097/n0y36x16.
Full textKhooban, Mohammad Hassan, Navid Vafamand, and Jalil Boudjadar. "Tracking Control for Hydrogen Fuel Cell Systems in Zero-Emission Ferry Ships." Complexity 2019 (November 15, 2019): 1–9. http://dx.doi.org/10.1155/2019/5358316.
Full textPokusaev, Mikhail Nikolaevich, Anastasia Aleksandrovna Khmelnitskaya, Konstantin Evgenievich Khmelnitsky, Maxim Michailovich Gorbachev, and Elena Georgievna Ilyina. "Analysis of harmful discharges into hydrosphere from Yanmar D27 diesel outboard motor." Vestnik of Astrakhan State Technical University. Series: Marine engineering and technologies 2022, no. 3 (August 23, 2022): 34–39. http://dx.doi.org/10.24143/2073-1574-2022-3-34-39.
Full textBogdanowicz, Artur, Tomasz Kniaziewicz, and Marcin Zacharewicz. "The Use of a Mathematical Model of Marine Diesel Engine in a Computer Program." New Trends in Production Engineering 1, no. 1 (October 1, 2018): 453–60. http://dx.doi.org/10.2478/ntpe-2018-0056.
Full textDissertations / Theses on the topic "Marine diesel motors"
Wei, Fang. "A study on the improvement of marine diesel engine transient performance by means of air injection." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B36834841.
Full textWei, Fang, and 魏昉. "A study on the improvement of marine diesel engine transient performance by means of air injection." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B36834841.
Full textGeorge, Sam. "Characterization of in-use emissions from marine engines." Morgantown, W. Va. : [West Virginia University Libraries], 2004. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3339.
Full textTitle from document title page. Document formatted into pages; contains xiv, 132 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 108-112).
Nuszkowski, John. "Staten Island ferry emissions reduction." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4169.
Full textTitle from document title page. Document formatted into pages; contains xi, 94 p. : ill. (some col.), col. map. Includes abstract. Includes bibliographical references (p. 74-79).
Agrawal, Harshit. "Analyses and impacts of emissions from marine engines." Diss., UC access only, 2009. http://proquest.umi.com/pqdweb?did=1974821941&sid=1&Fmt=2&clientId=48051&RQT=309&VName=PQD.
Full textPagliato, Luca. "Studio e ottimizzazione di una testata pluriniettore per motore Diesel marino." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/3460/.
Full textLION, SIMONE. "Waste heat recovery with Organic Rankine Cycle (ORC) in marine and commercial vehicles Diesel engine applications." Doctoral thesis, Università degli Studi di Trieste, 2018. http://hdl.handle.net/11368/2920081.
Full textMoussa-Nahim, Hassan. "Contribution à la modélisation et à la prédiction de défaillances sur les moteurs diesel marins." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4307.
Full textThis work presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, allowing fast predictive simulations. The whole engine system is divided into several functional blocs: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocs are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocs and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocs. The simulator is used to study the engine performance in faulty conditions, and can be used also to assist marine engineers in FDI (fault detection and isolation) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components
Epalle, Thomas. "Simulation numérique de reformeur autothermique de diesel." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC033/document.
Full textAutothermal reformers use fuel-air oxidation to ensure production of hydrogen from fuel and water on-board. The use of diesel instead of better-known methan, permits the ships to be refuelled all around the world. These systems show strong sensitivity to carbon deposit which reduces their lifetime. Good knowledge of the fuel air mixing is thus required. Academic description of such tridimensional systems usually relies on the application of a RANS simulation coupled with gaseous chemical kinetics mechanism. These mechanisms can then consist on a few empirical reactions, or at the opposite, on quite large schemes, with more than 50 species derived automatically from big detailled schemes. The resulting description is then not enough precise, or at the opposite too computationally expensive to be used during design process. This thesis thus aims to develop an industrial compatible methodology to describe the impact of design geometry on pollutant formation. ANSYS software such as Fluent and Chemkin are then used to perform the simulation. An original method of limited size mechanism derivation from larger chemical scheme is proposed. It is succesfully applied to the generation of a partial oxidation mechanism of n-dodecane, from the results of diesel reforming chemical analysis. The resulting scheme is then applied on theliquid injection diesel autoreformer reactive simulation. Even if validation difficulties result from the lack of experimental data and limitations of the softwares, it remains the first simulation of this kind in the litterature, to our knowledge. Promising results are obtained
Edfors, Jonas, and Robin Bremberg. "Liquid Natural Gas : A study of the environmental impact of LNG in comparison to diesel." Thesis, Linnéuniversitetet, Sjöfartshögskolan (SJÖ), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-103569.
Full textFlytande Naturgas (LNG) har under flera år funnits som ett alternativt bränsle inom sjöfarten, men på senare tid så har skeppen som drivs av metan ökat markant. En anledning till detta är att LNG innehåller inget svavel samt släpper ut mindre NOX jämfört med traditionella bränslen. I denna uppsats så kommer LNG att jämföras mot diesel ur ett klimatperspektiv med fokus på koldioxidutsläpp och dess ekvivalenter. International Maritime Organisation (IMO) har infört Energy Efficiency Design Index (EEDI) krav som justerar hur mycket CO2 man får släppa ut per kilowattimme (kWh), dessa krav kommer dessutom att öka i flertalet intervaller i framtiden, varav nästa intervall redan sker i 2022 för speciella fartygstyper. Metoden som användes för att jämföra bränslena var att beräkna mol-innehållet för både LNG samt diesel, sen från den beräknade data se hur mycket koldioxid (CO2) inklusive ekvivalenter de släppte ut. Resultatet visade att under optimala förutsättningar så var LNG ett klart bättre alternativ än diesel. Däremot så kan sjöfarten ha ett problem inom framtiden från de krav som berör växthusgaser som kommer att ställas från och med 2050.
Books on the topic "Marine diesel motors"
Charnews, Dan. Marine diesel engines. Centreville, MD: Cornell Maritime Press, 2007.
Find full textPounder, C. Coulson. Pounder's marine diesel engines. 7th ed. Oxford: Butterworth-Heinemann, 1998.
Find full textWoodward, John B. Low speed marine diesel. Malabar, Fla: R.E. Krieger Pub. Co., 1988.
Find full textCastilla, Charles Ruiz de. Marine diesel engine maintenance. Venice, CA: Bennett Marine Video, 2004.
Find full textThiel, Richard. Keep your marine diesel running. Camden, Me: International Marine Pub., 1991.
Find full textUnited States. Environmental Protection Agency. Office of Transportation and Air Quality. Effect of proposed evaporative emission standards for marine manufacturers. [Washington, D.C.]: U.S. Environmental Protection Agency, Air and Radiation, Office of Transportation and Air Quality, 2002.
Find full textGoring, Loris. Marine inboard engines: Petrol and diesel. London: Adlard Coles, 1990.
Find full textBook chapters on the topic "Marine diesel motors"
"MaK (Caterpillar Motoren)." In Pounder's Marine Diesel Engines, 548–62. Elsevier, 2004. http://dx.doi.org/10.1016/b978-075065846-1/50022-5.
Full textFerreira, Hozana de Souza, Maria Catarina de Farias Caldas, Pollyana Pereira do Nascimento, Maria Inez Campello Barata, Galba Maria de Campos Takaki, and Rosileide Fontenele da Silva Andrade. "Potential of filamentous fungi in the biodegradation of petroderivatives and evaluation of the effect of surfactants." In CONNECTING EXPERTISE MULTIDISCIPLINARY DEVELOPMENT FOR THE FUTURE. Seven Editora, 2023. http://dx.doi.org/10.56238/connexpemultidisdevolpfut-005.
Full textConference papers on the topic "Marine diesel motors"
Bø, Torstein I., and Eilif Pedersen. "Models and Methods for Efficiency Estimation of a Marine Electric Power Grid." In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-61625.
Full textGhosh, Sujit, Tom Risley, David Sobolewski, William Welch, and Sherry Williams. "Marine Alternative Fuel Performance Testing." In ASME 2012 Internal Combustion Engine Division Spring Technical Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ices2012-81239.
Full textBø, Torstein I., Tor A. Johansen, Andreas R. Dahl, Michel R. Miyazaki, Eilif Pedersen, Børge Rokseth, Roger Skjetne, et al. "Real-Time Marine Vessel and Power Plant Simulation." In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-41479.
Full textRiis, Dan. "Developing Non-Gasoline Burning Outboard Motors for the UK MoD." In ASME 2005 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/icef2005-1223.
Full textHendry, Morgan L., and Nicholas Bellamy. "Advantages and Experience of Using SSS (Synchro-Self-Shifting) Clutches in Hybrid Propulsion Such As CODELOG or CODELAG Naval Marine Systems." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91873.
Full textAyers, William Norris. "DC Grids for Ship Propulsion: Benefits and Challenges." In SNAME Maritime Convention. SNAME, 2022. http://dx.doi.org/10.5957/smc-2022-037.
Full textLim, Sangpil, and Adam Harvey. "Selection and Development of the World’s Most Power-Dense Gas Turbine Module for the New Korean Frigate." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56446.
Full textShiraishi, Keiichi, and Venky Krishnan. "Electro-Assist Turbo for Marine Turbocharged Diesel Engines." In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-25667.
Full textSanada, Kazushi, and Tetsuro Miyazaki. "Application of DDVC Fuel Injection System to Ship Speed Control." In BATH/ASME 2016 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fpmc2016-1760.
Full textHendry, Morgan L., and Nicholas Bellamy. "Operational Experience of the SSS (Synchro-Self-Shifting) Clutch for Naval Marine Applications." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57819.
Full text