Academic literature on the topic 'Marine mineral resources'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Marine mineral resources.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Marine mineral resources"

1

Alexander, Lewis M., and Fillmore C. F. Earney. "Marine Mineral Resources." Geographical Review 82, no. 2 (April 1992): 231. http://dx.doi.org/10.2307/215446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

CRONAN, D. S. "Marine mineral resources." Geology Today 1, no. 1 (January 1985): 15–19. http://dx.doi.org/10.1111/j.1365-2451.1985.tb00278.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barnard, Alex. "Sustainable Development of Marine Mineral Resources." Marine Technology Society Journal 53, no. 5 (September 1, 2019): 27–29. http://dx.doi.org/10.4031/mtsj.53.5.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Ying, Chang Shui Liu, Lian Feng Gao, Zhen Guo Zhang, and Peng Zhang. "Marine Authigenic Deposits Mineral - New Fields for the Development of Rare Earth Resources." Advanced Materials Research 291-294 (July 2011): 1748–51. http://dx.doi.org/10.4028/www.scientific.net/amr.291-294.1748.

Full text
Abstract:
Rare earth metals are an important strategic resource. Due to scarce reserves, and large consumer demand, it is facing the crisis of resource depletion. Marine are the largest deposits sites in the world. In the long growth history, marine autogenic sedimentary mineral, such as polymetallic nodules, crusts with large quantities, not only contain the enrichment of Mn, Fe, Co, Cu, Ni and other valuable metals, but also contain extremely rare earth elements (REE) in the crust. Thus, in the process of developing marine mineral resources, Mn, Fe, Co, Cu, Ni and other metals are used, while it is possible for the development and utilization of the associated rare earth mineral. Marine may become a new field of rare earth resources development.
APA, Harvard, Vancouver, ISO, and other styles
5

TSURUSAKI, Katsuya. "Marine Mineral Resources & Its Exploiting Technology." Journal of the Society of Mechanical Engineers 91, no. 834 (1988): 477–80. http://dx.doi.org/10.1299/jsmemag.91.834_477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Clark, Allen L., and Jennifer Cook Clark. "Marine Metallic Mineral Resources of the Pacific Basin." Marine Resource Economics 3, no. 1 (January 1986): 45–62. http://dx.doi.org/10.1086/mre.3.1.42628917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Clark, Allen, and Chang Li. "Marine mineral resources of the South China sea." Marine Georesources & Geotechnology 11, no. 1 (January 1993): 101–26. http://dx.doi.org/10.1080/10641199309379907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Valencia, Mark J. "Third World cooperation on pacific marine mineral resources." Third World Quarterly 8, no. 2 (April 1986): 594–620. http://dx.doi.org/10.1080/01436598608419914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sakellariadou, Fani, Francisco J. Gonzalez, James R. Hein, Blanca Rincón-Tomás, Nikolaos Arvanitidis, and Thomas Kuhn. "Seabed mining and blue growth: exploring the potential of marine mineral deposits as a sustainable source of rare earth elements (MaREEs) (IUPAC Technical Report)." Pure and Applied Chemistry 94, no. 3 (February 4, 2022): 329–51. http://dx.doi.org/10.1515/pac-2021-0325.

Full text
Abstract:
Abstract The expected growth of the global economy and the projected rise in world population call for a greatly increased supply of materials critical for implementing clean technologies, such as rare earth elements (REEs) and other rare metals. Because the demand for critical metals is increasing and land-based mineral deposits are being depleted, seafloor resources are seen as the next frontier for mineral exploration and extraction. Marine mineral deposits with a great resource potential for transition, rare, and critical metals include mainly deep-sea mineral deposits, such as polymetallic sulfides, polymetallic nodules, cobalt-rich crusts, phosphorites, and rare earth element-rich muds. Major areas with economic interest for seabed mineral exploration and mining are the following: nodules in the Penrhyn Basin-Cook Islands Exclusive Economic Zone (EEZ), the Clarion–Clipperton nodule Zone, Peru Basin nodules, and the Central Indian Ocean Basin; seafloor massive sulfide deposits in the exclusive economic zones of Papua New Guinea, Japan, and New Zealand as well as the Mid-Atlantic Ridge and the three Indian Ocean spreading ridges; cobalt-rich crusts in the Pacific Prime Crust Zone and the Canary Islands Seamounts and the Rio Grande Rise in the Atlantic Ocean; and the rare earth element-rich deep-sea muds around Minamitorishima Island in the equatorial North Pacific. In addition, zones for marine phosphorites exploration are located in Chatham Rise, offshore Baja California, and on the shelf off Namibia. Moreover, shallow-water resources, like placer deposits, represent another marine source for many critical minerals, metals, and gems. The main concerns of deep-sea mining are related to its environmental impacts. Ecological impacts of rare earth element mining on deep-sea ecosystems are still poorly evaluated. Furthermore, marine mining may cause conflicts with various stakeholders such as fisheries, communications cable owners, offshore wind farms, and tourism. The global ocean is an immense source of food, energy, raw materials, clean water, and ecosystem services and suffers seriously by multiple stressors from anthropogenic sources. The development of a blue economy strategy needs a better knowledge of the environmental impacts. By protecting vulnerable areas, applying new technologies for deep-sea mineral exploration and mining, marine spatial planning, and a regulatory framework for minerals extraction, we may achieve sustainable management and use of our oceans.
APA, Harvard, Vancouver, ISO, and other styles
10

Rasskazov, Andrey A., Evgeniy S. Gorbatov, and Alexander E. Kotelnikov. "Features of formation of lacustrine mineral resources." RUDN Journal of Engineering Researches 22, no. 2 (October 2, 2021): 225–33. http://dx.doi.org/10.22363/2312-8143-2021-22-2-225-233.

Full text
Abstract:
The conditions of the formation of nonmetallic and ore minerals in limnogenic structures are considered. It has been established that lakes are natural enriches of a wide range of useful components - silicate, carbonate, water-soluble, ore, organomineral. The most significant minerals of modern lakes, in addition to water, are: sapropel, diatomite, lime and mineral salts. Deposits of sand, clay, oil shale, oil and gas, coal, phosphorites, zeolites, evaporites, bauxites, ferromanganese, copper ores, placer minerals, and some rare and dispersed elements are associated with limnogenic complexes of different ages. It is shown that a greater variety of minerals of ancient lacustrine complexes compared to modern ones is associated both with variations of lacustrine lithogenesis in the past and with post-sedimentation transformations of sedimentary matter. In particular, epigenetic enrichment of ancient lacustrine complexes with ore components is noted. It was revealed that hydrocarbons and diatomites of lacustrine genesis are of a higher quality compared to similar minerals of marine genesis. It is noted that evolutionary changes in the processes of accumulation of limnogenic minerals have affected to the greatest degree biogenic and chemogenic components. An example of this is the progressive accumulation of caustobiolites and the sulfate evolution of evaporites in lacustrine structures during the Phanerozoic. An analysis of the genetic characteristics of lacustrine minerals makes it possible to develop new exploratory traits of a number of sedimentary deposits.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Marine mineral resources"

1

Roulette, Loïc. "Le statut des ressources minières marines françaises : pour un rattachement au patrimoine commun de la nation." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0776.

Full text
Abstract:
La France possède la deuxième superficie maritime du monde et une véritable expertise dans le domaine off-shore. Elle est donc doublement concernée par le potentiel de ressources minières que contiennent les fonds marins. Selon plusieurs études, les espaces maritimes relevant de la souveraineté ou de la juridiction de la France renfermeraient de nombreux gisements miniers. Ces derniers contiennent des ressources connues comme le pétrole mais aussi des ressources potentielles comme les terres rares, métaux nécessaires aux technologies de pointe. Ces ressources constituent sans nul doute l’un des enjeux majeurs du XXIe siècle. Leur exploitation suscite néanmoins des revendications économiques et environnementales : les populations locales demandent à bénéficier des fruits de cette exploitation ; l’environnement devra être préservé par les exploitants off-shore. Le Code minier n’est pas en mesure de relever ces défis. Le statut des ressources minières marines doit donc être adapté aux nouveaux enjeux. La thèse plaide, en un mot, pour leur rattachement au patrimoine commun de la nation. En effet, les caractères « transtemporel » et « transpatial » de la notion de patrimoine commun de la nation permettent de répondre aux revendications locales ainsi qu’à l’enjeu environnemental (1re partie). Cette intégration des ressources minières marines au patrimoine commun de la nation serait parfaitement compatible avec le droit de la mer (2e partie). Il conviendrait en revanche de tenir compte du statut particulier de certains territoires d’outre-mer (3e partie)
France has the second largest maritime area in the world and a real expertise in the off-shore sector. It is therefore doubly concerned by the potential of mineral resources contained in the seabed. According to several studies, maritime areas under the sovereignty or jurisdiction of France would contain many mineral deposits. These contain resources known as oil but also potential resources such as rare earth metals needed for advanced technologies. These resources are undoubtedly one of the major challenges of the twenty-first century. Their exploitation nevertheless gives rise to economic and environmental claims: the local populations mean to benefit from the gains resulting from this exploitation; the environment will have to be preserved by the off-shore operators. The Mining Code cannot meet these challenges. The status of marine mineral resources must therefore be adapted to these new challenges. The thesis argues, in a word, for their attachment to the common heritage of the Nation. Indeed, the transtemporal and transpatial aspects of the notion of the common heritage of the Nation make it possible to respond to local demands as well as to the environmental issue (Part I). In addition, an integration of marine mineral resources into the common heritage of the Nation would not be contrary to the Law of the Sea (Part II). On the other hand, the special status of certain overseas territories should be taken into account (Part III)
APA, Harvard, Vancouver, ISO, and other styles
2

Rau, Grant. "A geological evaluation of marine diamond placer deposits on the central Namibian inner shelf : a case study of the Hottentot Bay area." Thesis, Rhodes University, 2004. http://hdl.handle.net/10962/d1007554.

Full text
Abstract:
This study focusses on the marine diamond placers within Exclusive Prospecting Licence 1950 and Mining Licence 103a, located northwest of the north-facing Hottentot Bay which is 60 km north of Lüderitz, along the central Namibian coastline. The thesis follows the natural geological evolution of the marine placer deposit from primary source, through alluvial and/or glacial transportation, concentration along the coastline by wave, aeolian and alluvial/sheet-wash processes and finally marine diamond placer preservation. All of these processes are reviewed as they are important in understanding of the evolution marine placer deposits. The poly-cyclic role of coastal aeolian, alluvial, and marine processes, in marine placer enrichment is shown to be particularly important in considered target identification and prioritisation. A detailed bathymetric, sonographic and seismic interpretation, is an integral part of diamond placer exploration, and was used to examine and describe surficial and sub-bottom characteristics within the study area. Marine placers are formed along palaeo-strandlines during periods of marine transgression and regression and are therefore fundamental in marine placer exploration. A detailed bathymetry map, compiled for this study, of the area between Lüderitz Bay and Clara Hill, provides the foundation for a detailed terrace level investigation. Regionally, twelve well-developed stillstand levels are identified, nine of which fall into the study area. These interpretations are compared with global eustatic as well as terrace and resource/reserve levels in the Lüderitz area and are found to correlate well. Sediment dynamic studies involve the use of accredited application software for wave refraction modelling, to determine the wave angle and orbital wave velocity at the seabed. Bedload velocities, required to move diamonds of specific sizes, can be empirically determined and therefore areas of diamond entrainment and deposition can be modelled and target features delineated and prioritised. These detailed interpretations provide a sound platform for evaluating diamond placer process models in the study area. By integrating both previously published and newly formulated ideas, a revised, holistic model for the formation of marine diamond placer deposits in central Namibian is postulated. The proposed model is tested by comparing it to the lateral distribution of presently defined resource/reserve areas in the Lüderitz area and shows a close correlation with most of these enriched deposits. Based on this model, a matrix for the delineation and prioritisation of marine placer deposits is developed and the best target features within the study area are identified.
KMBT_363
Adobe Acrobat 9.54 Paper Capture Plug-in
APA, Harvard, Vancouver, ISO, and other styles
3

Drysdale, Karen. "Geochemistry of a buried marine mine tailings deposit, Howe Sound, British Columbia." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/28982.

Full text
Abstract:
One hundred surface sediment samples and two 30 cm cores were collected from Howe Sound, British Columbia, a deep (≈280 m) fjord with a restricted inner basin into which mine tailings had been dumped for 75 years. The abundances of major elements Si, Al, Ti, Fe, Mg, Ca, Na, K, C, N, and P, and minor elements Ba, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V, Y, Zn, and Zr were determined as well as nutrient and trace metal concentrations in porewater from the two cores. The solid-phase data suggest that the inner basin sediments are dominated by Squamish River-derived feldspars, while the outer basin is characterized more by quartz and Fe and Mg minerals, which enter the southernmost portion of the fjord via estuarine circulation from Georgia Strait. Although Fe, Cu, Pb, Zn, and Ba are still enriched in sediments near the tailings outfall, the lapse of 13 years since cessation of tailings deposition has apparently resulted in reduced metal levels throughout much of the rest of the inlet due to ongoing dilution by natural sedimentation. Profiles of these metals with depth show that the tailings deposit proper is buried by ≈14 cm of natural sediment in the deep central portion of the inner basin. Porewater analysis of the two cores revealed that active bacterial remobilization of organic matter is occurring at both locations; although the organic carbon content of the outer basin is greater than that in the inner basin, sulphate-reduction is more intense in the latter due to the higher sedimentation rate. Despite this, dissolved sulphides were nearly absent in porewaters, leading to the conclusion that authigenic pyrite precipitation is removing some of the dissolved Fe. Dissolved Cu and Zn are enriched in surficial porewaters of both the outer and inner basins (i.e. Cu = 215 and 132 nmol/L, respectively, and Zn = 32 µmol/L and 1.6 /µmol/L), but decrease rapidly within the top 2-3 cm, suggestive of active removal by some mechanism. Dissolved Pb concentrations were low (<3 nmol/L) in both cores, and did not show any surface enrichment. These data suggest that a strongly reducing environment such as is found at depth in natural sediments inhibits the release of some labile metals which may be contained within them.
Science, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
4

Van, Der Westhuizen Asriel. "Provenance of alluvial diamonds in Southern Africa : a morphological and mineral chemistry study of diamonds and related heavy minerals from the Vaalorange system and the West Coast." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20155.

Full text
Abstract:
Thesis (PhD)--Stellenbosch University, 2012.
ENGLISH ABSTRACT: The discovery of lucrative diamond deposits along the west coast of Southern Africa about 1200 kilometres from the Kimberley region during the period 1908 to 1927, gave rise to a number of different theories with respect to their possible provenance. These included the transportation of diamonds from unknown sources in southern Namibia by south-flowing rivers, hidden on- and off-shore kimberlites along the coast, and transportation by west-bound rivers from the hinterland. Subsequent research has shown that the latter is the only plausible theory. The discovery of marine and coastal diamond deposits as far south as the Olifants River estuary showed that the Vaal-Orange drainage in its current form could not have been the only conduit for diamonds to the coast, and the drainage evolution of southern Africa was interpreted as comprising essentially the following two main palaeo-fluvial systems active in the formation of the world's only known diamond mega-placer deposit:  The Karoo River with its headwaters similar to those of the modern Orange and Vaal Rivers and entering the Atlantic Ocean via the present-day Olifants River;  The Kalahari River that drained southern Botswana and followed the route of the modern-day Molopo River, entering the Atlantic Ocean in the vicinity of the present Orange River mouth. An important shortcoming of the above model is that it could not account for the fact that diamond distribution along the west coast shows a marked increase in grade and average stone size at the estuaries of all the major rivers draining from the escarpment to the Atlantic between the Olifants and the Orange Rivers. The presence of fluvial diamond deposits along the courses of the Buffels, Swartlintjies, Spoeg, Horees and Groen Rivers confirms that the increased grade and diamond size at their estuaries is not a function of large bays and rougher bottom topography associated with the rivers, although these could have contributed to this phenomenon. This proves that the catchments of the rivers between the Olifants and Orange Rivers also had access to diamondiferous debris, although they were not in contact with these two major drainages. A number of researchers proposed that diamonds liberated from pre-Karoo kimberlites were moved from their primary hosts to the south-western parts of the subcontinent by Dwyka glacials. From the above it is clear that nearly a century after the discovery of diamonds along the west coast of southern Africa consensus regarding their origin had not been reached. The aim of this study was therefore to establish a model explaining the most likely sources and distribution history of the more important alluvial diamond deposits in southern Africa. The methodology comprised a study of 1878 diamonds collected from 25 alluvial and two kimberlitic sources for comparison with known similar data from 12 kimberlitic populations in southern Africa. The diamond study was supplemented by a study of sedimentary clasts from bulk gravel samples taken along the Middle and Lower Orange River as well as Scanning Electron-microscope (SEM) Analyses of garnet grains and zircon geochronology. The evidence from the study does not support the postulated existence of a former Karoo River. The surface features of diamonds, notably brown spots indicating – in the context of southern Africa - liberation from pre-Karoo kimberlites, as well as the results of Fourier Transform Infrared analyses revealed that the populations at Kwaggaskop along the Sout River, previously considered an erosion remnant of the Lower Karoo River and those occurring south of Brandvlei and Van Wyksvlei in the valley of the Sak River, previously considered to have been reworked from the Middle Karoo River, differ profoundly from each other. In addition, the surface feature studies and Fourier Transform Infrared Analyses clearly show major distinctions between the diamond populations from the Sout River-Olifants River estuary and those from the Kimberley kimberlite province which was said to have supplied diamonds in large quantities to the Olifants River estuary via the postulated Karoo River. Furthermore the idea of a palaeo-Gamoep River playing a significant role in the transportation of diamonds to the west coast is favoured by the presence of brown-spotted diamonds and diamonds with Platelet Preservation Indices revealing severe platelet destruction that could be traced through Bosluispan in the Koa River valley, the Buffels River valley, the Buffels River estuary and to the shallow marine environment north of the Buffels River. Zircon geochronology confirmed the role of the Orange River in the denudation of the sub-continent. With respect to the drainage evolution and diamond distribution in southern Africa the results of this study indicate a complex diamond dispersal model that differs in some respects from prevailing theories. It shows that diamonds liberated from pre- Karoo kimberlites in the north-eastern part of the sub-continent were initially moved in a south-westerly direction by pre-Karoo drainages, then by Dwyka glaciers and ice sheets. Ultimately, after liberation from exhumed glacial and fluvial deposits and together with diamonds subsequently liberated from Jurassic and Cretaceous kimberlites, Cretaceous and younger drainages provided the transport toward the Atlantic Ocean where the diamonds were concentrated along shorelines and in bedrock trap sites. Significant quantities did not reach the coast, but were locked up in fluvial sediments in erosion remnants like terraces, karstic depressions and other segments of palaeo-channels along the way. The presence of diamonds with FTIR characteristics reminiscent of those from Orapa and Jwaneng in the Orange River deposits as well as in a raised marine terrace in southern Namaqualand and in marine deposits north of Concession 12A, also negates the possible existence of a palaeo-Kalahari River, unless it was a very young system that did not interrupt the south-bound dispersal of Botswana diamonds during the Late Oligocene-Early Miocene. The study also included microscopic examination of a parcel of diamonds from the enigmatic Skeleton Coast deposits, north-western Namibia. These results confirmed the conclusion based on geological and geomorphic grounds that these diamonds cannot be linked to the Oranjemund deposits, while their surface features showed that pre-Karoo sources comprise the most likely provenance for the Skeleton Coast diamonds. Thus the combination of FTIR analyses and surface feature studies of diamonds, zircon geochronology and SEM analyses of garnets allowed the formulation of a revised model for the distribution of alluvial diamonds and the drainage history of the sub-continent since the Middle Cretaceous, while the study of sedimentary clasts confirmed the repeated occurrence of high energy fluvial conditions – especially evident in the palaeo-Orange River sediments – that contributed to the high percentage of gem stones in the surviving alluvial diamond populations due to the destruction of poor quality diamonds.
AFRIKAANSE OPSOMMING: Die ontdekking van ryk alluviale diamantafsettings aan die suider-Afrikaanse weskus, meer as 1200 kilometer van die Kimberley-omgewing af tussen 1908 en 1927, het 'n aantal teorieë omtrent moontlike provenansgebiede vir hierdie afsettings tot gevolg gehad. Dit het gewissel van die suidwaartse vervoer van diamante vanaf bronne in suidelike Namibië, diamantdraende kimberliete in die kusvlaktes of op die vastelandstoep onder huidige seevlak, tot die vervoer van diamante deur weswaarts-vloeiende riviere vanuit die binneland. Geen ontdekkings wat eersgenoemde teorie kon ondersteun is in Namibië gemaak nie. Verder, namate meer gevorderde navorsingsresultate aan die lig gekom het, het dit duidelik geword dat kimberliete wat weg van 'n antieke kraton geleë is, grootliks sonder diamante is, en gevolglik het die idee van nabygeleë diamantdraende kimberliete in die kusvlakte of op die seebodem as bron, onaanvaarbaar geword. Grootskaalse wes- tot suidweswaartse vervoer van diamante het gevolglik die enigste aanvaarbare alternatief gebied. Die ontdekkiing van aan- en aflandige mariene afsettings tot so ver as suid van die Olifantrsrivier het getoon dat die Vaal-Oranjestelsel in sy huidige vorm nie die enigste vervoerkanaal vir diamante na die weskus kon wees nie. Die dreineringsgeskiedenis van suidelike Afrika was gevolglik vertolk aan die hand van twee voorgestelde groot oer-rivierstelsels, naamlik: - Die Karoorivier met sy bolope naastenby soortgelyk aan dié van die moderne Oranje- en Vaalriviere, en wat langs die huidige Olifantsrivier uitgemond het; - Die Kalaharirivier wat die suide van Botswana gedreineer het, en min of meer die roete van die huidige Moloporivier gevolg het, met sy monding baie naby aan dié van die moderne Oranjerivier. 'n Belangrike tekortkoming in bogenoemde model is die feit dat dit nie 'n verduideliking bied vir die volgende feit nie: Diamant-produksiedata van die Suid-Afrikaanse weskus toon 'n skielike toename in graad (karaat per 100 ton) en gemiddelde steengrootte van diamante by die monding van al die belangrike riviere tussen die Olifants- en Oranjeriviere, wat vanaf die platorand na die Atlantiese Oseaan dreineer. Die feit dat fluviale diamantvoorkomste in die valleie van die Bufffels-, Swartlintjies-, Spoeg-, Horees- en Groenriviere aangetref word, bevestig dat hierdie verskynsel nie net aan die teenwoordigheid van kus-inhamme en ruwer vloertopografie wat met die riviermondings geassosiëer is, toegeskryf kan word nie, alhoewel dit wel „n bydrae tot hierdie waarneming kon maak. Dit bevestig dat hierdie riviere wel in hul opvang-gebiede ook toegang tot diamanthoudende puin gehad het, sonder enige kontak met die Olifants- of Oranjeriviere. 'n Aantal navorsers het die gedagte geopper dat diamante wat uit voor-Karoo kimberliete vrygestel was, deur bewegende ysplate en/of gletsers vanaf hul provenansgebiede na die suidweste van die subkontinent vervoer is. Uit die voorafgaande paragrawe is dit duidelik dat, ongeveer ʼn eeu ná die ontdekking van diamante langs die suider-Afrikaanse weskus, daar nog nie eenstemmigheid bereik is oor die oorsprong van hierdie diamante nie. Die doel van hierdie studie was gevolglik die daarstelling van „n model wat „n aanvaarbare verduideliking bied vir die verspreiding en afsetting van sommige voorkomste van spoeldiamante in suidelike Afrika soos tans waargeneem. Vir hierdie doel is 1878 diamante afkomstig vanuit 25 alluviale en twee kimberlietvoorkomste ondersoek. Die resultate is vergelyk met soortgelyke inligting wat bekend is vir diamantpopulasies vanuit 12 suider-Afrikaanse kimberliete. Die diamantstudie is aangevul met die ondersoek van spoelklippe vanuit gruismonsters wat langs die Middel- en Benede Oranjerivier versamel is asook Skanderings-elektron Mikroskoop-analises (SEM) van granaatkorrels en sirkoon-geokronologie. Die resultate van hierdie studie ondersteun nie die hipotese van „n eertydse Karoorivier nie. Die teenwoordigheid van bruin spikkels op diamante wat – in die konteks van die geologiese geskiedenis van suidelike Afrika – vrystelling vanuit vóór- Karoo kimberliete impliseer, asook die resultate van FTIR-analises dui op „n komplekse model wat „n alternatief bied vir bestaande sienswyses. Dit toon dat die diamantpopulasies by Kwaggaskop langs die Soutrivier wat veronderstel was om die Benede Karoorivier te verteenwoordig, en dié wat suid van Brandvlei en Van Wyksvlei in die vallei van die Sakrivier aangetref word en veronderstel was om afkomstig te wees uit die Middel Karoorivier, drasties van mekaar verskil. Dit openbaar ook beduidende verskille tussen die diamantpopulasies van die Olifantsriviermonding en dié van die Kimberley-omgewing waarvandaan die veronderstelde Karoorivier groot hoeveelhede diamante aan die Sout-Olifantsrivier sou gelewer het. Verder verskaf die teenwoordigheid van diamante met bruin spikkels en diamante met eienskappe wat toon dat hul stikstofplaatjies vernietig is, „n skakel tussen Bosluispan in die vallei van die Koarivier en die seegebied noord van die Buffelsrivier, via die Buffelsriviervallei en die Buffelsriviermonding, en hierdie feite ondersteun gevolglik eerder die voorstel dat groot hoeveelhede diamante deur die paleo-Gamoeprivier na die weskus vervoer is. Die teenwoordigheid van diamante met FTIR-kenmerke soortgelyk aan dié van Orapa en Jwaneng in die Mid-Oranje afsettings, 'n mariene terras in die suide van Namakwaland en in mariene konsessies noord van Seegebied 12A, opponeer ook die gedagte van 'n paleo-Kalaharirivier, tensy laasgenoemde 'n baie jong stelsel was wat nie die suidwaartse beweging van Botswana-diamante gedurende die Laat Oligoseen tot Vroeg Mioseen verhinder het nie. Die resultate van die sirkoon-geokronologie het die rol van die Oranjerivier in die afplatting van die subkontinent bevestig. Die volgende model tree uit bogenoemde waarnemings na vore: diamante wat in die noordooste van die subkontinent uit kimberliete met „n voor-Karoo inplasingsouderdom vrygestel is, is aanvanklik suidweswaarts vervoer deur voor-Karoo riviere. Daarna is die diamante deur gletsers en ysplate gedurende die Dwyka-tydperk, en uiteindelik ná vrystelling vanuit ontblote glasiale en paleo-fluviale afsettings tesame met diamante wat intussen vanuit Jura- en Krytouderom kimberliete vrygestel is, deur die dreineringstelsels in die Kryt-tydperk en later, verder suidweswaarts vervoer. Sommige het onderweg in fluviale sedimente (terrasse, karstholtes en ander reste van paleokanale) agtergebly, terwyl „n beduidende hoeveelheid tot in die Atlantiese Oseaan vervoer is waar hulle deur mariene prosesse in ou strandlyne en bodemrots opvangstrukture gekonsentreer is. Die studie het ook die mikroskopiese ondersoek van 'n pakkie diamante afkomstig vanuit die enigmatiese afsettings aan die noordelike Skedelkus van Namibië ingesluit. Op grond van geologiese en geomorfologiese getuienis word die afleiding gemaak dat die Skedelkusdiamante nie met die Oranjemund-afsettings verbind kan word nie, terwyl die mikroskopiese oppervlakteksture toon dat bronne met 'n voor-Karoo inplasingsouderdom die mees waarskynlike provenans vir hierdie diamante is. Die kombinasie van FTIR-analises en oppervlaktekstuur-studies van diamante, sirkoongeokronologie en SEM-analises van granate het die formulering van „n hersiene model vir die subkontinent se dreineringsgeskiedenis sedert die Middel-Kryttydperk en diamantverspreiding moontlik gemaak terwyl die studie van sedimentêre klaste getoon het dat hoë-energietoestande, waardeur diamante van swak gehalte vernietig sou word, herhaaldelik voorgekom het, veral in die paleo-Oranjerivier. Die afleiding word gemaak dat hierdie aspek „n bydrae gelewer het tot die hoë persentasie juweelstene in die oorblywende alluviale diamantpopulasies.
APA, Harvard, Vancouver, ISO, and other styles
5

Smaill, Joshua Ballantyne. "Geochemical variations in glauconitic minerals : application as a potassium fertiliser resource." Thesis, University of Canterbury. Geological Sciences, 2015. http://hdl.handle.net/10092/10407.

Full text
Abstract:
Nutrients for plant growth are often limited in soil systems and additions are required in the form of fertiliser. Potassium is an essential macro-nutrient for plants and demands for K are expected to increase in the future. Glaucony is an abundant marine mineral which may provide an alternative K-rich fertiliser resource. The South Island of New Zealand contains deposits of glaucony-rich rocks which were deposited in the Early- to Mid-Cenozoic during periods of low sedimentation to the seafloor. Here, the geochemistry of glaucony from the Waitaki Basin (Otago), the Waipara Greensand (North Canterbury) and the Stoney Creek Limestone (Karamea) was examined using spatially resolved geochemical analysis and dissolution experiments. Grain-by-grain analysis using Laser Ablation Induction Coupled Plasma Mass Spectrscopy (LA-ICP-MS) and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM + EDS) revealed that glaucony from all deposits were of the mature type and were enriched in K. Glaucony derived from growth inside faecal pellets was found to contain elevated K and Fe concentrations compared to bioclast hosted glaucony. These variations can be explained by the physical properties of host grains and sea-floor redox conditions at the time of precipitation, both of which increased ionic mobility into the zone of glauconitisation. Solubility analysis showed that K^{+} was released from glaucony more rapidly than any other element. Additionally, decreasing the pH and introducing an oxidising agent (i.e, birnessite which is ubiquitous in soil environments) accelerated K^{+} release 13-fold. Trace metals including Cr, Zn, Cu and Ni were present in the solid phase analysis, however further investigation revealed that these elements were released into solution in low concentrations and may present a source of micro-nutrients, not a soil contaminant. These results suggest that glaucony may offer a source of slow releasing K fertiliser, and the South Island of New Zealand is ideally situated as a place to consider using glaucony as a locally sourced, environmentally sustainable K resource for agriculture.
APA, Harvard, Vancouver, ISO, and other styles
6

Willemez, Alix. "Exploitation durable des ressources énergétiques et minérales marines : aspects juridiques." Thesis, Paris 1, 2018. http://www.theses.fr/2018PA01D016/document.

Full text
Abstract:
L'exploitation des ressources énergétiques et minérales terrestres rencontre des limites face à l'augmentation rapide de la population mondiale. Ce n'est qu'après la seconde guerre mondiale que les États ont compris qu'ils devaient maîtriser l'océan pour pouvoir en extraire ses ressources. 1982 marque l'adoption de la Convention des Nations-Unies sur le droit de la mer. L'espace maritime fut alors découpé en zones, sur lesquelles les États côtiers avaient le plus souvent des droits. Ce découpage permettait une meilleure exploitation des ressources maritimes. Ainsi, en mer territoriale, les États pouvaient mettre en place des systèmes de production d'électricité à partir de sources renouvelables. Plus loin, dans la zone économique exclusive, les États peuvent autoriser l'exploration et l'exploitation des hydrocarbures. Enfin, sur le plateau continental, l'évolution de la technologie nous permettra bientôt d'aller exploiter les ressources minérales marines. La question centrale qui se pose est de savoir s'il est possible d'exploiter ces ressources de façon durable sans détruire l'environnement marin. La protection de l'environnement ne peut exister sans un droit fort et appliqué. Il doit constituer un rempart contre les agissements d'entreprises ou d’États peu soucieux de l'impact à long terme de leurs actions. L'Océan, immense, aux fonds invisibles et mystérieux, est vulnérable. Sa protection ne pourra avoir lieu que lorsque le grand public, les États et les entreprises, auront compris son importance pour la survie de l'Humanité. C'est le devoir des hommes et des femmes de droit de rendre cette protection effective
The exploitation of terrestrial energy and mineral resources is limited by the rapid increase of the world's population. It was only after the Second World War that States realised that they had to control the ocean in order to extract its resources. 1982 marks the adoption of the United Nations Convention on the Law of the Sea. The maritime are: was then divided into zones, over which coastal States most often had rights. This division allowed for a better exploitation of maritime resources. In the territorial sea, for example, States could set up electricity production systems from renewable sources. Further, in the exclusive economic zone, States could allow the exploration and exploitation of hydrocarbons. Finally, on the continental shelf, the evolution of technology will soon allow us to exploit marine mineral resources. The central question is whether it is possible to exploit these resources in a sustainable way without destroying the marine environment. The protection of the environment cannot exist without a strong and applied legislation. It must be a bulwark against the actions of companies or States that have little regard for the long-term impact of their actions. The ocean, immense, with invisible and mysterious bottoms, is vulnerable. Its protection can only take place when the general public, States and companies understand its importance for the survival of Humanity. It is the duty of the men and women of law to render this protection effective
APA, Harvard, Vancouver, ISO, and other styles
7

Reiche-De, Vigan Stéphanie. "Le droit et l'espace souterrain. Enjeux de propriété et de souveraineté en droit international et comparé." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE3044.

Full text
Abstract:
L’espace souterrain, qui s’étend depuis la surface des terres émergées et des fonds marins jusqu’au centre de la Terre, est délaissé par le droit international. Aucune règle de droit international positif ne vient réglementer l’utilisation que les Etats font de leur espace souterrain territorial, cette utilisation et le régime de la propriété souterraine faisant partie de leur domaine réservé. Si les normes internationales régissent l’utilisation de l’espace souterrain extra-territorial, celui des grands fonds marins et celui de l’Antarctique, elles n’appréhendent l’espace souterrain qu’en termes d’utilisation et de mise en valeur des ressources minérales. De ce régime juridique d’exploration et d’exploitation des ressources minérales dépend d’ailleurs le statut juridique de l’espace souterrain qui va de la pleine souveraineté de l’Etat côtier à l’exclusion de toute appropriation nationale ou individuelle. Devant la multiplication des utilisations souterraines et face aux dommages environnementaux et aux violations des droits de l’homme liés à certaines de ces utilisations, le droit international doit réinvestir l’espace souterrain et notamment le contenu et l’étendue des droits qui le concernent tant dans l’ordre interne qu’international afin d’en réglementer la mise en valeur et d’en assurer la protection
Until today, there has been little interest of international Law concerning the earth’s subsurface, as the space that extends from the surface of the soil or of the seabed to the center of the earth. On the one hand, there is no rule of international law that regulates the use Sovereign States have of their territorial subsurface. It is currently understood that subsburface activities and property law that regulates them, are within domestic jurisdiction only and do not come under international law scrutinity as they waive the exercice of an absolute independance of States. On the other hand, the existing rules of international law that regulates extraterritorial subsurface, notably the seabed and ocean floor and subsoil thereof beyond national jurisdiction and the Antarctic, consider the earth’s subsurface mostly in terms of use and exploitation of mineral resources. Faced with the evergrowing uses of the subsurface that are solely used for extraction or for injection and storing, and regarding the impacts of some underground activities on the environment and on human rights, International Law must play a role by regulating the content and extent of rights that are exercised over the earth’s subsurface inside and outside territorial jurisdiction for development and protection purposes
APA, Harvard, Vancouver, ISO, and other styles
8

Heppe, Klaus. "Plate Tectonic Evolution and Mineral Resource Potential of the Lancang River Zone, Southwestern Yunnan, People's Republic of China." Doctoral thesis, 2004. http://hdl.handle.net/11858/00-1735-0000-0006-B329-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Marine mineral resources"

1

Fouquet, Yves, and Denis Lacroix, eds. Deep Marine Mineral Resources. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8563-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McKelvey, V. E. Subsea mineral resources. [Washington, D.C.]: U.S. G.P.O., 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

McKelvey, V. E. Subsea mineral resources. Washington, DC: U.S. Geological Survey, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Smith, Margaret. Offshore mineral resources: Legal aspects. [Ottawa]: Library of Parliament, Research Branch, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

S, Cronan D., ed. Handbook of marine mineral deposits. Boca Raton, FL: CRC Press, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ti chih kʻuang chʻan pu hai yang ti chih yen chiu so (China), ed. Research of marine geology and mineral resources. Qingdao, China: Qingdao Ocean University Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

US GOVERNMENT. Marine Mineral Resources Research Act of 1996. [Washington, D.C.?: U.S. G.P.O., 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Luepke, Gretchen. Economic heavy minerals in sediments from an offshore area east of Cape Charles, Virginia. [Menlo Park, CA]: U.S. Geological Survey, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Edwin B. Forsythe Roundtable (1985 Newport, Or.). The Edwin B. Forsythe Roundtable on ocean hard mineral development, September 12, 1985, OSU Hatfield Marine Science Center, Newport Oregon. [Corvallis]: Oregon State University, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

International Seminar "Minerals and Other Resources Found in Marine Areas Beyond the Limits of National Jurisdiction" (2007 Manado, Indonesia). Proceeding[s] of the International Seminar "Minerals and Other Resources Found in Marine Areas Beyond the Limits of National Jurisdiction": March 5-7, 2007, Manado, North Sulawesi, Indonesia. Edited by Wirasantosa Sugiarta and Pusat Riset Wilayah Laut dan Sumberdaya Non Hayati (Indonesia). Jakarta]: Agency for Marine and Fisheries Research, Ministry of Marine Affairs and Fishery, Research Center for Maritime Territories and Non Living Resources, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Marine mineral resources"

1

Petersen, S. "Marine Mineral Resources." In Encyclopedia of Marine Geosciences, 1–9. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6644-0_27-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Petersen, Sven. "Marine Mineral Resources." In Encyclopedia of Marine Geosciences, 1–10. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6644-0_27-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mukherjee, Swapna, Kaushik Kiran Ghosh, and Abhra Chanda. "Marine Mineral Resources." In Environmental Oceanography and Coastal Dynamics, 269–324. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34422-0_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Harris, DeVerle P. "Thoughts on Appraising Marine Mineral Resources." In Marine Minerals, 433–66. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3803-8_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fouquet, Yves, and Denis Lacroix. "Study Summary." In Deep Marine Mineral Resources, 3–37. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8563-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Galéron, Joëlle. "Deep-sea Environment." In Deep Marine Mineral Resources, 41–54. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8563-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fouquet, Yves, and Bruno Martel-Jantin. "Rare and Strategic Metals." In Deep Marine Mineral Resources, 55–64. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8563-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fouquet, Yves. "Characteristics and Formation Process." In Deep Marine Mineral Resources, 65–86. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8563-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Charlou, Jean-Luc, Jean-Pierre Donval, Fabrice Brunet, Manuel Munoz, and Olivier Vidal. "Scientific Knowledge and Challenges Related to Hydrogen." In Deep Marine Mineral Resources, 87–94. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8563-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jarmache, Élie. "International Law and Its Evolution." In Deep Marine Mineral Resources, 95–101. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8563-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Marine mineral resources"

1

Amezcua, Natalia. "POTENTIAL MARINE MINERAL RESOURCES OF MÉXICO." In 113th Annual GSA Cordilleran Section Meeting - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017cd-292601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Morgan, Charles L. "The Status of Marine Mining Worldwide." In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-80048.

Full text
Abstract:
Metals are fundamental components of modern society worldwide, and, despite the current economic downturn, we know we will be faced with ever increasing demands and ever-shrinking supplies. Efforts to achieve sustainable supplies of minerals must include efforts to expand the supply. About 60% of the ocean surface consists of the ocean floor, so it is reasonable to expect that deep ocean minerals could contribute significantly to the world supply. Human efforts to recover minerals have thus far concentrated almost exclusively on land-based resources, so it is reasonable to postulate that marine minerals might offer better prospects for future mineral supplies than land prospects. Currently, we know of at least six separate categories of marine minerals: 1. Aggegrate sand and gravel deposits; 2. Placer deposits of relatively high value minerals (gold, diamonds, tin, etc) hosted in aggegrates; 3. Biogenically derived phosphate deposits; 4. Sediment-hosted (manganese nodules) and hard-rock hosted (ferromanganese crusts) ferromanganese oxide deposits; 5. Sediment-hosted methane hydrate deposits; and 6. Hydrothermally derived sulfide deposits of copper, gold, nickel, zinc, and other metals. Thanks primarily to the engineering developments made by the offshore oil industry and the computer-science advances that have revolutionized much of modern society, the technology is in place for most of the tasks of deep seabed mining. The objective here is not to provide a general status update regarding marine minerals technology, but simply to demonstrate, using the best example available to date (the Nautilus Minerals venture in the Territorial Waters of Papua New Guinea) that the technology is in place and ready to go. Development of marine minerals has both the curse and blessing of taking place in the ocean. Since the 1970’s and before, the marine environment has taken on a public aura reserved more commonly for religious beliefs. This aura poses substantial obstacles to any marine development efforts. At the same time, a basic advantage of marine mineral developments is that nobody lives there. Thus, marine mining activities will not conflict with most normal human activities. Marine mining proposals should be subjected to thorough impact assessment analysis, but it is also critical that policymakers take steps to provide a level playing field for marine developments that encourages objective comparisons with alternative land-based proposals for supplying needed mineral resources. Governments should foster reasonable access to the marine mineral resources under their jurisdiction while also supporting incentive policies and related research programs.
APA, Harvard, Vancouver, ISO, and other styles
3

Rowland, T., and S. Kiraly. "Marine Mineral Resources and Commercial Fisheries in the U.S. E.E.Z." In OCEANS '86. IEEE, 1986. http://dx.doi.org/10.1109/oceans.1986.1160502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cho, Hyen Goo. "CLAY MINERAL DISTRIBUTION IN THE SOUTHWESTERN CHEJU ISLAND MUD." In 13th SGEM GeoConference on WATER RESOURCES. FOREST, MARINE AND OCEAN ECOSYSTEMS. Stef92 Technology, 2013. http://dx.doi.org/10.5593/sgem2013/bc3/s15.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nakayama, Keiko, Taisuke Shingyouji, Masayuki Motoori, Mana Yasui, Yasushi Kobayashi, Atsushi Yamazaki, and Akira Saito. "Marine Time-domain electromagnetic technologies for the ocean bottom mineral resources." In Proceedings of the 10th SEGJ International Symposium. Society of Exploration Geophysicists of Japan, 2011. http://dx.doi.org/10.1190/segj102011-001.107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sperle, Marcelo, Eduardo Negri, and Caroline Ternes. "Automatic classification of sidescan sonar images for mapping marine mineral resources." In 2015 IEEE/OES Acoustics in Underwater Geosciences Symposium (RIO Acoustics). IEEE, 2015. http://dx.doi.org/10.1109/rioacoustics.2015.7473620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dimitriu, Radu Ionut. "MINERAL GROUNDWATER RESOURCES AND HEALTH TOURISM IN THE EASTERN CARPATHIANS (ROMANIA)." In 14th SGEM GeoConference on WATER RESOURCES. FOREST, MARINE AND OCEAN ECOSYSTEMS. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b31/s12.060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lassetter, William L., Jessica S. Blanchette, and Christopher S. Holm-Denoma. "MARINE MINERAL RESOURCES ON THE CONTINENTAL SHELF OFFSHORE OF VIRGINIA: NEW INSIGHTS CONCERNING ECONOMIC HEAVY MINERALS." In 68th Annual GSA Southeastern Section Meeting - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019se-327489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cofield, Shannon, Paul Knorr, and Mark Mueller. "BUREAU OF OCEAN ENERGY MANAGEMENT, MARINE MINERALS PROGRAM (BOEM MMP): STEWARDS OF OFFSHORE CRITICAL MINERAL RESOURCES." In Joint 72nd Annual Southeastern/ 58th Annual Northeastern Section Meeting - 2023. Geological Society of America, 2023. http://dx.doi.org/10.1130/abs/2023se-385706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zou, Weisheng, Haicheng Zhang, and Yuheng Chen. "China’s Research and Development of Slurry Pump for Lift Marine Mineral Resources." In The 20th International Conference on Transport and Sedimentation of Solid Particles. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu (WUELS Publishing House)), 2023. http://dx.doi.org/10.30825/4.14-17.2023.

Full text
Abstract:
The R&D of mining and lift technologies for marine mineral resources has been carried out in China since the establishment of the China Ocean Mineral Resources R&D Association (COMRA). A lift pump is the key piece of equipment in the deep-sea mining system for the transportation of seabed ore from seabed mining vehicles to surface mining vessels. The research in this paper focuses on the key equipment of a slurry pump in a hydraulic lifting system, a flow model, and the theory of pumps to lift coarse-particle slurry. It is proposed that the slurry pump used in deep-sea mining is a kind of axial and mixed flow pump with a high specific speed, high head, and backflow for coarser particles to pass through. The theories for increasing flow rate as well as equal power in the design are also introduced. Pumps with such optimized designs were all tested with slurry in the laboratory and also verified in the sea for pumping undersea mineral slurry. These theories and technologies have been applied in the design and development of a sixstage pump, and the testing results of its characteristics are also presented in this paper
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Marine mineral resources"

1

Emory-Moore, M. Marine mineral potential of the Torngat Park study area, northern Labrador, Mineral and Energy Resource Assessment (MERA). Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1997. http://dx.doi.org/10.4095/208911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

King, E. L. Mineral resource assessment of the shallowest bedrock and overburden, Laurentian Channel, Newfoundland: potential marine protected area. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2012. http://dx.doi.org/10.4095/289847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barrie, J. V. Mineral resource assessment of the Pacific Margin sponge reef areas of interest. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2012. http://dx.doi.org/10.4095/291498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jefferson, C. W., F. W. Chandler, L. J. Hulbert, J. E. M. Smith, K. Fitzhenry, and K. Powis. Assessment of mineral and energy resource potential in the Laughland Lake terrestrial area and Wager Bay marine area, N.W.T. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1993. http://dx.doi.org/10.4095/184080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jefferson, C. W., and H. R. Schmitt. Assessment of Mineral Resource Potential, Phase I, in the Proposed area of Gwaii Haanas / South Moresby National Marine Park Reserve. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/133236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dafoe, L. T., and N. Bingham-Koslowski. Geological synthesis of Baffin Island (Nunavut) and the Labrador-Baffin Seaway. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/314542.

Full text
Abstract:
The Labrador Sea, Davis Strait, and Baffin Bay offshore regions, collectively referred to as the Labrador-Baffin Seaway, and their onshore margins including Baffin Island, Bylot Island, and West Greenland, form a region with a complex geological history developed through successive tectonic events. This complex geological and tectonic history is described in detail in this volume, a collaborative undertaking under the Geological Survey of Canada's Geo-mapping for Energy and Minerals 2 program (GEM-2), with contributions from external partners. Knowledge from pre-existing studies, essential contributions from collaborators, and GEM research results have been incorporated into the 14 papers contained in this volume, which summarize previous geological and geophysical knowledge and include novel insights from a regional perspective that serve as a guide for future research and exploration activities. The papers in the volume highlight both onshore and offshore studies in order to produce a comprehensive synopsis of the geological history of the region, with corresponding high-resolution reference maps and figures, and select GIS data sets. This compilation is divided into sections covering Precambrian and Paleozoic geology, Mesozoic to present geology, and resources within the region.
APA, Harvard, Vancouver, ISO, and other styles
7

Dafoe, L. T., and N. Bingham-Koslowski. Baffin Island and the Labrador-Baffin Seaway GIS data. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330200.

Full text
Abstract:
The Labrador Sea, Davis Strait, and Baffin Bay offshore regions, collectively referred to as the Labrador-Baffin Seaway, and their onshore margins including Baffin Island, Bylot Island, and West Greenland, form a region with a complex geological history developed through successive tectonic events. This complex geological and tectonic history is described in detail in this volume, a collaborative undertaking under the Geological Survey of Canada's Geo-mapping for Energy and Minerals 2 program (GEM-2), with contributions from external partners. Knowledge from pre-existing studies, essential contributions from collaborators, and GEM research results have been incorporated into the 14 papers contained in this volume, which summarize previous geological and geophysical knowledge and include novel insights from a regional perspective that serve as a guide for future research and exploration activities. The papers in the volume highlight both onshore and offshore studies in order to produce a comprehensive synopsis of the geological history of the region, with corresponding high-resolution reference maps and figures, and select GIS data sets. This compilation is divided into sections covering Precambrian and Paleozoic geology, Mesozoic to present geology, and resources within the region.
APA, Harvard, Vancouver, ISO, and other styles
8

Mineral Resource Assessment of Marine Sand Resources in Cape- and Ridge-Associated Marine Sand Deposits in Three Tracts, New York and New Jersey, United States Atlantic Continental Shelf. US Geological Survey, 2009. http://dx.doi.org/10.3133/b2209n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mineral Resources of Marion County, Florida. Florida Geological Survey, 1988. http://dx.doi.org/10.35256/ms117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mineral resources of the Marble Canyon Wilderness Study Area, White Pine County, Nevada, and Millard County, Utah. US Geological Survey, 1990. http://dx.doi.org/10.3133/b1728g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography