Academic literature on the topic 'Markov chains non-homogeneous'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Markov chains non-homogeneous.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Markov chains non-homogeneous"
Dey, Agnish, and Arunava Mukherjea. "Collapsing of non-homogeneous Markov chains." Statistics & Probability Letters 84 (January 2014): 140–48. http://dx.doi.org/10.1016/j.spl.2013.10.002.
Full textPawłowski, Janusz. "Poisson theorem for non-homogeneous Markov chains." Journal of Applied Probability 26, no. 3 (September 1989): 637–42. http://dx.doi.org/10.2307/3214421.
Full textŘezníček, Jan, Martin Kohlík, and Hana Kubátová. "Non-homogeneous hierarchical Continuous Time Markov Chains." Microprocessors and Microsystems 78 (October 2020): 103206. http://dx.doi.org/10.1016/j.micpro.2020.103206.
Full textPawłowski, Janusz. "Poisson theorem for non-homogeneous Markov chains." Journal of Applied Probability 26, no. 03 (September 1989): 637–42. http://dx.doi.org/10.1017/s0021900200038237.
Full textTang, Ying, Weiguo Yang, and Yue Zhang. "THE STRONG LIMIT THEOREM FOR RELATIVE ENTROPY DENSITY RATES BETWEEN TWO ASYMPTOTICALLY CIRCULAR MARKOV CHAINS." Probability in the Engineering and Informational Sciences 33, no. 2 (April 2, 2018): 161–71. http://dx.doi.org/10.1017/s0269964818000074.
Full textHadjiloucas, Demetris. "Stochastic matrix-valued cocycles and non-homogeneous Markov chains." Discrete & Continuous Dynamical Systems - A 17, no. 4 (2007): 731–38. http://dx.doi.org/10.3934/dcds.2007.17.731.
Full textZeifman, A. I. "Quasi-ergodicity for non-homogeneous continuous-time Markov chains." Journal of Applied Probability 26, no. 3 (September 1989): 643–48. http://dx.doi.org/10.2307/3214422.
Full textZeifman, A. I. "Quasi-ergodicity for non-homogeneous continuous-time Markov chains." Journal of Applied Probability 26, no. 03 (September 1989): 643–48. http://dx.doi.org/10.1017/s0021900200038249.
Full textBisbas, Antonis. "A Cassels–Schmidt theorem for non-homogeneous Markov chains." Bulletin des Sciences Mathématiques 129, no. 1 (January 2005): 25–37. http://dx.doi.org/10.1016/j.bulsci.2004.06.002.
Full textVassiliou, P. C. G. "On the periodicity of non-homogeneous Markov chains and systems." Linear Algebra and its Applications 471 (April 2015): 654–84. http://dx.doi.org/10.1016/j.laa.2015.01.017.
Full textDissertations / Theses on the topic "Markov chains non-homogeneous"
Hubbard, Rebecca Allana. "Modeling a non-homogeneous Markov process via time transformation /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/9607.
Full textNascimento, Ant?nio Marcos Batista do. "Ergodicidade em cadeias de Markov n?o-homog?neas e cadeias de Markov com transi??es raras." Universidade Federal do Rio Grande do Norte, 2014. http://repositorio.ufrn.br:8080/jspui/handle/123456789/18651.
Full textThe central objective of a study Non-Homogeneous Markov Chains is the concept of weak and strong ergodicity. A chain is weak ergodic if the dependence on the initial distribution vanishes with time, and it is strong ergodic if it is weak ergodic and converges in distribution. Most theoretical results on strong ergodicity assume some knowledge of the limit behavior of the stationary distributions. In this work, we collect some general results on weak and strong ergodicity for chains with space enumerable states, and also study the asymptotic behavior of the stationary distributions of a particular type of Markov Chains with finite state space, called Markov Chains with Rare Transitions
O objetivo central de estudo em Cadeias de Markov N?o-Homog?neas e o conceito de ergodicidade fraca e forte. Uma cadeia ? erg?dica fraca se a depend?ncia da distribui??o inicial desaparece com o tempo, e ? erg?dica forte se ? erg?dica fraca e converge em distribui??o. A maioria dos resultados te?ricos sobre a ergodicidade forte sup?e algum conhecimento do comportamento limite das distribui??es estacion?rias. Neste trabalho, reunimos alguns resultados gerais sobre ergodicidade fraca e forte para cadeias com espa?oo de estados enumer?vel, e tamb?m estudamos o comportamento assint?tico das distribui??es estacion?rias de um tipo particular de Cadeias de Markov com espa?o de estados nito, chamadas Cadeias de Markov com Transi??es Raras
Sandels, Claes. "Modeling and Simulation of Electricity Consumption Profiles in the Northern European Building Stock." Doctoral thesis, KTH, Elkraftteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-184093.
Full textIntegrering av förnybara energikällor och nya typer av laster i de elektriska energisystemen är möjliga svar till klimatförändringar och uttömning av ändliga naturresurser. Denna integration kan dock öka obalanserna mellan utbud och efterfrågan av elektricitet, och orsaka en ogynnsam utnyttjandegrad av vissa kraftsystemkomponenter. Att använda efterfrågeflexibilitet (Demand Response) i byggnadsbeståndet är en möjlig lösning till dessa problem för olika elmarknadsaktörer. Men eftersom efterfrågeflexibilitet inte används i stor skala idag finns det obesvarade frågor gällande lösningens kostnadsnytta och tillförlitlighet jämfört med traditionella investeringsalternativ i kraftsektorn. För att analysera efterfrågeflexibilitetslösningar är botten-upp-simuleringsmodeller som fångar elförbrukningsprocesser i byggnaderna ett alternativ. Dessa modeller måste vara enkla nog för att kunna representera aggregeringar av många byggnader men samtidigt tillräckligt komplicerade för att kunna inkludera unika slutanvändarbeteenden. Detta är nödvändigt när elmarknadsaktören vill analysera hur stora volymer efterfrågeflexibilitet påverkar elmarknaden och kraftsystemen, men samtidigt förstå hur styrningen inverkar på den enskilda slutanvändaren. Bidraget från denna avhandling är botten-upp-simuleringsmodeller för generering av elförbrukningsprofiler i småhus och kontorsbyggnader. Modellerna kopplar slutanvändarbeteende med elförbrukning från apparater och varmvattenanvändning tillsammans med fysikaliska modeller av värmedynamiken i byggnaderna. Modellerna är byggda på en förenklad approach som använder öppen data och statistisk, där data som har integritetsproblem har exkluderats. Simuleringsresultat har validerats mot elförbrukningsdata från småhus och kontorsbyggnader, relaterade modeller från andra forskargrupper samt energistatistik från nationella databaser. Valideringen visar att modellerna kan generera elförbrukningsprofiler med rimlig noggrannhet. Denna avhandling är en sammanläggningsavhandling bestående av fem artiklar. Artikel 1 presenterar botten-upp-simuleringsmodellen för genereringen av elförbrukningsprofiler från uppvärmning, varmvatten och apparater i småhus. Artikel 2 presenterar ett dataanalytiskt ramverk för analys av elanvändningen från uppvärmning, ventilation, och luftkonditioneringslaster (HVAC) och apparatlaster i en kontorsbyggnad. Artikel 3 presenterar en icke-homogen Markovkedjemodell för simulering av representativa närvaroprofiler i enskilda kontorsrum. Artikel 4 använder resultaten i artiklarna 2 och 3 för att beskriva en botten-upp-simuleringsmodell för generering av elförbrukningsprofiler från HVAC-laster och apparater i kontorsbyggnader. Artikel 5 använder modellen i artikel 1 för att analysera den tekniska möjligheten att använda efterfrågeflexibilitet för att lösa överbelastningsproblem i ett eldistributionsnät.
QC 20160329
Davis, Brett Andrew, and Brett Davis@abs gov au. "Inference for Discrete Time Stochastic Processes using Aggregated Survey Data." The Australian National University. Faculty of Economics and Commerce, 2003. http://thesis.anu.edu.au./public/adt-ANU20040806.104137.
Full textFeng, Siwei. "Wavelet-Based Non-Homogeneous Hidden Markov Chain Model For Hyperspectral Signature Classification." 2015. https://scholarworks.umass.edu/masters_theses_2/145.
Full textBook chapters on the topic "Markov chains non-homogeneous"
Brémaud, Pierre. "Non-homogeneous Markov Chains." In Texts in Applied Mathematics, 399–422. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45982-6_12.
Full textPlatis, Agapios, Nikolaos Limnios, and Marc Le Du. "Electrical Substation Performability and Reliability Indicators Modelled by Non-Homogeneous Markov Chains." In Probabilistic Safety Assessment and Management ’96, 709–14. London: Springer London, 1996. http://dx.doi.org/10.1007/978-1-4471-3409-1_113.
Full textJin, Shaohua, Yanmin Zhang, Yanping Wan, Nan Li, and Huipeng Zhang. "A Strong Deviation Theorem for Markov Chains Functional Indexed by a Non-homogeneous Tree." In Advanced Technology in Teaching - Proceedings of the 2009 3rd International Conference on Teaching and Computational Science (WTCS 2009), 345–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-11276-8_44.
Full text"A Geometric Approach to Ergodic Non-Homogeneous Markov Chains." In Wavelet Analysis and Multiresolution Methods, 355–80. CRC Press, 2000. http://dx.doi.org/10.1201/9781482290066-23.
Full text"Non-homogeneous Markov chains: Tail idempotents, tail sigma-fields and basis." In Proceedings of the Seventh Conference on Probability Theory, 269–82. De Gruyter, 1985. http://dx.doi.org/10.1515/9783112314036-030.
Full text"The theory of shuffling - an application of non-homogeneous Markov chains." In Probability Theory and Applications, 317–20. De Gruyter, 1987. http://dx.doi.org/10.1515/9783112314227-041.
Full textFu, G., and D. Devaraj. "Non-homogeneous Markov Chain for bridge deterioration modeling." In Bridge Maintenance, Safety, Management and Life-Cycle Optimization, 154. CRC Press, 2010. http://dx.doi.org/10.1201/b10430-84.
Full textRodrigues, Eliane R., Mario H. Tarumoto, and Guadalupe Tzintzun. "A Non-Homogeneous Markov Chain Model to Study Ozone Exceedances in Mexico City." In Current Air Quality Issues. InTech, 2015. http://dx.doi.org/10.5772/59728.
Full textConference papers on the topic "Markov chains non-homogeneous"
Reznicek, Jan, Martin Kohlik, and Hana Kubatova. "Non-Homogeneous Continuous Time Markov Chains Calculations." In 2020 23rd Euromicro Conference on Digital System Design (DSD). IEEE, 2020. http://dx.doi.org/10.1109/dsd51259.2020.00108.
Full textReznicek, Jan, Martin Kohlik, and Hana Kubatova. "Accurate Inexact Calculations of Non-Homogeneous Markov Chains." In 2019 22nd Euromicro Conference on Digital System Design (DSD). IEEE, 2019. http://dx.doi.org/10.1109/dsd.2019.00074.
Full textReznicek, Jan, Martin Kohlik, and Hana Kubatova. "Hierarchical Dependability Models based on Non-Homogeneous Continuous Time Markov Chains." In 2019 14th International Conference on Design & Technology of Integrated Systems In Nanoscale Era (DTIS). IEEE, 2019. http://dx.doi.org/10.1109/dtis.2019.8735006.
Full textShaohua, Jin, Liu Huitao, Liu Jian, Wang Yongxue, and Zhang Jian. "Notice of Retraction: Many Strong Limit Theorems for Non-homogeneous Markov Chains Indexed by a Non-homogeneous Tree." In 2010 2nd International Workshop on Education Technology and Computer Science (ETCS). IEEE, 2010. http://dx.doi.org/10.1109/etcs.2010.346.
Full textJin, Shaohua, Lu Yan, Yanping Wan, Shasha Jin, and Shuguang Sun. "Many Strong Deviation Theorems for Markov Chains on a Non-homogeneous Tree." In 2010 International Conference on Intelligent Computation Technology and Automation (ICICTA). IEEE, 2010. http://dx.doi.org/10.1109/icicta.2010.192.
Full textJin, Shaohua, Jian Liu, Nan Li, Yanping Wan, and Shuguang Sun. "Some strong limit theorems for Markov chains on a special non-homogeneous tree." In 2010 Sixth International Conference on Natural Computation (ICNC). IEEE, 2010. http://dx.doi.org/10.1109/icnc.2010.5582685.
Full textSandels, Claes, Joakim Widen, and Lars Nordstrom. "Simulating occupancy in office buildings with non-homogeneous Markov chains for Demand Response analysis." In 2015 IEEE Power & Energy Society General Meeting. IEEE, 2015. http://dx.doi.org/10.1109/pesgm.2015.7285865.
Full textPalma, Jonathan M., Ceilia F. Morais, and Ricardo C. L. F. Oliveira. "$\mathscr{H}_{\infty}$ state-feedback gain-scheduled control for MJLS with non-homogeneous Markov chains*." In 2018 Annual American Control Conference (ACC). IEEE, 2018. http://dx.doi.org/10.23919/acc.2018.8430913.
Full textShao-hua, Jin, Yan Lu, Ding Chong-guang, and Chen Wen-feng. "Some Strong Limit Theorems for Markov Chains of Continuous State Space on a Non-Homogeneous Tree." In 2009 Second International Conference on Intelligent Computation Technology and Automation. IEEE, 2009. http://dx.doi.org/10.1109/icicta.2009.780.
Full textFeng, Siwei, Yuki Itoh, Mario Parente, and Marco F. Duarte. "Tailoring non-homogeneous Markov chain wavelet models for hyperspectral signature classification." In 2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2014. http://dx.doi.org/10.1109/icip.2014.7026046.
Full text