Academic literature on the topic 'Markovian segmentation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Markovian segmentation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Markovian segmentation"
Ameur, Meryem, Cherki Daoui, and Najlae Idrissi. "Markovian Segmentation of Brain Tumor MRI Images." International Journal of Informatics and Communication Technology (IJ-ICT) 6, no. 3 (December 1, 2017): 155. http://dx.doi.org/10.11591/ijict.v6i3.pp155-165.
Full textJodoin, Pierre-Marc. "Markovian segmentation and parameter estimation on graphics hardware." Journal of Electronic Imaging 15, no. 3 (July 1, 2006): 033005. http://dx.doi.org/10.1117/1.2238881.
Full textRichard, Nathalie, Michel Dojat, and Catherine Garbay. "Distributed Markovian segmentation: Application to MR brain scans." Pattern Recognition 40, no. 12 (December 2007): 3467–80. http://dx.doi.org/10.1016/j.patcog.2007.03.019.
Full textBejerano, G., Y. Seldin, H. Margalit, and N. Tishby. "Markovian domain fingerprinting: statistical segmentation of protein sequences." Bioinformatics 17, no. 10 (October 1, 2001): 927–34. http://dx.doi.org/10.1093/bioinformatics/17.10.927.
Full textDescombes, Xavier, Miguel Moctezuma, Henri Maître, and Jean-Paul Rudant. "Coastline detection by a Markovian segmentation on SAR images." Signal Processing 55, no. 1 (November 1996): 123–32. http://dx.doi.org/10.1016/s0165-1684(96)00125-9.
Full textMignotte, M., C. Collet, P. Pérez, and P. Bouthemy. "Three-Class Markovian Segmentation of High-Resolution Sonar Images." Computer Vision and Image Understanding 76, no. 3 (December 1999): 191–204. http://dx.doi.org/10.1006/cviu.1999.0804.
Full textRuan, Su, Bruno Moretti, Jalal Fadili, and Daniel Bloyet. "Fuzzy Markovian Segmentation in Application of Magnetic Resonance Images." Computer Vision and Image Understanding 85, no. 1 (January 2002): 54–69. http://dx.doi.org/10.1006/cviu.2002.0957.
Full textKato, Zoltan, Ting-Chuen Pong, and John Chung-Mong Lee. "Color image segmentation and parameter estimation in a markovian framework." Pattern Recognition Letters 22, no. 3-4 (March 2001): 309–21. http://dx.doi.org/10.1016/s0167-8655(00)00106-9.
Full textAlkama, Sadia, Youssef Chahir, and Daoud Berkani. "Markovian approach using several Gibbs energy for remote sensing images segmentation." Analog Integrated Circuits and Signal Processing 69, no. 1 (March 26, 2011): 39–47. http://dx.doi.org/10.1007/s10470-011-9631-8.
Full textAndradóttir, Sigrún, and Mehdi Hosseini-Nasab. "Efficiency of Time Segmentation Parallel Simulation of Finite Markovian Queueing Networks." Operations Research 51, no. 2 (April 2003): 272–80. http://dx.doi.org/10.1287/opre.51.2.272.12778.
Full textDissertations / Theses on the topic "Markovian segmentation"
Courbot, Jean-Baptiste. "Traitement statistique d'images hyperspectrales pour la détection d'objets diffus : application aux données astronomiques du spectro-imageur MUSE." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD031/document.
Full textWe study the detection and segmentation problems in extremely noised images. The main application of these works is the detection of large-scale structures in MUSE astronomical hyperspectral images, namely haloes (localized and homogenous in images) and filaments (anisotropie large-scale structures). First, we study the hypothesis-testing detection in hyperspectral images, based on spatial and spectral shape constraints as well as similarity constraints. Then, we introduce a pairwise Markov field model which allows the formulation of the detection problem as a special case of the segmentation problem while introducing a Markovian prior on the result. Next , in order to model onented structures m images, we propose a triplet Markov field model following the ià1ntsegmentation of orientations and classes in images. Finally, we study the modelling of large-scale structures in images by introducing a triplet Markov tree model handling inter-resolution dependancy jointly with homogeneity within resolutions. The two latter models were introduced in the general framework of image segmentation. Each model was validated with respect toits alternatives, then all models were compared on synthetic data in the context of detection within astronomical hyperspectral images. Finally, this document presents the analysis of the results on real MUSE images
AMOURA, LAHLOU. "Modele markovien pyramidal flou et segmentation statistique d'images." Paris 6, 1998. http://www.theses.fr/1998PA066011.
Full textLABOURDETTE, CHRISTOPHE. "Algorithmes de segmentation, champs markoviens et parallélisme." Paris 11, 1992. http://www.theses.fr/1992PA112245.
Full textSalzenstein, Fabien. "Modele markovien flou et segmentation statistique non suupervisee d'images." Rennes 1, 1996. http://www.theses.fr/1996REN10194.
Full textBENDJEBBOUR, AZZEDDINE. "Segmentation d'images multisenseur par fusion de dempster-shafer dans un contexte markovien." Paris 6, 2000. http://www.theses.fr/2000PA066037.
Full textBoussarsar, Riadh. "Contribution des mesures floues et d'un modèle markovien à la segmentation d'images couleur." Rouen, 1997. http://www.theses.fr/1997ROUES036.
Full textRekik, Ahmed. "Segmentation statistique et fusion d'images satellitaires par la théorie de l'évidence dans un contexte markovien." Littoral, 2008. http://www.theses.fr/2008DUNK0207.
Full textThe work developed in this thesis, is focused on the unsupervised statistical segmentation of satellite images in a Markovian context, and their fusion through the evidence theory. Indeed we have developed in this work an optimal statistical approach for the segmentation of satellite images, through the integration and the contribution of several algorithms, especially for the initialisation step by using the K-means clustering algorithm for a better definition of the image classes, then we wanted to rectify and standardize these classes through the Markov fields which allowed the consideration of the neighbourhood concept in the classification phase. For the modelling of the different classes of the image, we opted for the Pearson system for its flexibility and its adaptation by offering a range of different and optimal distributions. Finally, concerning the estimation of the different attributes of each class of the image, we used the EM and SEM algorithms. In order to optimize this work, we integrated in our approach an image fusion phase based on the evidence theory (belief function), which allowed a better decision in the segmentation stage, through the exploitation of the number of information present in the multispectral and multi-temporal images
WANG, JIAPING. "Champs markoviens multi-échelles : applications à la segmentation d'images texturées et à la fusion multi-film." Paris 11, 1994. http://www.theses.fr/1994PA112236.
Full textWilinski, Piotr. "Comparaison des modèles neuronaux et markoviens : application à la modélisation et à la segmentation des images satellitaires." Rennes 1, 1997. http://www.theses.fr/1997REN10090.
Full textScherrer, Benoit. "Segmentation des tissus et structures sur les IRM cérébrales : agents markoviens locaux et coopératifs et formulation bayésienne." Grenoble INPG, 2008. https://tel.archives-ouvertes.fr/tel-00361317.
Full textAccurate magnetic resonance brain scan segmentation is critical in a number of clinical and neuroscience applications. This task is challenging due to artifacts, low contrast between tissues and inter-individual variability that inhibit the introduction of a priori knowledge. In this thesis, we propose a new MR brain scan segmentation approach. Unique features of this approach include (1) the coupling of tissue segmentation, structure segmentation and prior knowledge construction, and (2) the consideration of local image properties. Locality is modeled through a multi-agent framework: agents are distributed into the volume and perform a local Markovian segmentation. As an initial approach (LOCUS, Local Cooperative Unified Segmentation), intuitive cooperation and coupling mechanisms are proposed to ensure the consistency of local models. Structures are segmented via the introduction of spatial localization constraints based on fuzzy spatial relations between structures. In a second approach, (LOCUS-B, LOCUS in a Bayesian framework) we consider the introduction of a statistical atlas to describe structures. The problem is reformulated in a Bayesian framework, allowing a statistical formalization of coupling and cooperation. Tissue segmentation, local model regularization, structure segmentation and local affine atlas registration are then coupled in an EM framework and mutually improve. The evaluation on simulated and real images shows good results, and in particular, a robustness to non-uniformity and noise with low computational cost. Local distributed and cooperative MRF models then appear as a powerful and promising approach for medical image segmentation
Book chapters on the topic "Markovian segmentation"
Jodoin, Pierre-Marc, Jean-François St-Amour, and Max Mignotte. "Unsupervised Markovian Segmentation on Graphics Hardware." In Pattern Recognition and Image Analysis, 444–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11552499_50.
Full textMohammad-Djafari, Ali, Nadia Bali, and Adel Mohammadpour. "Hierarchical Markovian Models for Hyperspectral Image Segmentation." In Advances in Machine Vision, Image Processing, and Pattern Analysis, 416–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11821045_44.
Full textMelodelima, Christelle, and Christian Gautier. "A Markovian Approach for the Segmentation of Chimpanzee Genome." In Bioinformatics Research and Development, 251–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71233-6_20.
Full textDamiand, Guillaume, Olivier Alata, and Camille Bihoreau. "Using 2D Topological Map Information in a Markovian Image Segmentation." In Discrete Geometry for Computer Imagery, 288–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39966-7_27.
Full textPiazzolla, Pietro, Marco Gribaudo, Roberto Borgotallo, and Alberto Messina. "Performance Evaluation of Media Segmentation Heuristics Using Non-markovian Multi-class Arrival Processes." In Analytical and Stochastic Modeling Techniques and Applications, 218–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13568-2_16.
Full textScherrer, Benoit, Florence Forbes, Catherine Garbay, and Michel Dojat. "A Joint Bayesian Framework for MR Brain Scan Tissue and Structure Segmentation Based on Distributed Markovian Agents." In Computational Intelligence in Healthcare 4, 81–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14464-6_5.
Full textConference papers on the topic "Markovian segmentation"
Ameur, Meryem, Cherki Daoui, and Najlae Idrissi. "Fast Markovian Images Segmentation." In 2020 IEEE 6th International Conference on Optimization and Applications (ICOA). IEEE, 2020. http://dx.doi.org/10.1109/icoa49421.2020.9094479.
Full textAmeur, Meryem, Cherki Daoui, and Najlae Idrissi. "Markovian Segmentation Of Textured Color Images." In 2020 International Conference on Intelligent Systems and Computer Vision (ISCV). IEEE, 2020. http://dx.doi.org/10.1109/iscv49265.2020.9204066.
Full textNicolas, S., T. Paquet, and L. Heutte. "A Markovian Approach for Handwritten Document Segmentation." In 2006 18th International Conference on Pattern Recognition. IEEE, 2006. http://dx.doi.org/10.1109/icpr.2006.94.
Full textSanchez-Garcia, Angel J., Homero V. Rios-Figueroa, Juan Andres Sanchez Garcia, and Juan Carlos Perez-Arriaga. "Towards obstacle Identification by Markovian-Evolutionary Segmentation." In 2020 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE). IEEE, 2020. http://dx.doi.org/10.1109/icmeae51770.2020.00009.
Full textRivera, Mariano, and Pedro P. Mayorga. "Quadratic Markovian Probability Fields for Image Binary Segmentation." In 2007 IEEE 11th International Conference on Computer Vision. IEEE, 2007. http://dx.doi.org/10.1109/iccv.2007.4409119.
Full textAmeur, Meryem, Najlae Idrissi, and Cherki Daoui. "Markovian Segmentation of Color and Gray Level Images." In 2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV). IEEE, 2016. http://dx.doi.org/10.1109/cgiv.2016.57.
Full textCuadros-vargas, Alex J., Leandro C. Gerhardinger, Mario de Castro, Joao Batista Neto, and Luis Gustavo Nonato. "Improving 2D mesh image segmentation with Markovian Random Fields." In 2006 19th Brazilian Symposium on Computer Graphics and Image Processing. IEEE, 2006. http://dx.doi.org/10.1109/sibgrapi.2006.26.
Full textCollet, Christophe, Pierre Thourel, Patrick Perez, and Patrick Bouthemy. "Sonar picture segmentation using Markovian multigrid or multiresolution algorithms." In Electronic Imaging '97, edited by Edward R. Dougherty and Jaakko T. Astola. SPIE, 1997. http://dx.doi.org/10.1117/12.271124.
Full textJodoin, Pierre-Marc, Alain Lalande, Yvon Voisin, Olivier Bouchot, and Eric Steinmetz. "Markovian method for 2D, 3D and 4D segmentation of MRI." In 2008 15th IEEE International Conference on Image Processing - ICIP 2008. IEEE, 2008. http://dx.doi.org/10.1109/icip.2008.4712429.
Full textNagau, Jimmy, and Jean-Luc Henry. "Segmentation of color images of plants with a Markovian Mean Shift." In 2011 IEEE Applied Imagery Pattern Recognition Workshop: Imaging for Decision Making (AIPR 2011). IEEE, 2011. http://dx.doi.org/10.1109/aipr.2011.6176338.
Full text