Dissertations / Theses on the topic 'Markovian segmentation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 17 dissertations / theses for your research on the topic 'Markovian segmentation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Courbot, Jean-Baptiste. "Traitement statistique d'images hyperspectrales pour la détection d'objets diffus : application aux données astronomiques du spectro-imageur MUSE." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD031/document.
Full textWe study the detection and segmentation problems in extremely noised images. The main application of these works is the detection of large-scale structures in MUSE astronomical hyperspectral images, namely haloes (localized and homogenous in images) and filaments (anisotropie large-scale structures). First, we study the hypothesis-testing detection in hyperspectral images, based on spatial and spectral shape constraints as well as similarity constraints. Then, we introduce a pairwise Markov field model which allows the formulation of the detection problem as a special case of the segmentation problem while introducing a Markovian prior on the result. Next , in order to model onented structures m images, we propose a triplet Markov field model following the ià1ntsegmentation of orientations and classes in images. Finally, we study the modelling of large-scale structures in images by introducing a triplet Markov tree model handling inter-resolution dependancy jointly with homogeneity within resolutions. The two latter models were introduced in the general framework of image segmentation. Each model was validated with respect toits alternatives, then all models were compared on synthetic data in the context of detection within astronomical hyperspectral images. Finally, this document presents the analysis of the results on real MUSE images
AMOURA, LAHLOU. "Modele markovien pyramidal flou et segmentation statistique d'images." Paris 6, 1998. http://www.theses.fr/1998PA066011.
Full textLABOURDETTE, CHRISTOPHE. "Algorithmes de segmentation, champs markoviens et parallélisme." Paris 11, 1992. http://www.theses.fr/1992PA112245.
Full textSalzenstein, Fabien. "Modele markovien flou et segmentation statistique non suupervisee d'images." Rennes 1, 1996. http://www.theses.fr/1996REN10194.
Full textBENDJEBBOUR, AZZEDDINE. "Segmentation d'images multisenseur par fusion de dempster-shafer dans un contexte markovien." Paris 6, 2000. http://www.theses.fr/2000PA066037.
Full textBoussarsar, Riadh. "Contribution des mesures floues et d'un modèle markovien à la segmentation d'images couleur." Rouen, 1997. http://www.theses.fr/1997ROUES036.
Full textRekik, Ahmed. "Segmentation statistique et fusion d'images satellitaires par la théorie de l'évidence dans un contexte markovien." Littoral, 2008. http://www.theses.fr/2008DUNK0207.
Full textThe work developed in this thesis, is focused on the unsupervised statistical segmentation of satellite images in a Markovian context, and their fusion through the evidence theory. Indeed we have developed in this work an optimal statistical approach for the segmentation of satellite images, through the integration and the contribution of several algorithms, especially for the initialisation step by using the K-means clustering algorithm for a better definition of the image classes, then we wanted to rectify and standardize these classes through the Markov fields which allowed the consideration of the neighbourhood concept in the classification phase. For the modelling of the different classes of the image, we opted for the Pearson system for its flexibility and its adaptation by offering a range of different and optimal distributions. Finally, concerning the estimation of the different attributes of each class of the image, we used the EM and SEM algorithms. In order to optimize this work, we integrated in our approach an image fusion phase based on the evidence theory (belief function), which allowed a better decision in the segmentation stage, through the exploitation of the number of information present in the multispectral and multi-temporal images
WANG, JIAPING. "Champs markoviens multi-échelles : applications à la segmentation d'images texturées et à la fusion multi-film." Paris 11, 1994. http://www.theses.fr/1994PA112236.
Full textWilinski, Piotr. "Comparaison des modèles neuronaux et markoviens : application à la modélisation et à la segmentation des images satellitaires." Rennes 1, 1997. http://www.theses.fr/1997REN10090.
Full textScherrer, Benoit. "Segmentation des tissus et structures sur les IRM cérébrales : agents markoviens locaux et coopératifs et formulation bayésienne." Grenoble INPG, 2008. https://tel.archives-ouvertes.fr/tel-00361317.
Full textAccurate magnetic resonance brain scan segmentation is critical in a number of clinical and neuroscience applications. This task is challenging due to artifacts, low contrast between tissues and inter-individual variability that inhibit the introduction of a priori knowledge. In this thesis, we propose a new MR brain scan segmentation approach. Unique features of this approach include (1) the coupling of tissue segmentation, structure segmentation and prior knowledge construction, and (2) the consideration of local image properties. Locality is modeled through a multi-agent framework: agents are distributed into the volume and perform a local Markovian segmentation. As an initial approach (LOCUS, Local Cooperative Unified Segmentation), intuitive cooperation and coupling mechanisms are proposed to ensure the consistency of local models. Structures are segmented via the introduction of spatial localization constraints based on fuzzy spatial relations between structures. In a second approach, (LOCUS-B, LOCUS in a Bayesian framework) we consider the introduction of a statistical atlas to describe structures. The problem is reformulated in a Bayesian framework, allowing a statistical formalization of coupling and cooperation. Tissue segmentation, local model regularization, structure segmentation and local affine atlas registration are then coupled in an EM framework and mutually improve. The evaluation on simulated and real images shows good results, and in particular, a robustness to non-uniformity and noise with low computational cost. Local distributed and cooperative MRF models then appear as a powerful and promising approach for medical image segmentation
Xie, Xia. "Caractérisation structurelle et statistique de la texture pour la reconnaissance d'images de textures macroscopiques." Compiègne, 1990. http://www.theses.fr/1990COMPD282.
Full textPetremand, Matthieu. "Détection des galaxies à faible brillance de surface et segmentation hyperspectrale dans le cadre de l'observatoire virtuel." Phd thesis, Université Louis Pasteur (Strasbourg) (1971-2008), 2006. https://publication-theses.unistra.fr/public/theses_doctorat/2006/PETREMAND_Matthieu_2006.pdf.
Full textTechnological progress in astronomical instrumentation raise various issues. The development of multispectral sensors yields extremely valuable data. Nevertheless interpretation and processing of such images remain tricky for the astronomical community. Within the framework of this thesis we propose a new method for the detection of low surface brightness galaxy based on a quadtree Markovian segmentation. We then introduce a new segmentation method of hyperspectral data cubes based on a spectral discrimination and on a spatial regularization of the segmentation map. We then propose two multispectral images visualization methods and a new fuzzy segmentation method based on Markov fields. These methods are validated on astronomical images and led to a fruitful cooperation between STIC and astronomical community
Demonceaux, Cédric. "Etude du mouvement dans les séquences d'images par analyse d'ondelettes et modélisation markovienne hiérarchique : application à la détection d'obstacles dans un milieu routier." Phd thesis, Université de Picardie Jules Verne, 2004. http://tel.archives-ouvertes.fr/tel-00862980.
Full textAlata, Olivier. "Contributions à la description de signaux, d'images et de volumes par l'approche probabiliste et statistique." Habilitation à diriger des recherches, Université de Poitiers, 2010. http://tel.archives-ouvertes.fr/tel-00573224.
Full textHedjam, Rachid. "Segmentation non-supervisée d'images couleur par sur-segmentation Markovienne en régions et procédure de regroupement de régions par graphes pondérés." Thèse, 2008. http://hdl.handle.net/1866/7221.
Full textScherrer, Benoît. "Segmentation des tissus et structures sur les IRM cérébrales : agents markoviens locaux coopératifs et formulation bayésienne." Phd thesis, 2008. http://tel.archives-ouvertes.fr/tel-00361317.
Full textLa localité est modélisée via un cadre multi-agents : des agents sont distribués dans le volume et réalisent une segmentation markovienne locale. Dans une première approche (LOCUS, Local Cooperative Unified Segmentation) nous proposons des mécanismes intuitifs de coopération et de couplage pour assurer la cohérence des modèles locaux. Les structures sont segmentées via l'intégration de contraintes de localisation floue décrites par des relations spatiales entre structures. Dans une seconde approche (LOCUS-B, LOCUS in a Bayesian framework) nous considérons l'introduction d'un atlas statistique des structures. Nous reformulons le problème dans un cadre bayésien nous permettant une formalisation statistique du couplage et de la coopération. Segmentation des tissus, régularisation des modèles locaux, segmentation des structures et recalage local affine de l'atlas sont alors réalisés de manière couplée dans un cadre EM, chacune des étapes s'améliorant mutuellement.
L'évaluation sur des images simulées et réelles montrent les performances de l'approche et en particulier sa robustesse aux artéfacts pour de faibles temps de calculs. Les modèles markoviens locaux distribués et coopératifs apparaissent alors comme une approche prometteuse pour la segmentation d'images médicales.
Destrempes, François. "Estimation de paramètres de champs markoviens cachés avec applications à la segmentation d'images et la localisation de formes." Thèse, 2006. http://hdl.handle.net/1866/16708.
Full text