Journal articles on the topic 'Mars van Krevelen mechanism'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Mars van Krevelen mechanism.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yan, Fei, Zhe Wen, Kai Wu, et al. "Deoxyalkylation of guaiacol using haggite structured V4O6(OH)4." Catalysis Science & Technology 9, no. 8 (2019): 1922–32. http://dx.doi.org/10.1039/c9cy00024k.
Full textDoornkamp, C., and V. Ponec. "The universal character of the Mars and Van Krevelen mechanism." Journal of Molecular Catalysis A: Chemical 162, no. 1-2 (2000): 19–32. http://dx.doi.org/10.1016/s1381-1169(00)00319-8.
Full textKuwahara, Yasutaka, Takashi Mihogi, Koji Hamahara, Kazuki Kusu, Hisayoshi Kobayashi, and Hiromi Yamashita. "A quasi-stable molybdenum sub-oxide with abundant oxygen vacancies that promotes CO2 hydrogenation to methanol." Chemical Science 12, no. 29 (2021): 9902–15. http://dx.doi.org/10.1039/d1sc02550c.
Full textMine, Shinya, Taichi Yamaguchi, Kah Wei Ting, et al. "Reverse water-gas shift reaction over Pt/MoOx/TiO2: reverse Mars–van Krevelen mechanism via redox of supported MoOx." Catalysis Science & Technology 11, no. 12 (2021): 4172–80. http://dx.doi.org/10.1039/d1cy00289a.
Full textCzelej, Kamil, Karol Cwieka, Juan C. Colmenares, and Krzysztof J. Kurzydlowski. "Atomistic insight into the electrode reaction mechanism of the cathode in molten carbonate fuel cells." Journal of Materials Chemistry A 5, no. 26 (2017): 13763–68. http://dx.doi.org/10.1039/c7ta02011b.
Full textHan, Bing, Tianbo Li, Junying Zhang, et al. "A highly active Rh1/CeO2 single-atom catalyst for low-temperature CO oxidation." Chemical Communications 56, no. 36 (2020): 4870–73. http://dx.doi.org/10.1039/d0cc00230e.
Full textSu, Guijin, Linyan Huang, Sha Liu, Huijie Lu, Fan Yang та Minghui Zheng. "The combined disposal of 1,2,4-trichlorobenzene and nitrogen oxides using the synthesized Ce0.2TiAlαOx micro/nanomaterial". Catalysis Science & Technology 5, № 2 (2015): 1041–51. http://dx.doi.org/10.1039/c4cy01194e.
Full textBao, Haoming, Shuyi Zhu, Le Zhou, Hao Fu, Hongwen Zhang, and Weiping Cai. "Mars–van-Krevelen mechanism-based blackening of nano-sized white semiconducting oxides for synergetic solar photo-thermocatalytic degradation of dye pollutants." Nanoscale 12, no. 6 (2020): 4030–39. http://dx.doi.org/10.1039/c9nr09534a.
Full textDoornkamp, C., and V. Ponec. "ChemInform Abstract: The Universal Character of the Mars and Van Krevelen Mechanism." ChemInform 32, no. 17 (2001): no. http://dx.doi.org/10.1002/chin.200117275.
Full textYao, Zihang, Jiaqiang Yang, Zhang Liu, et al. "Synergetic effect dependence on activated oxygen in the interface of NiOx-modified Pt nanoparticles for the CO oxidation from first-principles." Physical Chemistry Chemical Physics 23, no. 14 (2021): 8541–48. http://dx.doi.org/10.1039/d1cp00149c.
Full textHinokuma, Satoshi, Noriko Yamashita, Yasuo Katsuhara, Hayato Kogami, and Masato Machida. "CO oxidation activity of thermally stable Fe–Cu/CeO2 catalysts prepared by dual-mode arc-plasma process." Catalysis Science & Technology 5, no. 8 (2015): 3945–52. http://dx.doi.org/10.1039/c5cy00370a.
Full textZeinalipour-Yazdi, Constantinos D., Justin S. J. Hargreaves, and C. Richard A. Catlow. "Nitrogen Activation in a Mars–van Krevelen Mechanism for Ammonia Synthesis on Co3Mo3N." Journal of Physical Chemistry C 119, no. 51 (2015): 28368–76. http://dx.doi.org/10.1021/acs.jpcc.5b06811.
Full textToko, Kenta, Kazuharu Ito, Hikaru Saito, et al. "Catalytic Dehydrogenation of Ethane over Doped Perovskite via the Mars–van Krevelen Mechanism." Journal of Physical Chemistry C 124, no. 19 (2020): 10462–69. http://dx.doi.org/10.1021/acs.jpcc.0c00138.
Full textTahini, Hassan A., Xin Tan, and Sean C. Smith. "Facile CO Oxidation on Oxygen‐functionalized MXenes via the Mars‐van Krevelen Mechanism." ChemCatChem 12, no. 4 (2019): 1007–12. http://dx.doi.org/10.1002/cctc.201901448.
Full textAlmeida, Ana Rita, Jacob A. Moulijn, and Guido Mul. "Photocatalytic Oxidation of Cyclohexane over TiO2: Evidence for a Mars−van Krevelen Mechanism." Journal of Physical Chemistry C 115, no. 4 (2011): 1330–38. http://dx.doi.org/10.1021/jp107290r.
Full textGracia, Jose M., Frans F. Prinsloo, and J. W. Niemantsverdriet. "Mars-van Krevelen-like Mechanism of CO Hydrogenation on an Iron Carbide Surface." Catalysis Letters 133, no. 3-4 (2009): 257–61. http://dx.doi.org/10.1007/s10562-009-0179-5.
Full textHosono, Yukiko, Hikaru Saito, Takuma Higo, et al. "Co–CeO2 Interaction Induces the Mars–van Krevelen Mechanism in Dehydrogenation of Ethane." Journal of Physical Chemistry C 125, no. 21 (2021): 11411–18. http://dx.doi.org/10.1021/acs.jpcc.1c02855.
Full textAtashi, Niloofar, Mohammad Hasan Peyrovi, and Nastaran Parsafard. "Preparation, characterization and catalytic performance of Pt supported on porous carbonaceous materials in the oxidation of toluene as a volatile organic compound." Progress in Reaction Kinetics and Mechanism 45 (November 29, 2019): 146867831988793. http://dx.doi.org/10.1177/1468678319887931.
Full textJoshi, Shweta Kanungo, Neena Sohani, Savita Khare, and Rajendra Prasad. "Kinetics and Mechanism of Slurry Phase Air Oxidation of Benzyl Alcohol over Zirconium Vanadate Catalyst." Asian Journal of Chemistry 33, no. 1 (2020): 108–12. http://dx.doi.org/10.14233/ajchem.2021.22947.
Full textFerreira de Araújo, Jorge, Fabio Dionigi, Thomas Merzdorf, Hyung‐Suk Oh, and Peter Strasser. "Evidence of Mars‐Van‐Krevelen Mechanism in the Electrochemical Oxygen Evolution on Ni‐Based Catalysts." Angewandte Chemie 133, no. 27 (2021): 15108–15. http://dx.doi.org/10.1002/ange.202101698.
Full textFerreira de Araújo, Jorge, Fabio Dionigi, Thomas Merzdorf, Hyung‐Suk Oh, and Peter Strasser. "Evidence of Mars‐Van‐Krevelen Mechanism in the Electrochemical Oxygen Evolution on Ni‐Based Catalysts." Angewandte Chemie International Edition 60, no. 27 (2021): 14981–88. http://dx.doi.org/10.1002/anie.202101698.
Full textKropp, Thomas, and Manos Mavrikakis. "Brønsted–Evans–Polanyi relation for CO oxidation on metal oxides following the Mars–van Krevelen mechanism." Journal of Catalysis 377 (September 2019): 577–81. http://dx.doi.org/10.1016/j.jcat.2019.08.002.
Full textWang, Chunlei, Xiang-Kui Gu, Huan Yan, et al. "Water-Mediated Mars–Van Krevelen Mechanism for CO Oxidation on Ceria-Supported Single-Atom Pt1 Catalyst." ACS Catalysis 7, no. 1 (2016): 887–91. http://dx.doi.org/10.1021/acscatal.6b02685.
Full textSaito, Hikaru, Hirofumi Seki, Yukiko Hosono та ін. "Dehydrogenation of Ethane via the Mars–van Krevelen Mechanism over La0.8Ba0.2MnO3−δ Perovskites under Anaerobic Conditions". Journal of Physical Chemistry C 123, № 43 (2019): 26272–81. http://dx.doi.org/10.1021/acs.jpcc.9b06475.
Full textSchlexer, Philomena, Daniel Widmann, R. Jürgen Behm, and Gianfranco Pacchioni. "CO Oxidation on a Au/TiO2 Nanoparticle Catalyst via the Au-Assisted Mars–van Krevelen Mechanism." ACS Catalysis 8, no. 7 (2018): 6513–25. http://dx.doi.org/10.1021/acscatal.8b01751.
Full textMironenko, Alexander V., and Dionisios G. Vlachos. "Conjugation-Driven “Reverse Mars–van Krevelen”-Type Radical Mechanism for Low-Temperature C–O Bond Activation." Journal of the American Chemical Society 138, no. 26 (2016): 8104–13. http://dx.doi.org/10.1021/jacs.6b02871.
Full textOgasawara, Kiya, Takuya Nakao, Kazuhisa Kishida, et al. "Ammonia Decomposition over CaNH-Supported Ni Catalysts via an NH2–-Vacancy-Mediated Mars–van Krevelen Mechanism." ACS Catalysis 11, no. 17 (2021): 11005–15. http://dx.doi.org/10.1021/acscatal.1c01934.
Full textLou, Yang, Yongping Zheng, Wenyi Guo, and Jingyue Liu. "Pt1–O4 as active sites boosting CO oxidation via a non-classical Mars–van Krevelen mechanism." Catalysis Science & Technology 11, no. 10 (2021): 3578–88. http://dx.doi.org/10.1039/d1cy00115a.
Full textSaqlain, Muhammad Adnan, Akhtar Hussain, Muhammad Siddiq, and Alexandre A. Leitão. "A DFT+U study of the Mars Van Krevelen mechanism of CO oxidation on Au/TiO2 catalysts." Applied Catalysis A: General 519 (June 2016): 27–33. http://dx.doi.org/10.1016/j.apcata.2016.03.021.
Full textde Lima, Adriana F. F., Carla R. Moreira, Odivaldo C. Alves, Roberto R. de Avillez, Fatima M. Z. Zotin, and Lucia G. Appel. "Acetone synthesis from ethanol and the Mars and Van Krevelen mechanism using CeO2 and AgCeO2 nanostructured catalysts." Applied Catalysis A: General 611 (February 2021): 117949. http://dx.doi.org/10.1016/j.apcata.2020.117949.
Full textQiao, Zhi, Denis Johnson, and Abdoulaye Djire. "Challenges and opportunities for nitrogen reduction to ammonia on transitional metal nitrides via Mars-van Krevelen mechanism." Cell Reports Physical Science 2, no. 5 (2021): 100438. http://dx.doi.org/10.1016/j.xcrp.2021.100438.
Full textLiu, Bing, Wenping Li, Weiyu Song, and Jian Liu. "Carbonate-mediated Mars–van Krevelen mechanism for CO oxidation on cobalt-doped ceria catalysts: facet-dependence and coordination-dependence." Physical Chemistry Chemical Physics 20, no. 23 (2018): 16045–59. http://dx.doi.org/10.1039/c8cp01694a.
Full textJing, Qi, and Huan li. "Catalytic Air Oxidation of Refractory Organics in Wastewater." Current Organocatalysis 7, no. 3 (2020): 179–98. http://dx.doi.org/10.2174/2213337207999200802025735.
Full textKim, Hyun You, and Graeme Henkelman. "CO Oxidation at the Interface of Au Nanoclusters and the Stepped-CeO2(111) Surface by the Mars–van Krevelen Mechanism." Journal of Physical Chemistry Letters 4, no. 1 (2012): 216–21. http://dx.doi.org/10.1021/jz301778b.
Full textAbghoui, Younes, and Egill Skúlason. "Electrochemical synthesis of ammonia via Mars-van Krevelen mechanism on the (111) facets of group III–VII transition metal mononitrides." Catalysis Today 286 (May 2017): 78–84. http://dx.doi.org/10.1016/j.cattod.2016.06.009.
Full textDuan, Yin, Zhe Li, Yongxiu Li, Yuhua Zhang, Lin Li, and Jinlin Li. "New insight of the Mars-van Krevelen mechanism of the CO oxidation by gold catalyst on the ZnO(101) surface." Computational and Theoretical Chemistry 1100 (January 2017): 28–33. http://dx.doi.org/10.1016/j.comptc.2016.12.005.
Full textYun, Dongmin, Yong Wang, and José E. Herrera. "Ethanol Partial Oxidation over VOx/TiO2 Catalysts: The Role of Titania Surface Oxygen on Vanadia Reoxidation in the Mars–van Krevelen Mechanism." ACS Catalysis 8, no. 5 (2018): 4681–93. http://dx.doi.org/10.1021/acscatal.7b03327.
Full textEfremenko, Irena, and Ronny Neumann. "Computational Insight into the Initial Steps of the Mars–van Krevelen Mechanism: Electron Transfer and Surface Defects in the Reduction of Polyoxometalates." Journal of the American Chemical Society 134, no. 51 (2012): 20669–80. http://dx.doi.org/10.1021/ja308625q.
Full textLin, Chun-Hong, Zi-Yi Sun, and Chun-Guang Liu. "Mars–van Krevelen mechanism for CO oxidation on the polyoxometalates-supported Rh single-atom catalysts: An insight from density functional theory calculations." Molecular Catalysis 512 (August 2021): 111761. http://dx.doi.org/10.1016/j.mcat.2021.111761.
Full textGrootendorst, E. J., Y. Verbeek, and V. Ponec. "The Role of the Mars and Van Krevelen Mechanism in the Selective Oxidation of Nitrosobenzene and the Deoxygenation of Nitrobenzene on Oxidic Catalysts." Journal of Catalysis 157, no. 2 (1995): 706–12. http://dx.doi.org/10.1006/jcat.1995.1336.
Full textZhang, Li-Long, Xue-Mei Chen, and Chun-Guang Liu. "Correction to Reduction of N2O by CO via Mars–van Krevelen Mechanism over Phosphotungstic Acid Supported Single-Atom Catalysts: A Density Functional Theory Study." Inorganic Chemistry 58, no. 10 (2019): 7126. http://dx.doi.org/10.1021/acs.inorgchem.9b01131.
Full textLewandowski, M., I. M. N. Groot, S. Shaikhutdinov, and H. J. Freund. "Scanning tunneling microscopy evidence for the Mars-van Krevelen type mechanism of low temperature CO oxidation on an FeO(111) film on Pt(111)." Catalysis Today 181, no. 1 (2012): 52–55. http://dx.doi.org/10.1016/j.cattod.2011.08.033.
Full textNguyen, Nhat Huy, Bich Thao Nguyen Thi, Thao Giang Nguyen Le, et al. "Enhancing the Activity and Stability of CuO/OMS-2 Catalyst for CO Oxidation at Low Temperature by Modification with Metal Oxides." International Journal of Chemical Engineering 2020 (August 3, 2020): 1–8. http://dx.doi.org/10.1155/2020/8827995.
Full textRokicińska, Anna, Tomasz Berniak, Marek Drozdek, and Piotr Kuśtrowski. "In Search of Factors Determining Activity of Co3O4 Nanoparticles Dispersed in Partially Exfoliated Montmorillonite Structure." Molecules 26, no. 11 (2021): 3288. http://dx.doi.org/10.3390/molecules26113288.
Full textZhang, Li-Long, Mo-Jie Sun, and Chun-Guang Liu. "CO oxidation on the phosphotungstic acid supported Rh single–atom catalysts via Rh–assisted Mans–van Krevelen mechanism." Molecular Catalysis 462 (January 2019): 37–45. http://dx.doi.org/10.1016/j.mcat.2018.10.017.
Full textKhenkin, Alexander M, and Ronny Neumann. "Low-Temperature Activation of Dioxygen and Hydrocarbon Oxidation Catalyzed by a Phosphovanadomolybdate: Evidence for a Mars–van Krevelen Type Mechanism in a Homogeneous Liquid Phase." Angewandte Chemie 39, no. 22 (2000): 4088–90. http://dx.doi.org/10.1002/1521-3773(20001117)39:22<4088::aid-anie4088>3.0.co;2-#.
Full textKhenkin, Alexander M, and Ronny Neumann. "Low-Temperature Activation of Dioxygen and Hydrocarbon Oxidation Catalyzed by a Phosphovanadomolybdate: Evidence for a Mars–van Krevelen Type Mechanism in a Homogeneous Liquid Phase." Angewandte Chemie 112, no. 22 (2000): 4254–56. http://dx.doi.org/10.1002/1521-3757(20001117)112:22<4254::aid-ange4254>3.0.co;2-p.
Full textTokarz-Sobieraj, Renata, Robert Grybos, Małgorzata Witko, and Klaus Hermann. "Oxygen Sites at Molybdena and Vanadia Surfaces: Energetics of the Re-Oxidation Process." Collection of Czechoslovak Chemical Communications 69, no. 1 (2004): 121–40. http://dx.doi.org/10.1135/cccc20040121.
Full textAnh, Nguyen Thi Quynh. "Binary copper and manganese oxide nanoparticle supported oms-2 for enhancing activity and stability toward co oxidation reaction at low temperature." Vietnam Journal of Science and Technology 56, no. 6 (2018): 741. http://dx.doi.org/10.15625/2525-2518/56/6/13067.
Full textZhang, Li-Long, Xue-Mei Chen, and Chun-Guang Liu. "Reduction of N2O by CO via Mans–van Krevelen Mechanism over Phosphotungstic Acid Supported Single-Atom Catalysts: A Density Functional Theory Study." Inorganic Chemistry 58, no. 8 (2019): 5221–29. http://dx.doi.org/10.1021/acs.inorgchem.9b00290.
Full text