Dissertations / Theses on the topic 'Martensitic transformations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Martensitic transformations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Gao, Yipeng. "Transformation Pathway Network Analysis for Martensitic Transformations." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1385978073.
Full textBarrera, Noemi. "Intermittency in reversible martensitic transformations." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22562/document.
Full textThis thesis deals with the characterization of Martensitic Transformations (MT) that are first order phase transitions among different solid states with different crystalline structures. These transitions are at the basis of the behavior of a class of smart materials, called Shape Memory Alloys (SMA). This work combines an experimental study of a mechanically-induced martensitic transformation in a Cu-Al-Be single crystal and a macroscopic model for the reproduction of permanent effects in cyclic temperature-induced and stress-induced transitions. From the experimental point of view, the novelties are in the device that has been built and used for the test and in the full-field measurement technique at the basis of the data treatment. The especially designed gravity-based device allows for a uni-axial and uni-directional tensile test with slow loading rates. Simultaneously, the full-field measurement technique, known as grid method, provides high-resolution two-dimensional strain maps during all the transformation. With all the data collected during the test, we characterize for the first time the two-dimensional strain intermittency in a number of ways, showing heavy-tailed distributions for the strain avalanching over almost six decades of magnitude. In parallel, we develop a macroscopic mathematical model for the description of fatigue and permanent effects in several kinds of martensitic transformations. We show an easy way to calibrate the model parameters in the simple one-dimensional case. Moreover, we compare the numerical results with experimental data for different tests and specimens and obtain a good qualitative agreement
Ma, Xiao. "Topological modelling of martensitic transformations in crystalline materials." Thesis, University of Liverpool, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440851.
Full textDella, Porta Francesco M. G. "Selection mechanisms for microstructures and reversible martensitic transformations." Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:085f0e90-6d07-4cb6-9bb9-13517de1b65e.
Full textDean, Christopher. "Crystallography of transformation mechanisms in inorganic compounds /." Title page, contents and abstract only, 1986. http://web4.library.adelaide.edu.au/theses/09PH/09phd281.pdf.
Full textYeddu, Hemantha Kumar. "Martensitic Transformations in Steels : A 3D Phase-field Study." Doctoral thesis, KTH, Metallografi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-95316.
Full textQC 20120525
Hero-m
Zhang, Jimming. "A first principles study of the phase stabilities in Ti-transition-metal compounds and the shape memory effect in TiNi." Thesis, University of Southampton, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242707.
Full textRubini, Silvia. "Martensitic transformations in shape memory alloys by nuclear magnetic resonance /." [S.l.] : [s.n.], 1992. http://library.epfl.ch/theses/?display=detail&nr=1095.
Full textMuehlemann, Anton. "Variational models in martensitic phase transformations with applications to steels." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:bb7f4ff4-0911-4dad-bb23-ada904839d73.
Full textFocht, Eric M. "Transformation induced plasticity in ceramics." Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-12232009-020415/.
Full textDas, Yadunandan. "Characterization of stresses and strains involved in the martensitic phase transformations." Thesis, Open University, 2017. http://oro.open.ac.uk/49512/.
Full textContieri, Rodrigo José 1979. "Transformação eutetóide e decomposição de fases metaestáveis em ligas Ti-Cu." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263174.
Full textTese de Doutorado - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-22T19:13:03Z (GMT). No. of bitstreams: 1 Contieri_RodrigoJose_D.pdf: 5581364 bytes, checksum: b95f94b00d984d338e4134cd12621962 (MD5) Previous issue date: 2013
Resumo: Ligas do sistema Ti-Cu com composições próximas à eutetóide exibem potencial para aplicações estruturais, pois apresentam interessantes propriedades mecânicas, baixa densidade e alta resistência à corrosão. O comportamento mecânico dessas ligas depende diretamente das condições de processamento e tratamentos térmicos aplicados. Em condições de equilíbrio, a microestrutura dessas ligas é formada pela fase ? e pelo composto intermetálico Ti2Cu. Dependendo das condições de processamento, estruturas metaestáveis podem ser formadas. O objetivo deste trabalho foi avaliar o efeito de diferentes tratamentos térmicos na microestrutura e nas propriedades mecânicas de ligas Ti-Cu. Inicialmente, amostras com composições hipoeutetóide, eutetóide e hipereutetóide foram resfriadas a partir de altas temperaturas em um dispositivo de ensaio Jominy modificado e por ensaios de "splat colling". Na sequência, ensaios de envelhecimento aplicados a amostras com microestruturas metaestáveis também foram realizados. A caracterização das amostras envolveu microscopia óptica, eletrônica de varredura e de transmissão, difração de raios-X, tomografia atômica tridimensional e ensaios mecânicos. Os resultados obtidos indicam que altas taxas de resfriamento resultam na formação de microestruturas formadas por martensita ? ' e pelo composto Ti2Cu com composições diferentes das de equilíbrio. O módulo de elasticidade não apresentou variação com a taxa de resfriamento. Resultados de envelhecimento sugerem que o máximo valor de dureza Vickers e de resistência mecânica correspondem à perda de coerência entre os precipitados do composto intermetálico Ti2Cu e a matriz de fase ?
Abstract: Alloys in the Ti-Cu system with compositions close to the eutectoid exhibit potential for structural applications because they present interesting mechanical properties, low density and high corrosion resistance. The mechanical behavior of these alloys depends directly on the processing conditions and heat treatments applied. Under equilibrium conditions, the microstructure of these alloys is formed by the ? phase and the Ti2Cu intermetallic compound. Depending on the processing conditions imposed, metastable structures may be formed. The aim of this study was to evaluate the effect of different heat treatments on the microstructure and mechanical properties of Ti-Cu alloys. Initially, sample of hypoeutectoid, eutectoid and hypereutetoid compositions were cooled from high temperatures by in a modified Jominy test setup and by the "splat cooling technique". Following, aging heat treatments were applied to the samples with metastable microstructures. The sample's characterization included optical microscopy, scanning and transmission electron microscopy, X-ray diffraction, 3-dimensional atomic tomography and mechanical testing. The results suggests that high cooling rates result in the formation of microstructures formed by martensite ? ' and the Ti2Cu compound with compositions different from the equilibrium composition. The elastic modulus does not vary with the cooling rate. Aging results suggest that the maximum values of Vickers hardness and mechanical strength correspond to the loss of coherence between the Ti2Cu intermetallic compound precipitates and the ? phase matrix
Doutorado
Materiais e Processos de Fabricação
Doutor em Engenharia Mecânica
Stoiber, Johannes. "Hysteresis effects during martensitic phase transformations in Cu-Zn-Al shape memory alloys /." [S.l.] : [s.n.], 1993. http://library.epfl.ch/theses/?display=detail&nr=1115.
Full textJunker, Philipp [Verfasser], Klaus [Gutachter] Hackl, and Gunther [Gutachter] Eggeler. "Variational modeling of martensitic phase transformations / Philipp Junker ; Gutachter: Klaus Hackl, Gunther Eggeler." Bochum : Ruhr-Universität Bochum, 2016. http://d-nb.info/1122589964/34.
Full textLee, Chihoon. "Phase Transformations Accompanying Low-Temperature Carburization of Martensitic Stainless Steels under Paraequilibrium Conditions." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1325878014.
Full text梁凱峰 and Kaifeng Liang. "Dissipative behaviour in alloys and high Tc superconducting ceramics." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31237393.
Full textLiang, Kaifeng. "Dissipative behaviour in alloys and high Tc superconducting ceramics /." Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19003195.
Full textWu, Xiaoxia. "Effect of strain gradient on the nucleation of martensite in rod under tension /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?MECH%202003%20WU.
Full textIncludes bibliographical references (leaves 76-81). Also available in electronic version. Access restricted to campus users.
Zhong, Yuan. "Nanomechanics of plasticity in ultra-strength metals and shape memory alloys." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45795.
Full textOnyuna, Musa Omollo. "Deformation behaviour and martensitic transformations in metastable austenitic steels and low alloyed multiphase steels." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2009. http://nbn-resolving.de/urn:nbn:de:swb:105-7223495.
Full textDong, Liang. "Interface morphology and its stability in martensitic phase transformation of NiTi shape memory alloy /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?MECH%202008%20DONG.
Full textMacchi, Juan Agustin. "Phase transformations, microstructure heterogeneities and resulting mechanical properties in as-quenched and tempered martensitic steels." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0248.
Full textMartensitic steels have been known and used for millennia now, but the origins of their strength and work hardening have remained a source of controversy. Since few years, the understanding of their mechanical behavior is changing paradigm. Many researchers have put into evidence the interest not to describe lath martensite as an homogeneous microstructure but more as a multiphase aggregate, a composite, resulting from the sequential nature of the phase transformation at low temperature. According to such new schemes, the martensite behavior is controlled by the microstructural heterogeneities, ie. the spatial distribution of lath sizes, of dislocations, of carbon segregations and of carbides and not only by their mean values. To these observable microstructural elements are added large distributions of hydrostatic and deviatoric internal stresses resulting from the displacive phase transformation process. This work contributes to this new movement by providing a quantitative description of these distributions in as-quenched and further tempered martensitic steels and their impact on their mechanical behaviors thanks to a complete micromechanical approach.We have first developed a methodology to determine the dislocation densities in martensite and in austenite along the transformation by in situ HEXRD experiments. Based on a metallurgical reasoning, the spatial dislocation density distribution as well as its associated hardening were estimated for the first time. In situ HEXRD tempering experiments were also performed to characterize the recovery from the as-quenched state. An original modeling approach accounting for the spatial distribution of dislocations was set up to predict their density decrease during a heat treatment.In the same way, the microtextures of the studied microstructures were investigated by SEM-EBSD in order to assess the size distribution of the different features of martensite, as laths, blocks, packets and prior austenite grains. A statistical approach combining this latter contribution to the hardening with the one associated with dislocations explains successfully the observed distribution of the local yield strength in the as-quenched microstructures.In situ HEXRD tempering experiments and additional APT and TEM observations were used to characterize also the respective precipitation state of transition carbides and cementite as well as the carbon segregations along heat treatments. All this experimental work has served to develop and calibrate a phase transformation model to calculate carbon segregation on dislocations, transition carbides and cementite precipitation states. Such model was for instance able to predict the suppression of transition carbide precipitation in very low carbon steels. The investigation of tempering is necessary to understand the strengthening due the sole carbon in martensite.Finally, our original micromechanical model describing the martensite behavior as an extended elastic/plastic transition accounts for the previous combined hardening due to size effects and dislocations, the distribution of internal stresses due to the transformation and the tempering state (relaxation, recovery, segregation and precipitation state). The model successfully explains the strength and work-hardening of the studied steels (as quenched and tempered)
Adzima, M. Fauzan. "Constitutive modelling and finite element simulation of martensitic transformation using a computational multi-scale framework." Thesis, Swansea University, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678581.
Full textNg, Kwok Leung. "Stress-induced phase transformation and reorientation in NiTi tubes /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?MECH%202003%20NG.
Full textIncludes bibliographical references (leaves 94-98). Also available in electronic version. Access restricted to campus users.
Jeong, Soon-Jong. "The effect of magnetic field on shape memory behavior in Heusler-type Ni₂MnGa-based compounds /." Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/10591.
Full textTrinkle, Dallas Rhea III. "A theoretical study of the HCP to omega martensitic phase transition in titanium." Connect to this title online, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1070481734.
Full textTitle from first page of PDF file. Document formatted into pages; contains xviii, 201 p.; also includes graphics. Includes bibliographical references (p. 195-201).
Li, Zhiqi. "Experimental investigation on phase transformation of superelastic NiTi microtubes /." View Abstract or Full-Text, 2002. http://library.ust.hk/cgi/db/thesis.pl?MECH%202002%20LI.
Full textIncludes bibliographical references (leaves 155-160). Also available in electronic version. Access restricted to campus users.
Lavrskyi, Mykola. "Modélisation en fonctionnelle de la densité atomique des transformations de phases dans le système Fe-C à basse température." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMR003/document.
Full textThis thesis examines the formation of martensite in Fe-Ni-C steels and the diffusion of carbonatoms in this phase at low temperatures. To achieve this goal the atomistic modeling have beenused. To describe these phenomena two different approaches were developed: a discretemodel based on the Atomic Density Function (ADF) theory and the quasiparticle approachesbased on the Atomic Fraton Theory (AFT). First, the AFT was tested to model a self-assemblykinetics of initially disordered systems to three different classes of ordered one: singlecomponent crystals with fcc and diamond structures, two component crystals with zinc-blendstructure, and polymers with single-strand and double-stranded helixes structures. Then thisapproach was applied to model austenite/martensite transformation. It was shown thatmartensite nucleus grows as multivariant aggregate in austenite matrix. Using pole figures andsimulated diffraction patterns these variants were identified and compared with the experimentaldata. The carbon diffusion in martensite phase was studied using ADF theory. Two systemswith the different elastic properties corresponding to the Fe-C and Fe-Ni-C systems wereconsidered. It was shown that during a first stage of aging the carbon atoms undergo a spinodaldecomposition on the octahedral interstices of bcc lattice and form the carbon-rich zones. Then"tweed-like" morphology of carbon-rich zones is developed. The simulations results are a goodagreement with experimental images obtained by atom probe tomography. The relationbetween Zener ordering and the concentration of carbon reach zones is discussed
Jabir, Hamza. "Caractérisation à l'échelle locale des propriétés superélastiques d'alliages de titane massifs et sous forme de revêtements." Thesis, Rennes, INSA, 2018. http://www.theses.fr/2018ISAR0015/document.
Full textThe superelasticity is the ability of an alloy to recover its original shape after significant deformation. This effect, due to a reversible stress-induced martensitic transformation, is highly sought after for many biomedical applications. Nickel-titanium alloys that have a very large strain recovery (in bulk and thin film state), are the alloys currently used for functional applications requiring superelasticity. However, the use of this alloy in biomedical devices is controversial by the presence of nickel, considered as allergen and presumed cytotoxic for the body. As a result, in recent years, increased attention has been given to metastable f3 titanium alloys, which may be an alternative for biomedical applications. Indeed, they have the advantage of being elaborated from biocompatible elements and exhibit a superelastic behavior. The objective of this thesis lies in the study of the superelastic response of metastable f3 titanium alloys at different scales in bulk and thin film state. Two metastable f3 titanium alloys were elaborated: Ti-27Nb (at%) alloy and Ti-24Nb-4Zr-8Sn (wt %) alloy. The superelastic properties of these two bulk alloys were characterized at macroscopic and sub-micrometric scale and compared to superelastic NiTi and elastoplastic CP-Ti. The nanoindentation was first used to evaluate the superelastic effect of various bulk titanium alloys at local scale, and in a second time, to study the effect of crystallographic orientations on the superelastic and mechanical responses at the grain scale. Finally, the mechanical and superelastic properties of metastable f3 titanium coatings were evaluated with this same nanoindentation process
Kelly, Shelly D. "XAFS study of the pressure induced B1->B2 phase transition /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/9679.
Full textYang, Yang. "Etude de la transformation martensitique et des mécanismes de déformation se produisant dans l’alliage superélastique Ti-24Nb-4Zr-8Sn." Thesis, Rennes, INSA, 2015. http://www.theses.fr/2015ISAR0002/document.
Full textTitanium alloys have already been extensively used as orthopedic implants due to the good mechanical properties, corrosion resistance and excellent biocompability. However, the most widely used Ti-6Al-4V alloy exhibits high elastic modulus (110GPa) which would cause the stress shield effect and eventually lead to the implantation failure. Furthermore, elements of Al and V are proved to be toxic for long-term application. Low modulus metastable titanium alloy can be a suitable candidate through proper addition of non-toxic alloying element such as Nb, Zr and Sn.The present investigated Ti-24Nb-4Zr-8Sn alloy is a new -type metastable alloy potentially interesting for biomedical applications. This alloy displays high strength, low elastic modulus, high ductility, superelastic property and good biocompatibility according to previous investigations.In this work, the as-cold rolled Ti-24Nb-4Zr-8Sn alloy was subjected to different thermo-mechanical treatments in order to introduce different crystallographic texture. Influences of texture change on mechanical properties and superelasticity have been preliminarily studied. Martensitic transformation which is responsible for the superelasticity has been characterized by both in situ synchrotron X-ray diffraction and dynamic mechanical analysis. Moreover, deformed microstructures have been observed by EBSD and TEM to characterize precisely the plastic deformation mechanisms, and particularly the twinning
Kozelkova, Ivana. "Transformations martensitiques par trempe et induite par déformation plastique dans les alliages Fe-Ni-C." Châtenay-Malabry, Ecole centrale de Paris, 1996. http://www.theses.fr/1996ECAP0441.
Full textZhang, Chunyang. "Crystallographic study on microstructure and martensitic transformation of NiMnSb meta-magnetic multi-functional alloys." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0030/document.
Full textNiMnSb based Heusler type alloys, as a novel multi-functional material has attracted considerable attention due to their multiple properties, such as magnetic shape memory effect, magnetocaloric effect, exchange bias effect, magnetoresistance effect. To date, many aspects of the NiMnSb alloys, such as crystal structure, microstructure, magnetic properties and mechanical properties etc., have been widely investigated. However, many fundamental issues of this family of materials have not been fully revealed, which largely restricts the development of this new kind of multi-functional materials. In the present work, a thorough investigation has been conducted on ternary NiMnSb alloys in terms of crystal structures of austenite and martensite; microstructural and crystallographic features of martensite; martensitic transformation orientation relationship (OR) and its correlation with variant organization; transformation deformation characteristics and self-accommodation of transformation strain. The work confirmed that the austenite of NiMnSb alloys possesses a cubic L21 crystal structure belonging to the space group Fm3m (No. 225). The martensite has a four-layered orthorhombic (4O) structure with space group Pmma (No. 051). The lattice constants of the Ni50Mn37Sb13 and Ni50Mn38Sb12 martensite are aM = 8.5830 Å, bM = 5.6533 Å and cM = 4.3501Å, and aM = 8.5788 Å, bM = 5.6443 Å and cM = 4.3479 Å, respectively. The microstructure of the 4O NiMnSb modulated martensite possesses a hierarchical organization feature. Martensite fine lamellae are first organized into broad plates. Each plate possesses 4 distinct twin related variants A, B, C and D forming type I twins (A and C; B and D), type II twins (A and B; C and D) and compound twins (A and D; B and C). The variant interfaces are defined by the corresponding twinning planes. The complete twinning elements for each twin relation are fully determined. The plates are further organized into sub-colonies and sub-colonies into plate colonies. The neighboring plates in one sub-colony and plate colony share one common plate interface orientation. Plate colonies with different oriented plate interfaces finally take the whole original austenite grain. The Pitsch OR, specified as {011}A // {221}M and <011>A // <122>M, is the effective OR between the cubic austenite and the 4O modulated martensite. Under this OR, a maximum of 24 distinct variants can be produced. The 24 variants are organized into 6 distinct variant colonies, 12 distinct sub-colonies and finally 6 distinct plate colonies. The twinning plane of type I twin and the intra-plate plate interfaces all correspond to the same family of {011}A planes of austenite. The formation of martensite variant colonies can be both form intragranular and intergranular during the phase transformation. The sandwich structured variant colony is the basic microstructural unit of the martensite. This structure is composed of twin related variants and possesses the full compatible inner variants interfaces and invariant habit planes. The deformation manner of the twin related variants result in the high occurrence frequency of the type II twins and affects the morphology of the sandwich colonies. The wedge-shaped structure is composed of two compatible sandwiches and conjoined by a midrib plane with a small atomic misfit. All these results indicate that the martensitic transformation is self-accommodated and the microstructure is determined by the self-accommodation of the microstructural constituents. The aim of this work is to provide fundamental crystallographic and microstructural information of NiMnSb alloys for interpreting their magnetic and mechanical characteristics associated with the martensitic transformation and further investigations on property optimization
Hirsch, Michael Robert. "Fretting behavior of AISI 301 stainless steel sheet in full hard condition." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24759.
Full textSargin, Irmak. "Effect Of Stress Assisted Aging On Superelastic Behavior Of A Hot-rolled Niti Shape Memory Alloy." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613184/index.pdf.
Full textJayaraman, Vikram. "Production, characterization and testing of Tempered Martensite Assisted Steels (TMAS) obtained via subcritical annealing of cold rolled TRIP steels." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=99769.
Full textIn current TRIP grades, the retained austenite particles present have to posses certain characteristics such as, optimum carbon concentration, optimum grain size and morphology etc. in order to account toward mechanical properties. Such limiting characteristics in turn minimize the processing window and make TRIP processing expensive and difficult to control. In this work, it is suggested that Tempered Martensite Assisted Steels (TMAS) obtained from TRIP steels via subcritical annealing of cold rolled TRIP steels may potentially replace TRIP steels. Relationship between the retained austenite volume fractions and mechanical properties was developed for TRIP steels. The effect of variation of retained austenite on tempered martensite volume fraction in TMAS, which in turn affect the mechanical properties was also investigated in depth. Results indicate that tempered martensite particles in TMAS do not have any limiting factors as in the case of RA in TRIP steels, in order to contribute toward enhancement of mechanical properties. Results also indicate that TMAS offers better strength levels compared to TRIP steels for same the level of formability.
Retained austenite volume fractions in TRIP steels were measured through XRD. Cold rolling of the samples was done in a laboratory scale rolling machine. The microstructures were analysed using conventional and color etching techniques. A new color etching technique for viewing all the four major phases in TRIP steel was developed in this work. The mechanical properties of both TRIP and TMAS were assessed by shear punch testing. And finally, the relationship between tempered martensite volume fraction and TMAS properties was developed and was compared to TRIP properties.
Yan, Haile. "Crystal structure, martensitic transformation crystallography, mechanical and magnetocaloric performance of Ni(Co)MnIn multifunctional alloys." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0105/document.
Full textNi-Mn-In based alloys have attracted considerable attention due to their multifunctional properties since its discovery in 2004, such as metamagnetic shape memory effect (MMSME), magnetocaloric effect (MCE) and magnetoresistance (MR) effect. However, some fundenmental knowledge on these alloys is still missing until now, such as crystal structure of martensite, crystallographic features of microstructure and magnetostructural transition. In this dissertation, the crystallographic features, mechanical behaviors and magnetic properties of Ni-Mn-In based alloys were studied theoretically and experimentally. First, the crystal structures of Ni-Mn-In alloys were accurately determined by Rietveld method in the frame of superspace theory (Chapter 3). Then, the microstructure of martensite (Chapter 4), such as variant organization and interface structure, and the crystallographic features of martensitic transformation, such as orientation relationship (OR), transformation strain path and geometrical compatibility between austenite and martensite, were systematically studied (Chapter 5). Finally, with this fundamental knowledge on Ni-Mn-In alloys, the behaviors and mechanisms of martensite variant rearrangement/ selection under two kinds of mechanical loading strategies, i.e. loading at martensite state and loading across the structural transition, and the effects of annealing on MCE and its related hysteresis loss were explored (Chapter 6). The main results are as follows. The modulated martensite has an incommensurate 6M crystal structure with superspace group I2/m(α0γ)00 that can be approximated by a three-fold superstructure model in the three-dimensional space. The microstructure of martensite is in plate shape and self-organized in colonies. Each colony has four distinct orientation variants. The maximum of 6 distinct colonies and 24 variants can be generated within one austenite grain. Although as many as 14 kinds of twin relations are suggested in the frame of crystallographic theories of martensitic transformation, only three types of twin relations are generally detected, i.e. type-I, type-II and compound twin. Variant interfaces are defined by their corresponding twinning plane K1 at mesoscopic scale. However, at atomic scale, the type-I twin has a coherent interface, whereas type-II and compound twins have “stepped” interfaces. Both the K-S and Pitsch ORs are appropriate to describe the lattice correspondence between austenite and martensite in Ni-Mn-In alloys. However, the strain path related to the Pitsch relation is evidenced to be the effective for the structural distortion. With the determined transformation path, the underlying mechanism of variant organization is revealed. Across the martensitic transformation, despite the existence of a relative wide stressed layer (around 20 nm), the habit plane is bordered by single martensite variant with austenite rather than the generally observed “sandwich-like” structure, implying a relative good geometrical compatibility between the corresponding phases. For compressive loading at martensite, variant arrangement is realized by the detwinning process. It is evidenced that a single variant state in some colonies can be obtained when the loading orientation is located in the common positive Schmid factor (SF) zone of the three detwinning systems. For loading across the structural transition, the prestrain is obtained by variant selection in which the number of colonies is significantly reduced and the variant organization within colony is greatly changed. The SF for transformation strain path is introduced to evaluate the possible selection of variants. Heat treatment can significantly enhance the magnetic entropy change ΔSM but simultaneously increase the magnetic hysteresis loss. For ΔSM, the chemical ordered degree should play a prominent role [...]
Wang, Fuming M. "XAFS study of solid-solid transitions under high pressure /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/9655.
Full textAydogmus, Tarik. "Processing And Characterization Of Porous Titanium Nickel Shape Memory Alloys." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612232/index.pdf.
Full textC resulting from Ni enrichment due to oxidation. By two step sintering processing (holding the sample at 1100 °
C for 30 minutes and subsequently sintering at temperatures higher than the eutectic temperature, 1118 °
C) magnesium may allow sintering probably up to the melting point of TiNi. The processed alloys exhibited interconnected (partially or completely depending on porosity content) open macro-pores spherical in shape and irregular micro-pores in the cell walls resulting from incomplete sintering. It has been found that porosity content of the foams have no influence on the phase transformation temperatures while deformation and oxidation are severely influential. Porous TiNi alloys displayed excellent superelasticity and shape memory behavior. Space holder technique seems to be a promising method for production of porous TiNi alloys. Desired porosity level, pore shape and accordingly mechanical properties were found to be easily adjustable.
Fernández, González Javier. "Desarrollo y caracterización del efecto doble memoria de forma obtenido mediante martensita estabilizada en aleaciones base cobre y de la fenomenología de envejecimiento." Doctoral thesis, Universitat de Barcelona, 1993. http://hdl.handle.net/10803/667557.
Full textPINEDO, CARLOS E. "Estudo morfologico e cinetico da nitretacao por plasma pulsado do aco inoxidavel martensitico AISI 420." reponame:Repositório Institucional do IPEN, 2000. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10826.
Full textMade available in DSpace on 2014-10-09T13:56:39Z (GMT). No. of bitstreams: 1 06912.pdf: 10380955 bytes, checksum: 3e22ae9dda613db66c72f121ed37b278 (MD5)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Zhang, Jiansheng. "Influence de la contrainte sur la transformation martensitique d'alliages Fe Ni C." Vandoeuvre-les-Nancy, INPL, 1993. http://www.theses.fr/1993INPL092N.
Full textLalire, Fanny. "Étude de la transformation martensitique et de la reversion de l’alliage PuGa 1at.%." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0308/document.
Full textThe δ-stabilized PuGa 1at.% is only in a metastable state and therefore is very sensitive to the external environment (phase transformation under thermal and mechanical loading). The originality of this work consists in a quantitative In Situ characterization of the δ → α' martensitic transformation (nature and amount of existing phases, evolution of lattice parameters and induced microstrains …) as well as a microstructural study conducted under different transformation conditions (temperature and mechanical loading). The isothermal character of the transformation kinetics in the PuGa 1at.% was confirmed. The analysis of the kinetics from the Pati and Cohen formalism gave the opportunity to investigate the mechanisms involved during the transformation (autocatalytic nucleation, interaction between the new variant formed and the matrix). Modifications induced in a stressed material (increase in temperature Ms, crystallographic orientation of transformation products) were calculated from the Patel and Cohen formalism. Microstructural numerical simulations were also performed in order to understand the effect of elastic interactions associated with transformation eigenstrain on the martensite plate morphology and plates arrangement in regard of the observations by SEM and OM. The direct confrontation of all results highlighted the large influence of accumulated stresses in the material during the transformation. Indeed, while an autocatalytic effect controls the first steps of the kinetic, an accumulation of unfavorable mechanical interactions occurs gradually explaining the partial nature of this transformation. The study of the martensitic transformation occurring at low temperature and under stresses was complemented by the study of its reversion into the δ phase in order to grasp the different mechanisms driving this reversion. This work shows the existence of competition between direct and indirect reversion modes, the latter being closely related to the mobility of gallium and to the thermodynamic stability of different phases of the alloy versus temperature
Zou, Naifu. "Deformation mechanisms of polycrystalline Ni-Mn-Ga alloy induced by mechanical and thermo-mechanical training." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0358.
Full textExternal field training is proven to be an effective way to improve the magnetic-field-induced strain (MFIS) in Ni-Mn-Ga Heusler type alloys by eliminating the unfavorable variants. To guide the training procedure, the training mechanisms of alloys with 5M or NM martensite have been investigated, whereas those for alloys with 7M martensite are not fully clarified. In this work, the mechanisms of mechanical and thermo-mechanical training were studied by analyzing the microstructure and crystallographic orientation evolution during these processes.Firstly, microstructure and crystallographic characterizations were performed on the as-annealed Ni50Mn30Ga20 alloy. 5 colonies transformed from one parent austenite grain were observed with each colony consisting of four variants with Type-I, Type-II and compound Transformation (TrF)-twin relations. By assuming an applied compressive load along the solidification direction (SD), 5 colonies could be divided into two groups with respect of the Schmid factor (SF) of detwinning systems of Type-I/Type-II TrF-twin of the in-colony variants: three of them have high SF and referred to as high SF colonies and the other two low SF colonies.Then unidirectional compression was performed on the alloy with the load applied along the SD. By characterizing the microstructure evolution and crystallographic orientation change, the deformation mechanisms were analyzed. The deformation in the early stage was mainly located in some band regions initiated from the high SF colonies and going through the low SF colonies. The detwinning of Type-II/Type-I TrF-twin occurred primarily in high SF colonies, resulting in the thickening of the favorable 7M variants at the expense of the adjacent variants. The twinning of Type-I/Type-II Deformation (DeF)-twin and shuffling systems of the variants in low SF colonies were activated, leading to the formation of new 7M variants and NM. The corresponding strains in the low SF colonies were highly coordinated with those in the high SF colonies allowing the formation of the deformation bands and the accommodation of the macroscopic strain. During the late stage, twinning of Type-I/Type-II DeF-twin and shuffling further progressed to coordinate the macroscopic strain. Reverse shuffling process was activated to accommodate the local deformation. The numbers of colony and variant were greatly reduced.The path and the product of martensitic transformation were also strongly affected by the imposed macroscopic deformation. Under a small load, austenite transformed to 5M martensite following both the Pitsch and a new OR rather than the self-accommodated 7M martensite under the Pitsch OR. With the increase of the applied load, austenite transformed almost simultaneously to 7M martensite under a new OR and 5M martensite. After the martensitic transformation, 5M further transformed to 7M martensite with the decrease of the temperature under the applied load. The martensitic transformation was modified by the external stress in terms of the transformation product and the transformation strain path to accommodate the imposed macroscopic deformation.This work offers new insights into the deformation mechanisms of the Ni-Mn-Ga alloys under unidirectional compression that are useful for the design of effective training procedures and provides new perspectives on further investigations of external field training on Ni-Mn-Ga alloys
Chai, Y. W. "Martensitic transformation in alloys." Thesis, University of Liverpool, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414833.
Full textChen, Zhenglin. "Modeling of Microstructure Evolution Induced by Surface Mechanical Attrition Treatment in TWIP/TRIP Steels." Thesis, Troyes, 2020. http://www.theses.fr/2020TROY0017.
Full textThis work focuses on modeling the microstructure evolution induced by SMAT in TWIP and/or TRIP steels. The features of the generated gradient microstructure of a 304L TWIP/TRIP steel are characterized by SEM, XRD, and nanoindentation. Nanoindentation is applied on different layers for the investigation of the mechanical properties of the gradient microstructure. Based on the experimental results, a dislocation density model considering the influence of twinning and martensitic transformation of TWIP/TRIP steel is proposed to investigate the effect of SMAT controlling parameters. Then the dislocation density of the austenite and that of the martensite as well as the volume fraction of twinning and martensitic transformation during impact loading is numerically evaluated using a full finite element model. Afterwards, to study the evolution of the damage during the SMAT process, the damage was introduced in the dislocation density model. Finally, a dislocation density based visco-elastoplastic model considering the effect of grain size, dislocation density, twin, and strain rate was proposed to further understand the effect of impact loadings on the mechanical properties of TWIP/TRIP steel with gradient microstructure based on the results of nanoindentation tests. Then to study the overall elastoplastic response of the SMATed material, the rule of mixtures is used by considering the gradient material as a gradient structure consisting of different layers with distinct microstructures and mechanical properties
Behrens, Gesa. "The martensitic transformation in zirconia." Case Western Reserve University School of Graduate Studies / OhioLINK, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=case1057156303.
Full textYahiaoui, Mustapha. "Durcissement superficiel d’aciers inoxydables austénitiques par jet d’azote cryogénique à hautes pressions." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0373.
Full textThis work focuses on the study of an original surface treatment technique that uses supercritical cryogenic nitrogen jet. This process was initially designed for environmentally friendly surface cleaning, where indeed such gas recycles in the air after operation. In the present work, this technique is implemented for surface hardening use without damage of the surface to be treated. Two types of operation cases are studied: static jet tool impingement, cinematic using jet tool scanning on the top surface. In fact, these two static and cinematic treatment cases can be used in industrial operations. In the first stage, the treatment was performed under static conditions in order to map the domains of use of the process. Variation of the experimental parameters (standoff distance and dwell time - treatment time-) made possible to define several uses of the nitrogen jet. In particular the hardening without any damage of the surface of the material to be treated such as AISI 316L stainless steel. Thus, the influence of the standoff distance and the dwell time on the evolution of surface microstructure and damage and hardening was studied. To quantify the effects of nitrogen jet on the microstructure, SEM (Scaning Electrons Microscope) observations and micro hardness measurements were carried out on the treated surfaces. As a result, for different conditions of treatment, the relationship between hardness and martensite rate during surface transformation process, is shown and plotted. Secondly, we focus on hardening without surface damage. The treatments were essentially carried out on both AISI 316L and AISI 304L metastable stainless steels. The influence of both torch velocity and jet static pressure on the variation of microstructure, martensite fractions and hardening level, was also studied and discussed. Thanks to both SEM/EBSD analysis and micro hardness measurements, the relationship between martensite rate and increase of hardness, is highlighted. It is also established that the treatment using several passes allows to increase the surface micro hardness without damage. Finally, it is found that, for some particular working parameters, the nitrogen jet process can also be used for surface hardening without martensitic transformation
Hoda, Sadat Emami Meibody. "Influence de la substitution du nickel sur les propriétés d’hydrogénation de TiNi pour des applications d’alliage à mémoire de forme et de batteries NiMH." Thesis, Paris Est, 2012. http://www.theses.fr/2012PEST1137.
Full textThe PhD thesis aims to improve shape memory and hydrogen storage properties of TiNi by chemical substitutions in the Ni sub-lattice. The effect of Pd, Cu and Co substitutions on crystal structure, martensitic transformation and hydrogenation properties of TiNi has been studied by structural (X-ray and neutron powder diffraction), calorimetric, solid-gas and electrochemical means. Ab initio DFT calculations were done to highlight electronic effects on hydrogenation properties. The three substitutions, TiNi1-zMz (M = Pd, Cu and Co; z ≤ 0.5), lead to the formation of pseudobinary compounds. Substitutions by Pd and Cu increase the unit-cell volume of TiNi, whereas the reverse effect occurs for Co. Martensitic transformation temperatures correlate with volume variations. They increase strongly for M = Pd and slightly for M = Cu, whereas M = Co decreases it. Hydrogenation properties are very sensitive to chemical elements substitution. The capacity decreases strongly for M = Pd, moderately for M = Cu and remains stable for M = Co. Contrary to expected effect by geometric model, both Pd and Cu substitutions decrease the stability of hydrides. DFT calculations show that electronic rather than geometric effects govern hydride stability for M = Pd. Co substitution induces step-wise formation of hydrides with a multi-plateau behaviour in pressure-composition isotherms. As concerns applications, low amount of Cu substitution (z =0.2) increases the electrochemical discharge capacity of TiNi from 150 to 300 mAh/g due to hydride destabilization. This opens new perspectives for using TiNi-based alloys in Ni-MH batteries. In contrast, Pd and high amount of Cu substitution (z = 0.5) are effective to decrease TiNi reactivity towards hydrogen, and therefore attractive for shape memory applications under reductive environment
Esham, Kathryn V. "The Effect of Nanoscale Precipitates on the Templating of Martensite Twin Microstructure in NiTiHf High Temperature Shape Memory Alloys." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1494251602171757.
Full text