Journal articles on the topic 'Martian regolith'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Martian regolith.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kim, M.-H. Y., S. A. Thibeault, J. W. Wilson, et al. "Development and Testing of in situ Materials for Human Exploration of Mars." High Performance Polymers 12, no. 1 (2000): 13–26. http://dx.doi.org/10.1088/0954-0083/12/1/302.
Full textOze, Christopher, Joshua Beisel, Edward Dabsys, et al. "Perchlorate and Agriculture on Mars." Soil Systems 5, no. 3 (2021): 37. http://dx.doi.org/10.3390/soilsystems5030037.
Full textKaksonen, Anna H., Xiao Deng, Christina Morris, Himel Nahreen Khaleque, Luis Zea, and Yosephine Gumulya. "Potential of Acidithiobacillus ferrooxidans to Grow on and Bioleach Metals from Mars and Lunar Regolith Simulants under Simulated Microgravity Conditions." Microorganisms 9, no. 12 (2021): 2416. http://dx.doi.org/10.3390/microorganisms9122416.
Full textHarris, Franklin, John Dobbs, David Atkins, James A. Ippolito, and Jane E. Stewart. "Soil fertility interactions with Sinorhizobium-legume symbiosis in a simulated Martian regolith; effects on nitrogen content and plant health." PLOS ONE 16, no. 9 (2021): e0257053. http://dx.doi.org/10.1371/journal.pone.0257053.
Full textShumway, Andrew O., David C. Catling, and Jonathan D. Toner. "Regolith Inhibits Salt and Ice Crystallization in Mg(ClO4)2 Brine, Implying More Persistent and Potentially Habitable Brines on Mars." Planetary Science Journal 4, no. 8 (2023): 143. http://dx.doi.org/10.3847/psj/ace891.
Full textSakon, John J., and Robert L. Burnap. "An analysis of potential photosynthetic life on Mars." International Journal of Astrobiology 5, no. 2 (2006): 171–80. http://dx.doi.org/10.1017/s1473550406003144.
Full textSimonsen, L. C., J. E. Nealy, L. W. Townsend, and J. W. Wilson. "Martian regolith as space radiation shielding." Journal of Spacecraft and Rockets 28, no. 1 (1991): 7–8. http://dx.doi.org/10.2514/3.26201.
Full textSeiferlin, Karsten, Pascale Ehrenfreund, James Garry, et al. "Simulating Martian regolith in the laboratory." Planetary and Space Science 56, no. 15 (2008): 2009–25. http://dx.doi.org/10.1016/j.pss.2008.09.017.
Full textJackiewicz, E., M. Lukasiak, M. Kopcewicz, K. Szpila, and N. Bakun-Czubarow. "Mössbauer study of Martian regolith analogues." Hyperfine Interactions 70, no. 1-4 (1992): 993–96. http://dx.doi.org/10.1007/bf02397495.
Full textRahim, Abdur, Umair Majeed, Muhammad Irfan Zubair, and Muhammad Shahzad. "WNMS: A New Basaltic Simulant of Mars Regolith." Sustainability 15, no. 18 (2023): 13372. http://dx.doi.org/10.3390/su151813372.
Full textKasiviswanathan, Pooja, Elizabeth D. Swanner, Larry J. Halverson, and Paramasivan Vijayapalani. "Farming on Mars: Treatment of basaltic regolith soil and briny water simulants sustains plant growth." PLOS ONE 17, no. 8 (2022): e0272209. http://dx.doi.org/10.1371/journal.pone.0272209.
Full textFackrell, Laura E., Paul A. Schroeder, Aaron Thompson, Karen Stockstill-Cahill, and Charles A. Hibbitts. "Development of martian regolith and bedrock simulants: Potential and limitations of martian regolith as an in-situ resource." Icarus 354 (January 2021): 114055. http://dx.doi.org/10.1016/j.icarus.2020.114055.
Full textHedayati, Reza, and Victoria Stulova. "3D Printing of Habitats on Mars: Effects of Low Temperature and Pressure." Materials 16, no. 14 (2023): 5175. http://dx.doi.org/10.3390/ma16145175.
Full textWamelink, G. W. W., J. Y. Frissel, W. H. J. Krijnen, and M. R. Verwoert. "Crop growth and viability of seeds on Mars and Moon soil simulants." Open Agriculture 4, no. 1 (2019): 509–16. http://dx.doi.org/10.1515/opag-2019-0051.
Full textMartikainen, Julia, Olga Muñoz, Teresa Jardiel, et al. "Optical Constants of Martian Dust Analogs at UV–Visible–Near-infrared Wavelengths." Astrophysical Journal Supplement Series 268, no. 2 (2023): 47. http://dx.doi.org/10.3847/1538-4365/acf0be.
Full textPacelli, Claudia, Alessia Cassaro, Lorenzo Aureli, Ralf Moeller, Akira Fujimori, and Silvano Onofri. "The Responses of the Black Fungus Cryomyces Antarcticus to High Doses of Accelerated Helium Ions Radiation within Martian Regolith Simulants and Their Relevance for Mars." Life 10, no. 8 (2020): 130. http://dx.doi.org/10.3390/life10080130.
Full textFabian, A., C. Krauss, A. Sickafoose, M. Horanyi, and S. Robertson. "Measurements of electrical discharges in Martian regolith simulant." IEEE Transactions on Plasma Science 29, no. 2 (2001): 288–91. http://dx.doi.org/10.1109/27.923710.
Full textRamkissoon, Nisha K., Victoria K. Pearson, Susanne P. Schwenzer, et al. "New simulants for martian regolith: Controlling iron variability." Planetary and Space Science 179 (December 2019): 104722. http://dx.doi.org/10.1016/j.pss.2019.104722.
Full textEichler, A., N. Hadland, D. Pickett, et al. "Challenging the agricultural viability of martian regolith simulants." Icarus 354 (January 2021): 114022. http://dx.doi.org/10.1016/j.icarus.2020.114022.
Full textVakkada Ramachandran, Abhilash, María-Paz Zorzano, and Javier Martín-Torres. "Experimental Investigation of the Atmosphere-Regolith Water Cycle on Present-Day Mars." Sensors 21, no. 21 (2021): 7421. http://dx.doi.org/10.3390/s21217421.
Full textRaúl G, Cuero. "Martian soil as a potential source of nanoparticles: Study using martian regolith simulant." Frontiers in Nanoscience and Nanotechnology 2, no. 2 (2016): 91–99. http://dx.doi.org/10.15761/fnn.1000115.
Full textBoxe, C. S., K. P. Hand, K. H. Nealson, Y. L. Yung, A. S. Yen, and A. Saiz-Lopez. "Adsorbed water and thin liquid films on Mars." International Journal of Astrobiology 11, no. 3 (2012): 169–75. http://dx.doi.org/10.1017/s1473550412000080.
Full textMenlyadiev, Marlen, Bryana L. Henderson, Fang Zhong, Ying Lin, and Isik Kanik. "Extraction of amino acids using supercritical carbon dioxide forin situastrobiological applications." International Journal of Astrobiology 18, no. 2 (2018): 102–11. http://dx.doi.org/10.1017/s147355041800006x.
Full textBarkatt, Aaron, and Masataka Okutsu. "Obtaining elemental sulfur for Martian sulfur concrete." Journal of Chemical Research 46, no. 2 (2022): 174751982210807. http://dx.doi.org/10.1177/17475198221080729.
Full textNoe Dobrea, E. Z., J. F. Bell, M. J. Wolff, and K. D. Gordon. "H2O- and OH-bearing minerals in the martian regolith:." Icarus 166, no. 1 (2003): 1–20. http://dx.doi.org/10.1016/s0019-1035(03)00208-2.
Full textGori, Fabio, and Sandra Corasaniti. "Detection of a dry–frozen boundary inside Martian regolith." Planetary and Space Science 56, no. 8 (2008): 1093–102. http://dx.doi.org/10.1016/j.pss.2008.02.003.
Full textAudouard, Joachim, François Poulet, Mathieu Vincendon, et al. "Water in the Martian regolith from OMEGA/Mars Express." Journal of Geophysical Research: Planets 119, no. 8 (2014): 1969–89. http://dx.doi.org/10.1002/2014je004649.
Full textMaurel, Alexis, Ana Cristina Martinez, Pedro Cortes, et al. "3D Printing of Batteries from Lunar and Martian Regolith." ECS Meeting Abstracts MA2023-01, no. 56 (2023): 2724. http://dx.doi.org/10.1149/ma2023-01562724mtgabs.
Full textRao, M. "Neutron Capture Isotopes in the Martian Regolith and Implications for Martian Atmospheric Noble Gases." Icarus 156, no. 2 (2002): 352–72. http://dx.doi.org/10.1006/icar.2001.6809.
Full textYin, Kexin, Jiangxin Liu, Jiaxing Lin, Andreea-Roxana Vasilescu, Khaoula Othmani, and Eugenia Di Filippo. "Interface Direct Shear Tests on JEZ-1 Mars Regolith Simulant." Applied Sciences 11, no. 15 (2021): 7052. http://dx.doi.org/10.3390/app11157052.
Full textNénon, Q., A. R. Poppe, A. Rahmati, and J. P. McFadden. "Implantation of Martian atmospheric ions within the regolith of Phobos." Nature Geoscience 14, no. 2 (2021): 61–66. http://dx.doi.org/10.1038/s41561-020-00682-0.
Full textJach, K., J. Leliwa-Kopystyński, A. Morka, et al. "Modifications of Martian ice-saturated regolith due to meteoroid impact." Advances in Space Research 23, no. 11 (1999): 1933–37. http://dx.doi.org/10.1016/s0273-1177(99)00275-6.
Full textGarry, James R. C., Inge Loes ten Kate, Zita Martins, Per Nørnberg, and Pascale Ehrenfreund. "Analysis and survival of amino acids in Martian regolith analogs." Meteoritics & Planetary Science 41, no. 3 (2006): 391–405. http://dx.doi.org/10.1111/j.1945-5100.2006.tb00470.x.
Full textPavlov, A. K., V. N. Shelegedin, M. A. Vdovina, and A. A. Pavlov. "Growth of microorganisms in Martian-like shallow subsurface conditions: laboratory modelling." International Journal of Astrobiology 9, no. 1 (2009): 51–58. http://dx.doi.org/10.1017/s1473550409990371.
Full textPatel, M. R., A. Bérces, C. Kolb, et al. "Seasonal and diurnal variations in Martian surface ultraviolet irradiation: biological and chemical implications for the Martian regolith." International Journal of Astrobiology 2, no. 1 (2003): 21–34. http://dx.doi.org/10.1017/s1473550402001180.
Full textGleaton, Jason, Zhengshou Lai, Rui Xiao, Ke Zhang, Qiushi Chen, and Yi Zheng. "Optimization of mechanical strength of biocemented Martian regolith simulant soil columns." Construction and Building Materials 315 (January 2022): 125741. http://dx.doi.org/10.1016/j.conbuildmat.2021.125741.
Full textDikshit, Rashmi, Nitin Gupta, Arjun Dey, Koushik Viswanathan, and Aloke Kumar. "Microbial induced calcite precipitation can consolidate martian and lunar regolith simulants." PLOS ONE 17, no. 4 (2022): e0266415. http://dx.doi.org/10.1371/journal.pone.0266415.
Full textZent, Aaron P. "On the thickness of the oxidized layer of the Martian regolith." Journal of Geophysical Research: Planets 103, E13 (1998): 31491–98. http://dx.doi.org/10.1029/98je01895.
Full textWittmann, Axel, Randy L. Korotev, Bradley L. Jolliff, et al. "Petrography and composition of Martian regolith breccia meteorite Northwest Africa 7475." Meteoritics & Planetary Science 50, no. 2 (2015): 326–52. http://dx.doi.org/10.1111/maps.12425.
Full textZent, Aaron P., Fraser P. Fanale, and Susan E. Postawko. "Carbon dioxide: Adsorption on palagonite and partitioning in the Martian regolith." Icarus 71, no. 2 (1987): 241–49. http://dx.doi.org/10.1016/0019-1035(87)90149-7.
Full textMarshall, Jason P., Troy L. Hudson, and José E. Andrade. "Experimental Investigation of InSight HP3 Mole Interaction with Martian Regolith Simulant." Space Science Reviews 211, no. 1-4 (2017): 239–58. http://dx.doi.org/10.1007/s11214-016-0329-1.
Full textGunderson, Kurt, Benjamin Lüthi, Patrick Russell, and Nicolas Thomas. "Visible/NIR photometric signatures of liquid water in Martian regolith simulant." Planetary and Space Science 55, no. 10 (2007): 1272–82. http://dx.doi.org/10.1016/j.pss.2007.03.004.
Full textShiwei, Ng, Stylianos Dritsas, and Javier G. Fernandez. "Martian biolith: A bioinspired regolith composite for closed-loop extraterrestrial manufacturing." PLOS ONE 15, no. 9 (2020): e0238606. http://dx.doi.org/10.1371/journal.pone.0238606.
Full textFanale, Fraser P., and James R. Salvail. "Quasi-periodic Atmosphere-Regolith-Cap CO2 Redistribution in the Martian Past." Icarus 111, no. 2 (1994): 305–16. http://dx.doi.org/10.1006/icar.1994.1147.
Full textBöttger, H. M., S. R. Lewis, P. L. Read, and F. Forget. "The effects of the martian regolith on GCM water cycle simulations." Icarus 177, no. 1 (2005): 174–89. http://dx.doi.org/10.1016/j.icarus.2005.02.024.
Full textDotson, B., D. Sanchez Valencia, C. Millwater, et al. "Cohesion and shear strength of compacted lunar and Martian regolith simulants." Icarus 411 (March 2024): 115943. http://dx.doi.org/10.1016/j.icarus.2024.115943.
Full textPajares, Arturo, Pablo Guardia, Vladimir Galvita, Melchiorre Conti, Jasper Lefevere, and Bart Michielsen. "CO2 conversion over Martian and Lunar regolith simulants for extraterrestrial applications." Journal of CO2 Utilization 81 (March 2024): 102729. http://dx.doi.org/10.1016/j.jcou.2024.102729.
Full textCorrias, Gianluca, Roberta Licheri, Roberto Orrù, and Giacomo Cao. "Self-Propagating High-Temperature Synthesis Reactions for ISRU and ISFR Applications." Eurasian Chemico-Technological Journal 13, no. 3-4 (2010): 137. http://dx.doi.org/10.18321/ectj77.
Full textOliver, James A. W., Matthew Kelbrick, Nisha K. Ramkissoon, et al. "Sulfur Cycling as a Viable Metabolism under Simulated Noachian/Hesperian Chemistries." Life 12, no. 4 (2022): 523. http://dx.doi.org/10.3390/life12040523.
Full textVezzola, Michele, Solveig Tosi, Enrico Doria, Mattia Bonazzi, Matteo Alvaro, and Alessio Sanfilippo. "Interaction between a Martian Regolith Simulant and Fungal Organic Acids in the Biomining Perspective." Journal of Fungi 9, no. 10 (2023): 976. http://dx.doi.org/10.3390/jof9100976.
Full text