Academic literature on the topic 'Maskininlärning'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Maskininlärning.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Maskininlärning"

1

Pettersson, Gustav, and John Almqvist. "Lavinprognoser och maskininlärning : Att prediktera lavinprognoser med maskininlärning och väderdata." Thesis, Uppsala universitet, Institutionen för informatik och media, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-387205.

Full text
Abstract:
Denna forskningsansats undersöker genomförbarheten i att prediktera lavinfara med hjälp av ma-skininlärning i form avXGBoostoch väderdata. Lavinprognoser och meterologisk vädermodelldata harsamlats in för de sex svenska fjällområden där Naturvårdsveket genomlavinprognoser.sepublicerar lavin-prognoser. Lavinprognoserna har hämtats frånlavinprognoser.seoch den vädermodelldata som användsär hämtad från prognosmodellen MESAN, som produceras och tillhandahålls av Sveriges meteorologiskaoch hydrologiska institut. 40 modeller av typenXGBoosthar sedan tränats på denna datamängd, medsyfte att prediktera olika aspekter av en lavinprognos och den övergripande lavinfaran. Resultaten visaratt det möjligt att prediktera den dagligalavinfaranunder säsongen 2018/19 i Södra Jämtlandsfjällenmed en träffsäkerhet på 71% och enmean average errorpå 0,295, genom att applicera maskininlärningpå väderleken för det området. Värdet avXGBoosti sammanhanget har styrkts genom att jämföradessa resultat med resultaten från den enklare metoden logistisk regression, vilken uppvisade en sämreträffsäkerhet på 56% och enmean average errorpå 0,459. Forskningsansatsens bidrag är ett ”proof ofconcept” som visar på genomförbarheten av att med hjälp av maskininlärning och väderdata predikteralavinprognoser.
This research project examines the feasibility of using machine learning to predict avalanche dangerby usingXGBoostand openly available weather data. Avalanche forecasts and meterological modelledweather data have been gathered for the six areas in Sweden where Naturvårdsverket throughlavin-prognoser.seissues avalanche forecasts. The avanlanche forecasts are collected fromlavinprognoser.seand the modelled weather data is collected from theMESANmodel, which is produced and providedby the Swedish Meteorological and Hydrological Institute. 40 machine learning models, in the form ofXGBoost, have been trained on this data set, with the goal of assessing the main aspects of an avalan-che forecast and the overall avalanche danger. The results show it is possible to predict the day to dayavalanche danger for the 2018/19 season inSödra Jämtlandsfjällenwith an accuracy of 71% and a MeanAverage Error of 0.256, by applying machine learning to the weather data for that region. The contribu-tion ofXGBoostin this context, is demonstrated by applying the simpler method ofLogistic Regressionon the data set and comparing the results. Thelogistic regressionperforms worse with an accuracy of56% and a Mean Average Error of 0.459. The contribution of this research is a proof of concept, showingfeasibility in predicting avalanche danger in Sweden, with the help of machine learning and weather data.
APA, Harvard, Vancouver, ISO, and other styles
2

Ermakova, Natalia, and Alicia Bråtner. "Maskininlärning och kvantmekanik." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255825.

Full text
Abstract:
Syftet med rapporten är att redovisa för hur maskininlärning kan användas för att approximera grundtillståndsenergin av kvantsystemet som motsvaras av partikeln i en låda. Ett nätverk med radialbasfunktioner har använts med nätverket som en representation av variationsvågfunktionen. Vikterna i nätverket har uppdaterats så att väntevärdet av energin minimeras. Energiminimeringen har utförts med hjälp av variations-Monte Carlo-metoden. Lösningsmetoden som presenteras har gett en bra approximation för grundtillståndsenergin av partikeln i en låda. Metoden fungerar också när en störning i form av en linjär potential är tillagd till systemet.
This thesis aims to use machine learning to solve for the ground state energy of the quantum system corresponding to the particle in a box. A radial basis function (RBF) network is used with Gaussian functions as the variational wave function. The weights in the network are updated so that the energy expectation value is minimized, which is carried out by using the variational Monte Carlo (VMC) method. The method using machine learning succeeds in finding the ground state energy for the particle in a box. The method also works when a perturbation in the form of a linear potential is added to the infinite potential well.
APA, Harvard, Vancouver, ISO, and other styles
3

Axelsson, Filip, and Marcus Jirwe. "Maskininlärning för kvantmekaniska problem." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255698.

Full text
Abstract:
I den här artikeln undersökts hurvida maskininlärning kan vara till hjälp för att lösa fysika-liska problem. Detta undersöks genom att ett artificiellt neuralt nätverk implementeras ochtränas upp för att hitta energinivåerna för den harmoniska oscillatorn med och utan elekt-riskt fält. För att skapa nätverket användes radiella basfunktioner. Monte Carlo-metoderanvändes för stora beräkningar. Metoden visade sig fungera väl i vissa sammanhang menhade problem för stora elektriska fält. De problem som uppstod var att konvergensen blevinstabil med hopp i energin och att systemet inte alltid konvergerade mot rätt energi.
In this article we analyze whether machine learning can be used to help solve problemsin physics. This is examined by implementing an artificial neural network which is trainedto find the energy levels for the quantum harmonic oscillator with and without an externalelectric field. Radial basis functions were used to make the neural network. Monte Carlomethods were used for heavy calculations. The method was shown to work well in somecases but had problems for large electric fields. The problems that occured were that theconvergence became unstable, with leaps in the energy and that the system did not alwaysconverge to the right energy level.
APA, Harvard, Vancouver, ISO, and other styles
4

L, Thunberg Christian, and Niklas Mannerskog. "Stochastic Gradient Descent inom Maskininlärning." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254799.

Full text
Abstract:
Vissa problem som för människor är enkla att lösa, till exempel: att känna igen siffror och sagda ord, är svårt att implementera i datorprogram. Till exempel, den mänskliga intuitionen att känna igen siffran åtta ’’\textit{8}’’ är att notera två slingor ovanpå varandra, detta visar sig vara svårt att representera som en algoritm. Med maskininlärning är det möjligt att angripa problemet på ett nytt, enklare, sätt där datorprogrammet lärs att känna igen utformningar som datorprogrammet drar slutsatser från. I denna kandidatuppsats implementeras ett sifferigenkänningsprogram och parametrarna i ’’stochastic gradient descent’’ analyseras i deras påverkan av programmets beräkningshastighet och träffsäkerhet. Dessa parametrar är ’’learning rate’’ $\Delta t$ och ’’batch size’’ $N$. Det implementerade programmet för sifferigenkänning hade en träffsäkerhet på omkring 95 \% när det testades och tiden per iteration var konstant under träningen av programmet, samtidigt som den ökade linjärt med ökad batch size. Låga learning rates resulterade i låg men stadig konvergens medans större resulterade i snabbare men mer instabil konvergens. Större batch sizes förbättrade konvergensen men på bekostnad av längre beräkningstid.
Some tasks, like recognizing digits and spoken words, are simple for humans to complete yet hard to solve for computer programs. For instance the human intuition behind recognizing the number eight, ''\textit{8}'', is to identify two loops on top of each other and it turns out this is not easy to represent as an algorithm. With machine learning one can tackle the problem in a new, easier, way where the computer program learns to recognize patterns and make conclusions from them. In this bachelor thesis a digit recognizing program is implemented and the parameters of the stochastic gradient descent optimizing algorithm are analyzed based on how their effect on the computation speed and accuracy. These parameters being the learning rate $\Delta t$ and batch size $N$. The implemented digit recognizing program yielded an accuracy of around $95$ \% when tested and the time per iteration stayed constant during the training session and increased linearly with batch size. Low learning rates yielded a slower rate of convergence while larger ones yielded faster but more unstable convergence. Larger batch sizes also improved the convergence but at the cost of more computational power.
APA, Harvard, Vancouver, ISO, and other styles
5

Vestberg, Albin. "Modellering av åsiktsdynamik med maskininlärning." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255690.

Full text
Abstract:
Åsiktsdynamik handlar om hur åsikter hos personer, även kallade agenter, i en grupp förändras med tiden. Syftet med arbetet var att ta reda på om det är möjligt att använda maskininlärning med artificiella neuronnät för att utifrån ett givet initialtillstånd beräkna hur åsiktsdynamiken kommer se ut för agenterna i gruppen. Tusentals initialtillstånd för agenternas åsikter slumpades fram och dynamiken beräknades enligt en modell från R. Hegselmann och U. Krause. De beräknade lösningarna användes sedan som data för träning av artificiella neuronnät. När de tränade neuronnäten sedan användes på helt nya initialtillstånd kunde dessa, med varierande resultat beroende på metod och antal agenter, återskapa åsiktsdynamiken och ge lösningar som låg nära de rätta lösningarna. Antalet agenter som undersöktes var mellan två och tio. Bäst resultat blev det när grupper med två agenter undersöktes. Ju fler agenter som fanns i gruppen desto större blev felen i lösningarna med maskininlärning, men lösningarna hade ändå tillräckligt små fel för att de kan anses ha lyckats med att återskapa åsiktsdynamiken.
Opinion dynamics is about how opinions of people, also called agents, in a group changes in time. The aim of this report was to find out if it is possible to use machine learning with artificial neural networks to, from a given initial condition, compute the opinion dynamics for the agents in the group. Thousands of random initial conditions were generated and the dynamics were calculated using a model from R. Hegselmann and U. Krause. The solutions were then used as data to train artificial neural networks. When the trained neural networks were used on new initial conditions it was found that these could, with varying results depending on the method and number of agents, recreate the opinion dynamics and give answers that were close to the real solutions. The number of agents used were between two and ten. The best results were obtained when groups with two agents were examined. When the number of agents increased the errors in the solutions with machine learning also increased, but the errors were still small enough so that the solutions can be considered as good recreations of the opinion dynamics.
APA, Harvard, Vancouver, ISO, and other styles
6

Holmäng, Arvid, and Grothusen Axel von. "Intäktsestimering med hjälp av Maskininlärning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299340.

Full text
Abstract:
Detta arbete undersöker möjligheten att estimera intäkter för företag med hjälp av maskininlärning. Datan som modellerna utgår ifrån består av punkter från bolagens balansräkningar och annan offentlig data. Eftersom frågeställningen som arbetet utreder ar outforskad sedan tidigare ligger arbetets huvudsakliga fokus på att utforska vilka metoder som är mest lämpliga för uppgiften samt vilka särdrag i datasetet som har störst inverkan på modellerna. I arbetet utreds frågan med hjälp av fyra olika modeller; Random Forest regression, XGBoost, Minstakvadratmetoden och Lasso. Modellerna utvärderades med kvantitativa mättal såsom R2-varde och absoluta genomsnittliga procentuella felet (MAPE). Den algoritm och slutgiltiga modell som presterade bast utifrån dessa mått var Random Forest regression med genomsnittligt R2-score på 0,8197 och MAPE-score på 0.3864. Denna studie drar slutsatsen att ensemble metoder som XGBoost och Random Forest troligtvis ar mer lämpliga att använda för denna typ av studier i jämförelse med simplare regressionsmodeller såsom Minstakvadratmetoden och Lasso. Avslutningsvis dras slutsatsen att modellerna kan bidra till beslutsunderlaget vid utvärdering av bolag för vilka intäkterna är ok ända.
This work examines the possibility of estimating revenue for companies using machine learning. The data on which the models are based consists of points from the companies’ balance sheets and other public data. Since the research area is unexplored prior to this study, the main focus of this thesis is to explore which methods are most suitable for the task and which features in the dataset have the greatest impact on the models. In the study, the issue is investigated with the help of four different models; Random Forest regression, XGBoost, ordinary least squares method and Lasso. The models were evaluated with quantitative measures such as R2 score and mean absolute percentage error (MAPE). The algorithm and final model that performed best based on these measures were Random Forest regression with an average R2 score of 0,8197 and MAPE score of 0.3864. This study concludes that ensemble methods such as XGBoost and Random Forest are probably more suitable to use for this type of study compared to simpler regression models such as least squares method and Lasso. In conclusion, the models can contribute to the initial financial analysis of companies for which the income is unknown.
APA, Harvard, Vancouver, ISO, and other styles
7

Dyremark, Johanna, and Caroline Mayer. "Bedömning av elevuppsatser genom maskininlärning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-262041.

Full text
Abstract:
Betygsättning upptar idag en stor del av lärares arbetstid och det finns en betydande inkonsekvens vid bedömning utförd av olika lärare. Denna studie ämnar undersöka vilken träffsäkerhet som en automtiserad bedömningsmodell kan uppnå. Tre maskininlärningsmodeller för klassifikation i form av Linear Discriminant Analysis, K-Nearest Neighbor och Random Forest tränas och testas med femfaldig korsvalidering på uppsatser från nationella prov i svenska. Klassificeringen baseras på språk och formrelaterade attribut inkluderande ord och teckenvisa längdmått, likhet med texter av olika formalitetsgrad och grammatikrelaterade mått. Detta utmynnar i ett maximalt quadratic weighted kappa-värde på 0,4829 och identisk överensstämmelse med expertgivna betyg i 57,53 % av fallen. Dessa resultat uppnåddes av en modell baserad på Linear Discriminant Analysis och uppvisar en högre korrelation med expertgivna betyg än en ordinarie lärare. Trots pågående digitalisering inom skolväsendet kvarstår ett antal hinder innan fullständigt maskininlärningsbaserad bedömning kan realiseras, såsom användarnas inställning till tekniken, etiska dilemman och teknikens svårigheter med förståelse av semantik. En delvis integrerad automatisk betygssättning har dock potential att identifiera uppsatser där behov av dubbelrättning föreligger, vilket kan öka överensstämmelsen vid storskaliga prov till en låg kostnad.
Today, a large amount of a teacher’s workload is comprised of essay scoring and there is a large variability between teachers’ gradings. This report aims to examine what accuracy can be acceived with an automated essay scoring system for Swedish. Three following machine learning models for classification are trained and tested with 5-fold cross-validation on essays from Swedish national tests: Linear Discriminant Analysis, K-Nearest Neighbour and Random Forest. Essays are classified based on 31 language structure related attributes such as token-based length measures, similarity to texts with different formal levels and use of grammar. The results show a maximal quadratic weighted kappa value of 0.4829 and a grading identical to expert’s assessment in 57.53% of all tests. These results were achieved by a model based on Linear Discriminant Analysis and showed higher inter-rater reliability with expert grading than a local teacher. Despite an ongoing digitilization within the Swedish educational system, there are a number of obstacles preventing a complete automization of essay scoring such as users’ attitude, ethical issues and the current techniques difficulties in understanding semantics. Nevertheless, a partial integration of automatic essay scoring has potential to effectively identify essays suitable for double grading which can increase the consistency of large-scale tests to a low cost.
APA, Harvard, Vancouver, ISO, and other styles
8

Jansson, Christofer, and Sebastian Karlsson. "Maskininlärning inom bokförings- och faktureringssystem." Thesis, Linnéuniversitetet, Institutionen för informatik (IK), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-66841.

Full text
Abstract:
The study has a purpose designed to investigate within which framework automation of accounting and billing systems processes is possible through machine learning, as a result of providing guidance for when and where an implementation is relevant in the systems. For the study, a data collection has been carried out on a company that offers accounting and billing systems and works within the machine learning area. Interviews have been made at the company conducted to capture relevant empirical results. Aspects categorized from collected data are presented in possibilities, implementation, ethics and alternative approaches. Together with literature studies, the empirical categories have been analyzed and four frameworks identified. The frameworks identified are: competitiveness, technical factors, knowledge and skills as well as impact on occupational groups.Each frame contains information and examples of factors that should be considered. Companies can investigate important aspects of when and where an implementation of machine learning is possible and relevant in accounting and billing systems.
Studien har ett utformat syfte som handlar om att undersöka inom vilka ramar automatisering av processer inom bokförings- och faktureringssystem är möjligt med hjälp av maskininlärning, med anledning av att skapa en vägledning för när och var en implementation är relevant i systemen. För studien har en datainsamling utförts på ett företag som erbjuder bokförings- och faktureringssystem samt arbetar med maskininlärning för området. Hos verksamheten har intervjuer utförts för att fånga in relevant empiri som resultat. Aspekter som kategoriserats från insamlad data presenteras i möjligheter, implementering, etik och alternativa tillvägagångssätt. Tillsammans med litteraturstudier har kategorierna ur empirin analyserats och fyra ramar identifierats. Ramarna som identifierats är följande: konkurrenskraft, tekniska faktorer, kunskap och kompetens samt påverkan på yrkesgrupper.Varje ram innehåller information och exempel på faktorer som bör beaktas. Företag kan med hjälp av ramarna utreda viktiga aspekter gällande när och var en implementation av maskininlärning är möjlig och relevant i bokförings- och faktureringssystem.
APA, Harvard, Vancouver, ISO, and other styles
9

Ogeborg, Marcus, and Vincent Widerberg. "Schemaläggning med hjälp av maskininlärning." Thesis, KTH, Data- och elektroteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-208936.

Full text
Abstract:
Detta arbete har utvärderat om maskininlärning kan tillföra nytta vid schemaplanering.Utvärderingen baserades på tester där prototyper använde arbetskalendrar föratt träna och mäta sin prediktiva förmåga. Kalendrarna tillhandahölls från två service-och installationsbolag i Stockholmsområdet. Genom att testa vilka utförandetiderprototyperna krävde utvärderades om tillämpningen skulle vara praktiskt användbarpå arbetsverktyg som exempelvis smartphones.Totalt utvecklades tre prototyper som gjordes prediktiva med hjälp av algoritmernaDensity-based Spatial Clustering of Applications with Noise (DBSCAN), LogisticRegression och Weighted K-Nearest Neighbors (wKNN). Resultatet visade attDBSCAN var den algoritm som sammantaget presterade bäst. Dock kunde inte enslutsats dras om maskininlärning skulle vara användbart. Andelen lyckade prediktioneröverskred inte andelen tillgängliga tider på de berörda dagarna som testernautfördes, vilket antogs vara ett otillfredsställande resultat. Datahanteringen krävdeen betydande mängd resurser, vilket skulle kunna vara ett problem vid praktisk tilllämpning.
This study has been analyzing if machine learning could be useful to work-relatedscheduling. The analysis was based on predictions generated by prototypes usingbusiness calendars. The business calendars were collected from two service and installationcompanies in the Stockholm region. An analysis was conducted regardingif the application could be practically applied to devices such as a smartphone. Theanalysis was based on tests regarding the prototypes required time to perform theirtasks.Three prototypes were developed with algorithms that made them predictive. Density-based Spatial Clustering of Applications with Noise (DBSCAN), Logistic Regressionand Weighted K-Nearest Neighbors (wKNN) were the implemented algorithms.DBSCAN was the best-performing algorithm according to the tests. However, a conclusioncould not be found concerning whether machine learning could be useful.The number of successful predictions did not exceed the number of available timeson concerned days, which was assumed as unsatisfying results. In addition, the prototypesneeded a significant amount of resources which could be a problem in practicaluse.
APA, Harvard, Vancouver, ISO, and other styles
10

Fürsten, Cardell Joshua, and Maya Källström. "Maskininlärning inom digital marknadsföring : En studie om hur maskininlärning hjälper eller stjälper digitala marknadsföringsbyråer, och vilka faktorer som bör tas i beaktning vid användning av maskininlärning." Thesis, Södertörns högskola, Medieteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-44948.

Full text
Abstract:
Problem: Although AI tools have come to facilitate and influence digital marketing in several ways, there is a continuing need for research on how AI can alleviate marketing problems and how the use of AI tools for marketing purposes can be facilitated for digital marketing agencies.  Purpose: The purpose of the study is to demonstrate how and why machine learning can both benefit and harm digital marketing agencies, as well as what factors digital marketing agencies need to take into account if they intend to use machine learning in digital marketing. Method: The study is based on a qualitative research strategy, with an inductive approach where six semi-structured interviews were conducted. Semi-structured interviews have been conducted to create flexibility in the individual being interviewed, and thus new insights and thoughts can arise. Thematic analysis has been used as an analysis method for the study, where the focus was aimed on identifying patterns and themes. Conclusion: Machine learning can benefit digital marketing agencies in digital marketing by streamlining work procedures by processing data and information, freeing up time for employees and also gaining the opportunity to achieve competitive advantage. Machine learning can harm digital marketing agencies in digital marketing by excluding human participants in the work system, reducing trust in the organization and creating discomfort with active personalization if used unethically. Factors that should be taken into account by digital marketing agencies if they intend to use machine learning in digital marketing are, that digital marketing agencies can not replace human interaction, human integrity is important insofar as digital marketing agencies follow laws and regulations, the size of the business determines which priorities is made between using previous knowledge and new technology, organizations need to be transparent and AI must be used throughout the organization in order for the organization to benefit in the long term
Problem: Trots att AI-verktyg har kommit att underlätta samt påverka den digitala marknadsföringen på flertalet olika sätt, så finns det ett fortsatt behov för forskning kring hur AI kan underlätta marknadsföringsproblem samt hur användningen av AI-verktyg i marknadsföringssyfte kan underlättas för digitala marknadsföringsbyråer.  Syfte: Studiens syfte är att påvisa hur och varför maskininlärning både hjälper och stjälper digitala marknadsföringsbyråer, samt vilka faktorer som digitala marknadsföringsbyråer behöver ta i beaktning om de avser att använda maskininlärning inom digital marknadsföring.  Metod: Studien utgår från en kvalitativ forskningsstrategi, med ett induktivt tillvägagångssätt där sex genomförda semistrukturerade intervjuer utförts. Semistrukturerade intervjuer har genomförts för att skapa flexibilitet hos individen som blir intervjuad, och således kan nya insikter och tankar uppstå. Tematisk analys har använts som analysmetod för studien, där fokus legat på att identifiera mönster och teman. Slutsats: Maskininlärning hjälper digitala marknadsföringsbyråer inom digital marknadsföring med att effektivisera arbetsprocesser genom att bearbeta data och information, frigöra tid för anställda samt möjligheten att erhålla konkurrensfördelar. Maskininlärning stjälper digitala marknadsföringsbyråer inom digital marknadsföring genom att exkludera mänskliga deltagare inom arbetssystemet, minska förtroende för organisationen samt skapa obehag vid aktiv personalisering om det används oetiskt. Faktorer som bör tas i beaktning av digitala marknadsföringsbyråer om de avser att använda maskininlärning inom digital marknadsföring är att digitala marknadsföringsbyråer inte kan ersätta mänsklig interaktion, mänsklig integritet är viktigt i det mån att digitala marknadsföringsbyråer efterföljer lagar och regler, storleken av verksamheten avgör vilka prioriteringar som görs mellan att nyttja tidigare kunskap och ny teknologi, organisationer behöver vara transparenta och AI måste nyttjas genomgående i organisationen för att organisationen ska gynnas på lång sikt.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography