Academic literature on the topic 'Mass moment of inertia'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mass moment of inertia.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mass moment of inertia"
Berg, C., and J. Rayner. "The moment of inertia of bird wings and the inertial power requirement for flapping flight." Journal of Experimental Biology 198, no. 8 (January 1, 1995): 1655–64. http://dx.doi.org/10.1242/jeb.198.8.1655.
Full textSun, Ling, Peng Yu, and Tong Zhang. "Measurement Method Research on Inertial Parameters of Motor Assembly." Applied Mechanics and Materials 437 (October 2013): 663–68. http://dx.doi.org/10.4028/www.scientific.net/amm.437.663.
Full textWallach, David L. "New Theorems for Moments of Inertia." International Journal of Mechanical Engineering Education 21, no. 4 (October 1993): 355–66. http://dx.doi.org/10.1177/030641909302100406.
Full textTondji, Y., and R. M. Botez. "Semi-empirical estimation and experimental method for determining inertial properties of the Unmanned Aerial System – UAS-S4 of Hydra Technologies." Aeronautical Journal 121, no. 1245 (October 11, 2017): 1648–82. http://dx.doi.org/10.1017/aer.2017.105.
Full textTHOLLESSON, MIKAEL, and ULLA M. NORBERG. "Moments of Inertia of Bat Wings and Body." Journal of Experimental Biology 158, no. 1 (July 1, 1991): 19–35. http://dx.doi.org/10.1242/jeb.158.1.19.
Full textKUPRIKOV, Mikhail Yu, Lev N. RABINSKIY, and Nikita M. KUPRIKOV. "Moment-inertial representation of the Square-cube law in aircraft industry." INCAS BULLETIN 11, S (August 1, 2019): 163–64. http://dx.doi.org/10.13111/2066-8201.2019.11.s.16.
Full textPodhorodeski, Ron P., and Paul Sobejko. "A Project in the Determination of the Moment of Inertia." International Journal of Mechanical Engineering Education 33, no. 4 (October 2005): 319–38. http://dx.doi.org/10.7227/ijmee.33.4.3.
Full textClaret, A., and A. Gim�nez. "The moment of inertia of low mass stars." Astrophysics and Space Science 169, no. 1-2 (July 1990): 215–17. http://dx.doi.org/10.1007/bf00640716.
Full textКочегаров, Aleksey Kochegarov, Беляев, Aleksandr Belyaev, Тришина, and Tatyana Trishina. "Determination of moment of inertia of the tractor." Forestry Engineering Journal 3, no. 4 (January 21, 2014): 151–55. http://dx.doi.org/10.12737/2196.
Full textLee, Hsing-Juin, Yang-Chung Lee, and Hsing-Wei Lee. "Determination of a missile polar mass moment of inertia." Journal of Spacecraft and Rockets 30, no. 6 (November 1993): 777–79. http://dx.doi.org/10.2514/3.26390.
Full textDissertations / Theses on the topic "Mass moment of inertia"
Cajazeiras, LÃcio Laertti Rios. "O centro de massa e aplicaÃÃes à geometria." Universidade Federal do CearÃ, 2016. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=17269.
Full textThere are many tools developed for solving Euclidean Geometry problems. This study presents a tool based on the physical concept of center of mass, allowing the development of the skills needed to solve geometric problems, especially the ones presented in Mathematics Olympiads, both in Elementary School and in High School.
Xu, Tongyi. "Design and Analysis of a Shock Absorber with a Variable Moment of Inertia Flywheel for Passive Vehicle Suspension." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/26293.
Full textBlad, Marika, and Balog Alexander Tynnerstål. "Design of Eccentric Double Amplitude Vibration Drum Roller Shaft with Improved Mass Moment of Inertia : Product Development of Compaction Equipment." Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-19643.
Full textTillverkning av vägar är viktigt för att transporter ska kunna utföras på ett säkert och hållbart sätt. För att packa asfalt behövs en mängd energi överföras till materialet genom statiskt tryck eller dynamiska vibrationer. En asfaltsvält packar materialet och ökar dess belastningsförmåga. En excentrisk axel som genererar vibrationer sitter inuti trummorna på välten. Denna axel har två lägen som varierar mellan att ha hög excentricitet med lägre puls samt låg excentricitet med högre puls. Studien har genomförts med syftet att minska den nuvarande excenteraxelns masströghetsmoment genom att designa om den samt verifiera nya koncept med linjära och icke-linjära FEM beräkningar. De nya modellerna skulle behålla samma funktionella egenskaper som den nuvarande excenteraxeln. Det nuvarande tvärsnittet i XY-planet ändrades till en cirkel i rotationsaxlens periferi, genom att lägga till alla funktioner med nya tvärsnitt på en enkel axelbas i en analyskedja. En ny design i längsled påbörjades med brainstorming för att generera nya idéer. Idéerna sorterades sedan med hjälp av en Pugh-matris. Koncepten modellerades sedan med önskade excentriska egenskaper i CAD. FEM-mjukvara användes för att simulera koncepten och samla information om beteenden under körning. Akademisk validering och användbar information samlades in i en litteraturstudie. Arbetet resulterade i två koncept med egenskaper som uppfyllde rådande krav. Det cirkulära tvärsnittet i periferin behölls och likaså de excentriska egenskaperna. FEM resultaten visade sig hamna tillfredsställande under gränserna med materialen stål och segjärn. För båda koncepten minskade masströghetsmomentet varav 40.5 % i stål och 42.0 % respektive 42.6 % i segjärn. En analyskedja har genomförts som visat att ett tvärsnitt av en cirkel i periferi är optimalt med intentionen att minska masströghetsmomentet. Det är möjligt att minska masströghetsmomentet utan att påverka de excentriska egenskaperna negativt. Designen längs med en axel med excentriska egenskaper har studerats och simulerat. Två koncept med varierad design har modellerats, koncepten har behållna excentriska egenskaper och betydligt minskat masströghetsmoment. Koncepten kan utgöra gott underlag för fortsatt undersökning av designen i längdled. Förhoppningsvis kan det i sin tur resultera i en tillverkningsbar excentrisk axel som bidrar till miljövänligare asfaltskonstruktion med låg energiåtgång.
Shekar, Sadahalli Arjun. "ADAPTIVE CONTROL DESIGN FOR QUADROTORS." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/dissertations/1472.
Full textEicholtz, Matthew R. "Design and analysis of an inertial properties measurement device for manual wheelchairs." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34677.
Full textSchulze, Sören. "Bewegungsdesign unter Berücksichtigung des reduzierten Massenträgheitsmoments." Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-206894.
Full textKoh, Meng hock. "Fission-barriers and energy spectra of odd-mass actinide nuclei in self-consistent mean-field calculations." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0208/document.
Full textWhile there have been numerous microscopic calculations on fission barriers of even-even compoundnuclei, there are however, relatively few such work dedicated to odd-mass nuclei. This is dueto the complications posed by the breaking of the time-reversal symmetry at the mean-field leveldue to the presence of an unpaired nucleon. In order to circumvent this difficulty, previous fission barriercalculations of odd-mass nuclei have been performed by neglecting the effect of time-reversalsymmetry breaking. This work aims to improve on the description of fission barriers as well asthe spectroscopic properties of ground and fission-isomeric state, of some odd-mass actinide nucleiby taking the effect of time-reversal symmetry breaking into account. This has been perfomedwithin a Skyrme-Hartree-Fock-plus-BCS framework with blocking, where the BCS formalism hasbeen adapted to accomodate this symmetry breaking. The Skyrme nucleon-nucleon effective forcehas been used with various sets of parameters (SIII, SkM*, SLy5*). The residual pairing interactionhas been approximated by seniority forces whose neutron and proton parameters have beenfitted to reproduce the odd-even mass differences of some actinide nuclei. The low-lying rotationalband-head energies evaluated within the Bohr-Mottelson unified model have been determined forfour well-deformed odd-nuclei (235U, 239Pu, 237Np, 241Am) yielding a good qualitative agreementto the data for odd-neutron nuclei. The agreement was significantly less good for the odd-protonnuclei, possibly due to the use of the Slater approximation for the exchange Coulomb interaction.The deformation energies of two odd-neutron nuclei (235U and 239Pu) have been calculated forsome single-particle configurations up to a point beyond the outer fission-barrier. Axial symmetrynuclear shape has been assumed while a breaking of the left-right (or intrinsic parity) symmetryhas been allowed around the outer fission-barrier. The fission-barrier heights of such odd-neutronnuclei depend significantly on the particle configurations. A special attention has been paid tothe very important rotational correction to deformation energies. In particular, the correction ofthe moment of inertia calculated from the usual Belyaev expression was considered. Overall, aqualitative agreement with available data on fission-barrier heights for the considered odd-neutronnuclei and their even neighbours has been obtained
Warmoth, Francis James. "Floor Vibrations: Girder Effective Moment of Inertia and Cost Study." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/41005.
Full textMaster of Science
Schorah, David J. "The effect of moment of inertia on the speed of swung implements." Thesis, Sheffield Hallam University, 2015. http://shura.shu.ac.uk/20803/.
Full textPearce, Steven James. "Core-mantle interactions resulting from sudden changes in the Earth's moment of inertia." Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/187267.
Full textBooks on the topic "Mass moment of inertia"
Patiño, Fabián Hoyos. Sobre hombros de gigantes: La formación del concepto de inercia. Medellín, Colombia: Hombre Nuevo Editores, 2001.
Find full textAlessandro, Spallicci, Whiting Bernard, and SpringerLink (Online service), eds. Mass and Motion in General Relativity. Dordrecht: Springer Science+Business Media B.V., 2011.
Find full textDerval, Diana. Wait marketing: Is it the right moment? 2nd ed. Amsterdam: Derval Research, 2009.
Find full textDerval, Diana. Wait marketing: Is it the right moment? 2nd ed. Amsterdam: Derval Research, 2009.
Find full textSpangenberg, Peter M. Im Moment des "Mehr": Mediale Prozesse jenseits des Funktionalen. Berlin: Lit, 2012.
Find full textDerval, Diana. Wait marketing: Communicate at the right moment at the right place. Amsterdam: Derval Research, 2007.
Find full textSaar, Betye. Betye Saar: Extending the frozen moment. Ann Arbor: University of Michigan Museum of Art, 2005.
Find full textBetye Saar: Extending the frozen moment. Ann Arbor, MI: University of Michigan Museum of Art, 2005.
Find full textJohn, Hough. A player for a moment: Notes from Fenway Park. San Diego: Harcourt Brace Jovanovich, 1988.
Find full textBook chapters on the topic "Mass moment of inertia"
Kaššay, Peter, and Robert Grega. "Measuring Mass Moment of Inertia of a Rotor—Two Simple Methods Using no Special Equipment." In Current Methods of Construction Design, 303–15. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33146-7_35.
Full textHorvath, Joan, and Rich Cameron. "Moment of Inertia." In 3D Printed Science Projects Volume 2, 83–96. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2695-7_5.
Full textGooch, Jan W. "Moment of Inertia." In Encyclopedic Dictionary of Polymers, 472. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_7664.
Full textGhavami, Parviz. "Moment of Inertia." In Mechanics of Materials, 111–41. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07572-3_5.
Full textBeatty, Millard F. "The Moment of Inertia Tensor." In Principles of Engineering Mechanics, 355–404. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-31255-2_5.
Full textIslam, M. Rashad, Md Abdullah Al Faruque, Bahar Zoghi, and Sylvester A. Kalevela. "Moment of Inertia of Area." In Engineering Statics, 239–68. First edition. | Boca Raton: CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003098157-10.
Full textSingh, Dinesh Kumar. "Centroid and Moment of Inertia." In Strength of Materials, 89–142. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59667-5_3.
Full textLyle, Stephen N. "Electromagnetic Mass." In Self-Force and Inertia, 31–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04785-5_3.
Full textJaekel, Marc-Thierry, and Serge Reynaud. "Mass, Inertia, and Gravitation." In Mass and Motion in General Relativity, 491–530. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3015-3_18.
Full textSchulze, Sören, Carsten Teichgräber, and Maik Berger. "Motion Design Considering Moment of Inertia." In New Trends in Mechanism and Machine Science, 203–10. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44156-6_21.
Full textConference papers on the topic "Mass moment of inertia"
Dovydenko, O., A. Samoylenko, and V. Petronevich. "Special measurement standard of mass, mass center and inertia moment." In 2020 IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, 2020. http://dx.doi.org/10.1109/metroaerospace48742.2020.9160294.
Full textSepahpour, Bijan, and Ian S. Fischer. "Mass Moment of Inertia of External Geneva Wheels." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0107.
Full textKhushbash, Sara, Ali Javed, and Taimur Ali Shams. "Computational analysis of low mass moment of inertia flying wing." In 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST). IEEE, 2021. http://dx.doi.org/10.1109/ibcast51254.2021.9393181.
Full textStanley, Richard. "An Analysis of the Simplified Two-Mass System of the Connecting Rod in Spark Ignition Engines." In ASME 2002 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/icef2002-511.
Full textJardin, Matthew, and Eric Mueller. "Optimized Measurements of UAV Mass Moment of Inertia with a Bifilar Pendulum." In AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-6822.
Full textYe, Zhonghe, and M. R. Smith. "Mass Flow and Derivative Moment of Inertia Flow in Planar (Geared) Linkages." In ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0414.
Full textWang, L., R. Kovacevic, and Hui-jun Zou. "An Experimental Study of Elastic Mechanism With Lumped Mass and Inertia Moment." In ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0432.
Full textSong, Jeyoung, Dong Eui Chang, and Yongsoon Eun. "Passivity-based Adaptive Control of Quadrotors with Mass and Moment of Inertia Uncertainties." In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9029780.
Full textArafa, Hani A., and Mohamed L. Shaltout. "Optimal Design of Mechanical Transmissions for High Performance Servo-Drive Systems." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-85269.
Full textTaniguchi, Tomoyo, and Toru Segawa. "Effective Mass of Fluid for Rocking Motion of Flat-Bottom Cylindrical Tanks." In ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-77580.
Full textReports on the topic "Mass moment of inertia"
LaFiandra, Michael E. A Tool for Calculating the Center of Mass and Moment of Inertia of Small Arms Weapons. Fort Belvoir, VA: Defense Technical Information Center, July 2008. http://dx.doi.org/10.21236/ada486345.
Full textAndriulli, J. B. A simple rotational pendulum method to measure the radii of gyration or mass moments of inertia of a rotor and other assemblies. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/416947.
Full text