To see the other types of publications on this topic, follow the link: Mass spectrometry.

Journal articles on the topic 'Mass spectrometry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Mass spectrometry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

KASAMA, Takeshi. "Biological Mass Spectrometry. Quadrupole Mass Spectrometer." Journal of the Mass Spectrometry Society of Japan 44, no. 3 (1996): 393–405. http://dx.doi.org/10.5702/massspec.44.393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Glish, Gary L., and David J. Burinsky. "Hybrid mass spectrometers for tandem mass spectrometry." Journal of the American Society for Mass Spectrometry 19, no. 2 (2008): 161–72. http://dx.doi.org/10.1016/j.jasms.2007.11.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Busch, Kenneth L., Gary L. Glish, Scott A. McLuckey, and John J. Monaghan. "Mass spectrometry/mass spectrometry: techniques and applications of tandem mass spectrometry." Analytica Chimica Acta 237 (1990): 509. http://dx.doi.org/10.1016/s0003-2670(00)83956-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Futrell, Jean H. "Mass spectrometry/mass spectrometry: Techniques and applications of tandem mass spectrometry." Microchemical Journal 41, no. 2 (1990): 246–47. http://dx.doi.org/10.1016/0026-265x(90)90124-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moriarty, F. "Mass spectrometry/mass spectrometry. Techniques and applications of tandem mass spectrometry." Environmental Pollution 61, no. 3 (1989): 261. http://dx.doi.org/10.1016/0269-7491(89)90246-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cooks, R. G. "Mass Spectrometry/Mass Spectrometry. Techniques and Applications of Tandem Mass Spectrometry." International Journal of Mass Spectrometry and Ion Processes 93, no. 2 (1989): 265–66. http://dx.doi.org/10.1016/0168-1176(89)80103-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pinkston, J. David, Martin Rabb, J. Throck Watson, and John Allison. "New time‐of‐flight mass spectrometer for improved mass resolution, versatility, and mass spectrometry/mass spectrometry studies." Review of Scientific Instruments 57, no. 4 (1986): 583–92. http://dx.doi.org/10.1063/1.1138874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Glish, Gary L., and Scott A. McLuckey. "Hybrid Instruments for Mass Spectrometry/Mass Spectrometry." Instrumentation Science & Technology 15, no. 1 (1986): 1–36. http://dx.doi.org/10.1080/10739148608543593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yokoyama, Yusuke. "Accelerator Mass Spectrometry: Ultra-sensitive Mass Spectrometry." Journal of the Mass Spectrometry Society of Japan 73, no. 2 (2025): 107–8. https://doi.org/10.5702/massspec.24-035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Charles, M. Judith, and Yves Tondeur. "Choosing between high-resolution mass spectrometry and mass spectrometry/mass spectrometry environmental applications." Environmental Science & Technology 24, no. 12 (1990): 1856–60. http://dx.doi.org/10.1021/es00082a011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

KONDO, Fumio, and Ken-ichi HARADA. "Biological Mass Spectrometry. Mass Spectrometric Analysis of Cyanobacterial Toxins." Journal of the Mass Spectrometry Society of Japan 44, no. 3 (1996): 355–76. http://dx.doi.org/10.5702/massspec.44.355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Wu, Junhan, Wenpeng Zhang, and Zheng Ouyang. "On-Demand Mass Spectrometry Analysis by Miniature Mass Spectrometer." Analytical Chemistry 93, no. 15 (2021): 6003–7. http://dx.doi.org/10.1021/acs.analchem.1c00575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Guerrera, Ida Chiara, and Oliver Kleiner. "Application of Mass Spectrometry in Proteomics." Bioscience Reports 25, no. 1-2 (2005): 71–93. http://dx.doi.org/10.1007/s10540-005-2849-x.

Full text
Abstract:
Mass spectrometry has arguably become the core technology in proteomics. The application of mass spectrometry based techniques for the qualitative and quantitative analysis of global proteome samples derived from complex mixtures has had a big impact in the understanding of cellular function. Here, we give a brief introduction to principles of mass spectrometry and instrumentation currently used in proteomics experiments. In addition, recent developments in the application of mass spectrometry in proteomics are summarised. Strategies allowing high-throughput identification of proteins from hig
APA, Harvard, Vancouver, ISO, and other styles
14

NOHMI, Takashi, and Tetsuya MIYAGISHI. "Future Mass from Miniaturized Mass Spectrometry to Micro Mass Spectrometry." Journal of the Mass Spectrometry Society of Japan 51, no. 1 (2003): 54–66. http://dx.doi.org/10.5702/massspec.51.54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Termopoli, Veronica, Maurizio Piergiovanni, Davide Ballabio, Viviana Consonni, Emmanuel Cruz Muñoz, and Fabio Gosetti. "Condensed Phase Membrane Introduction Mass Spectrometry: A Direct Alternative to Fully Exploit the Mass Spectrometry Potential in Environmental Sample Analysis." Separations 10, no. 2 (2023): 139. http://dx.doi.org/10.3390/separations10020139.

Full text
Abstract:
Membrane introduction mass spectrometry (MIMS) is a direct mass spectrometry technique used to monitor online chemical systems or quickly quantify trace levels of different groups of compounds in complex matrices without extensive sample preparation steps and chromatographic separation. MIMS utilizes a thin, semi-permeable, and selective membrane that directly connects the sample and the mass spectrometer. The analytes in the sample are pre-concentrated by the membrane depending on their physicochemical properties and directly transferred, using different acceptor phases (gas, liquid or vacuum
APA, Harvard, Vancouver, ISO, and other styles
16

Dogra, Akshay. "A Thorough Examination of the Recent Advances in Mass Spectrometry." International Journal for Research in Applied Science and Engineering Technology 11, no. 7 (2023): 1731–41. http://dx.doi.org/10.22214/ijraset.2023.54964.

Full text
Abstract:
Abstract: Mass spectrometry has become an essential tool in pharmaceutical analysis, revolutionizing drug development, quality assurance, and our understanding of complex biological systems. This review provides a comprehensive overview of recent advances in mass spectrometry for pharmaceutical analysis. We discuss the fundamentals of mass spectrometry, including ionization and mass analysis principles, as well as the various types of mass spectrometers used in pharmaceutical analysis. We explore high-resolution mass spectrometry (HRMS), tandem mass spectrometry (MS/MS), ambient ionization mas
APA, Harvard, Vancouver, ISO, and other styles
17

Lhotka, Radek, and Petr Vodička. "Aerosol Mass Spectrometry." Chemické listy 118, no. 5 (2024): 254–62. http://dx.doi.org/10.54779/chl20240254.

Full text
Abstract:
Mass spectrometry is widely used in various scientific fields. In atmospheric chemistry, there has been a long call for a detailed on-line analysis of the chemical composition of aerosol particles (i.e., particles in the solid or liquid state) in the atmosphere resulting in the development of the so-called aerosol mass spectrometers in the past 20 years. These instruments allow the measurement of the chemical composition of particles with sizes of ca. 50–800 nm, typically at minute resolution. Their development and possible applications are discussed in this review.
APA, Harvard, Vancouver, ISO, and other styles
18

ITO, Yuji, and Masahiro MATSUI. "Mass Spectrometry." Journal of the Japan Society of Colour Material 63, no. 7 (1990): 419–29. http://dx.doi.org/10.4011/shikizai1937.63.419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Lederman, Lynne. "Mass Spectrometry." BioTechniques 46, no. 6 (2009): 399–401. http://dx.doi.org/10.2144/000113165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Yates, John R. "Mass spectrometry." Trends in Genetics 16, no. 1 (2000): 5–8. http://dx.doi.org/10.1016/s0168-9525(99)01879-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Burlingame, A. L., D. S. Millington, D. L. Norwood, and D. H. Russell. "Mass spectrometry." Analytical Chemistry 62, no. 12 (1990): 268–303. http://dx.doi.org/10.1021/ac00211a020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Burlingame, A. L., D. Maltby, D. H. Russell, and P. T. Holland. "Mass spectrometry." Analytical Chemistry 60, no. 12 (1988): 294–342. http://dx.doi.org/10.1021/ac00163a021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Burlingame, A. L., Robert K. Boyd, and Simon J. Gaskell. "Mass Spectrometry." Analytical Chemistry 68, no. 12 (1996): 599–652. http://dx.doi.org/10.1021/a1960021u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Burlingame, A. L., Robert K. Boyd, and Simon J. Gaskell. "Mass Spectrometry." Analytical Chemistry 70, no. 16 (1998): 647–716. http://dx.doi.org/10.1021/a1980023+.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Burlingame, A. L., T. A. Baillie, and D. H. Russell. "Mass spectrometry." Analytical Chemistry 64, no. 12 (1992): 467–502. http://dx.doi.org/10.1021/ac00036a025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kinter, Michael. "Mass spectrometry." Analytical Chemistry 67, no. 12 (1995): 493–97. http://dx.doi.org/10.1021/ac00108a034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Caprioli, Richard, and Alan Wu. "Mass Spectrometry." Analytical Chemistry 65, no. 12 (1993): 470–74. http://dx.doi.org/10.1021/ac00060a619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Burlingame, A. L., Robert K. Boyd, and Simon J. Gaskell. "Mass Spectrometry." Analytical Chemistry 66, no. 12 (1994): 634–83. http://dx.doi.org/10.1021/ac00084a024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Burlingame, A. L., Thomas A. Baillie, and Peter J. Derrick. "Mass spectrometry." Analytical Chemistry 58, no. 5 (1986): 165–211. http://dx.doi.org/10.1021/ac00296a015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Grotemeyer, Jürgen, Klaus G. Heumann, and Wolf D. Lehmann. "Mass spectrometry." Analytical and Bioanalytical Chemistry 386, no. 1 (2006): 21–23. http://dx.doi.org/10.1007/s00216-006-0653-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Van Thuijl, J. "Mass spectrometry." TrAC Trends in Analytical Chemistry 5, no. 3 (1986): IX—X. http://dx.doi.org/10.1016/0165-9936(86)85017-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Grotemeyer, J. "Mass spectrometry." Analytical and Bioanalytical Chemistry 377, no. 7-8 (2003): 1097. http://dx.doi.org/10.1007/s00216-003-2292-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Vickerman, J. C. "Mass spectrometry." Endeavour 11, no. 2 (1987): 108. http://dx.doi.org/10.1016/0160-9327(87)90265-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Jannetto, Paul J., and Darlington Danso. "Mass spectrometry." Clinical Biochemistry 82 (August 2020): 1. http://dx.doi.org/10.1016/j.clinbiochem.2020.06.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

P, D. "Mass Spectrometry." Journal of Molecular Structure 160, no. 1-2 (1987): 183. http://dx.doi.org/10.1016/0022-2860(87)87016-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Robinson, Carol, and Robert J. Cotter. "Mass spectrometry." Proteins: Structure, Function, and Genetics 33, S2 (1998): 1–2. http://dx.doi.org/10.1002/(sici)1097-0134(1998)33:2+<1::aid-prot1>3.0.co;2-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

NAGAO, Keisuke. "Fundamentals of Mass Spectrometry -Isotope Ratio Mass Spectrometry-." Journal of the Mass Spectrometry Society of Japan 59, no. 2 (2011): 35–49. http://dx.doi.org/10.5702/massspec.59.35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Musselman, Brian D. "K. Busch, G. Glish and S. Mcluckey. Mass spectrometry/mass spectrometry: Techniques and applications of tandem mass spectrometry, VCH publishing, New York, 1988. Mass Spectrometry/Mass Spectrometry." Biological Mass Spectrometry 18, no. 10 (1989): 942. http://dx.doi.org/10.1002/bms.1200181017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Marcus, R. Kenneth. "Could Microplasma Ionization and Ultrahigh Mass Resolution Alleviate Chemical Separations for Elemental and Isotopic Analysis?" CHIMIA 79, no. 1-2 (2025): 60–65. https://doi.org/10.2533/chimia.2025.60.

Full text
Abstract:
At the extremes, all analytical spectrometric measurements are limited by the resolution of the spectrometer system. Spectral overlaps, isobars in the case of mass spectrometry, can lead to the implementation of complex and time-consuming chemical separations to alleviate those interferences. In the area of elemental/isotopic mass spectrometry, use of sector-field instruments can provide a mass resolution of ~10,000, but still necessitate chemical separations. Described here is the coupling of the liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma to ultra-high resolutio
APA, Harvard, Vancouver, ISO, and other styles
40

LaiHing, K., P. Y. Cheng, T. G. Taylor, K. F. Willey, M. Peschke, and M. A. Duncan. "Photodissociation in a reflectron time-of-flight mass spectrometer: a novel mass spectrometry/mass spectrometry configuration for high-mass systems." Analytical Chemistry 61, no. 13 (1989): 1458–60. http://dx.doi.org/10.1021/ac00188a031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Meier, Heiko, and Gottfried Blaschke. "Capillary electrophoresis–mass spectrometry, liquid chromatography–mass spectrometry and nanoelectrospray-mass spectrometry of praziquantel metabolites." Journal of Chromatography B: Biomedical Sciences and Applications 748, no. 1 (2000): 221–31. http://dx.doi.org/10.1016/s0378-4347(00)00397-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Cooks, R. G., K. A. Cox, and J. D. Williams. "High-performance mass spectrometry with the ion trap mass spectrometer." Journal of Protein Chemistry 11, no. 4 (1992): 376–77. http://dx.doi.org/10.1007/bf01673733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Budzikiewicz, H. "Selected reviews on mass spectrometric topics. XXVIII. Tandem mass spectrometry." Mass Spectrometry Reviews 8, no. 2 (1989): 119. http://dx.doi.org/10.1002/mas.1280080204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Budzikiewicz, H. "Selected reviews on mass spectrometric topics. XLV. Pyrolysis-mass spectrometry." Mass Spectrometry Reviews 11, no. 3 (1992): 247. http://dx.doi.org/10.1002/mas.1280110304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Budzikiewicz, H. "Selected reviews on mass spectrometric topics. XLVII. Accelerator mass spectrometry." Mass Spectrometry Reviews 11, no. 5 (1992): 445. http://dx.doi.org/10.1002/mas.1280110505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Roberts, Norman B., Brian N. Green, and Michael Morris. "Potential of electrospray mass spectrometry for quantifying glycohemoglobin." Clinical Chemistry 43, no. 5 (1997): 771–78. http://dx.doi.org/10.1093/clinchem/43.5.771.

Full text
Abstract:
Abstract An electrospray ionization–mass spectrometric procedure has been developed for determining glycohemoglobin. Whole-blood samples from 78 diabetic and 50 nondiabetic subjects (glycation range 3–15%, as determined by electrospray mass spectrometry) were diluted 500-fold in an acidic denaturing solvent and introduced directly into a mass spectrometer. The resulting mass spectra were then processed to estimate the percentage of glycohemoglobin present in the sample. Total analysis time, including plotting the spectra and computing the percentage of glycation, was ∼3 min. The imprecision (C
APA, Harvard, Vancouver, ISO, and other styles
47

Konstantinov, M. A., D. D. Zhdanov, and I. Yu Toropygin. "Quantitative mass spectrometry with <sup>18</sup>O labelling as an alternative approach for determining protease activity: an example of trypsin." Biological Products. Prevention, Diagnosis, Treatment 24, no. 1 (2024): 46–60. http://dx.doi.org/10.30895/2221-996x-2024-24-1-46-60.

Full text
Abstract:
SCIENTIFIC RELEVANCE. In the quality control of proteolytic enzyme components of medicinal products, the activity of proteases is determined by spectrophotometry, which involves mea­suring the amidase or esterase activity using a synthetic substrate and the proteolytic activity using the Anson method. These methods require special substrates and have low sensitivity; their specificity may be insufficient, which may lead to serious errors. Quantitative mass spectrometry is an alternative approach to protease activity assays, which involves adding an isotope-labelled peptide to hydrolysates of t
APA, Harvard, Vancouver, ISO, and other styles
48

Sauvage, François-Ludovic, Franck Saint-marcoux, Bénédicte Duretz, Didier Deporte, Gérard Lachatre, and Pierre Marquet. "Screening of Drugs and Toxic Compounds with Liquid Chromatography-Linear Ion Trap Tandem Mass Spectrometry." Clinical Chemistry 52, no. 9 (2006): 1735–42. http://dx.doi.org/10.1373/clinchem.2006.067116.

Full text
Abstract:
Abstract Background: In clinical and forensic toxicology, general unknown screening is used to detect and identify exogenous compounds. In this study, we aimed to develop a comprehensive general unknown screening method based on liquid chromatography coupled with a hybrid triple-quadrupole linear ion trap mass spectrometer. Methods: After solid-phase extraction, separation was performed using gradient reversed-phase chromatography. The mass spectrometer was operated in the information-dependent acquisition mode, switching between a survey scan acquired in the Enhanced Mass Spectrometry mode wi
APA, Harvard, Vancouver, ISO, and other styles
49

Tian, Qingguo, and Steven J. Schwartz. "Mass Spectrometry and Tandem Mass Spectrometry of Citrus Limonoids." Analytical Chemistry 75, no. 20 (2003): 5451–60. http://dx.doi.org/10.1021/ac030115w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Shoji, Yuki, Mari Yotsu-Yamashita, Teruo Miyazawa, and Takeshi Yasumoto. "Electrospray Ionization Mass Spectrometry of Tetrodotoxin and Its Analogs: Liquid Chromatography/Mass Spectrometry, Tandem Mass Spectrometry, and Liquid Chromatography/Tandem Mass Spectrometry." Analytical Biochemistry 290, no. 1 (2001): 10–17. http://dx.doi.org/10.1006/abio.2000.4953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!