Academic literature on the topic 'Mass spring model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mass spring model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mass spring model"
Chen, Yuanwei, Bing He, and Xuefu Yu. "Research on Garment Wrinkle Synthetic Method Based on Mass-Spring Model." International Journal of Materials, Mechanics and Manufacturing 3, no. 4 (2015): 270–74. http://dx.doi.org/10.7763/ijmmm.2015.v3.209.
Full textWu, Li Xiang, Xing Min Hou, and Jia Zhang. "Mass-Spring-Damping Model of Saturated Sands." Applied Mechanics and Materials 170-173 (May 2012): 153–58. http://dx.doi.org/10.4028/www.scientific.net/amm.170-173.153.
Full textKOT, Maciej, Hiroshi NAGAHASHI, and Krzysztof GRACKI. "Resolution Scaling for Mass Spring Model Simulations." IEICE Transactions on Information and Systems E97.D, no. 8 (2014): 2138–46. http://dx.doi.org/10.1587/transinf.e97.d.2138.
Full textSmith, G. A., and P. Watanatada. "MASS-SPRING MODEL WITH TIME-VARYING STIFFNESS." Medicine & Science in Sports & Exercise 35, Supplement 1 (May 2003): S129. http://dx.doi.org/10.1097/00005768-200305001-00708.
Full textSelle, Andrew, Michael Lentine, and Ronald Fedkiw. "A mass spring model for hair simulation." ACM Transactions on Graphics 27, no. 3 (August 2008): 1–11. http://dx.doi.org/10.1145/1360612.1360663.
Full textPellicer, M., and J. Solà-Morales. "Analysis of a viscoelastic spring–mass model." Journal of Mathematical Analysis and Applications 294, no. 2 (June 2004): 687–98. http://dx.doi.org/10.1016/j.jmaa.2004.03.008.
Full textYang, Jian Dong, and Shu Yuan Shang. "Cloth Modeling Simulation Based on Mass Spring Model." Applied Mechanics and Materials 310 (February 2013): 676–83. http://dx.doi.org/10.4028/www.scientific.net/amm.310.676.
Full textChahyadi, Hendry D. "Simulation and Analysis of Two-Mass Suspension Modification Using MATLAB Programming." ACMIT Proceedings 3, no. 1 (March 18, 2019): 160–65. http://dx.doi.org/10.33555/acmit.v3i1.39.
Full textYUAN, ZHIYONG, SHIKUN FENG, QIAN YIN, XIALI WANG, DENGYI ZHANG, JIANHUI ZHAO, and MIANYUN CHEN. "ENDOSCOPIC IMAGE CUTTING SIMULATION BASED ON MASS-SPRING MODEL AND COMPUTATIONAL GEOMETRY." Journal of Circuits, Systems and Computers 18, no. 08 (December 2009): 1453–65. http://dx.doi.org/10.1142/s0218126609005782.
Full textABE, Hideki, Shinichi SAZAWA, Masayoshi HASHIMA, and Yuichi SATO. "3316 A Mass-Spring Model Approach for Interactive Simulation of Wire Harnesses." Proceedings of Design & Systems Conference 2008.18 (2008): 582–87. http://dx.doi.org/10.1299/jsmedsd.2008.18.582.
Full textDissertations / Theses on the topic "Mass spring model"
Silva, Josildo Pereira da. "A Data-Driven Approach for Mass-Spring Model Parametrization Based on Continuous Models." Instituto de Matemática, 2015. http://repositorio.ufba.br/ri/handle/ri/22848.
Full textApproved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2017-06-07T11:45:27Z (GMT) No. of bitstreams: 1 Tese de Josildo.pdf: 4648596 bytes, checksum: 3ed7ce11dd70e411aa2271e15aeca67c (MD5)
Made available in DSpace on 2017-06-07T11:45:27Z (GMT). No. of bitstreams: 1 Tese de Josildo.pdf: 4648596 bytes, checksum: 3ed7ce11dd70e411aa2271e15aeca67c (MD5)
Nowadays, the behavior simulation of deformable objects plays important roles in several fields such as computer graphics, computer aided design, computer aided surgery And robotics. The two main categories of deformable models are: based on continuum mechanics, like Finite Element Model (FEM) or Isogeometric Analysis (IGA); and using discrete representations, as a Mass - Spring Model (MSM). FEM methods are known for their high computational cost and precision, while MSM methods, although simple and affordable for real-time applications, are di cult to parameterize. There is no general physically based or systematic method in the literature to determine the mesh topology or MSM parameters from a known material. Therefore, in this thesis, we proposea methodology to parametrize the MSM based on continuous models with focus on the simulation of deformable objects in real-time for application in virtual environments. We developed two data-driven approaches to the parametrization of the MSM by using FEM and IGA models as reference of derivation with higher order elements. Based on experimental results, the precision achieved by these new methodologies is higher than other approaches in literature. In particular, our proposal achieves excellent results in the parametrization of the MSM with higher order elements which does not occur with other methodologies
Atualmente, a simula¸c˜ao de objetos deform´aveis desempenha papel importante em v´arios campos ligados `a Ciˆencia da Computa¸c˜ao, como a computa¸c˜ao gr´afica, projeto assistido por computador, cirurgias assistidas por computador e rob´otica. Nesse contexto, a simula¸c˜ao de objetos deform´aveis com acur´acia e em tempo-real ´e uma tarefa extremamente dificil para as aplica¸c˜oes que requerem simula¸c˜oes mecˆanicas interativas como s˜ao os casos dos ambientes virtuais, simuladores cir´urgicos e jogos. Podemos dividir as abordagens que d˜ao suporte ao tratamento de modelos deform´aveis em dois grandes grupos: baseados em mecˆanica do cont´ınuo, como M´etodo de Elementos Finitos (FEM - Finite Element Method) ou An´alise Isogeom´etrica (IGA - Isogeometric Analysis); e usando representa¸c˜oes discretas, como modelo massa-mola (MSM - Mass Spring Model). M´etodos baseados na abordagem cont´ınua s˜ao conhecidos por seu alto custo computacional e acur´acia, enquanto que os m´etodos discretos, embora simples e adequados para simula¸c˜oes mecˆanicas interativas, s˜ao dif´ıceis de parametrizar. A falta de um m´etodo geral baseado em f´ısica ou sistem´atico para determinar a topologia de malha ou os parˆametros do MSM a partir de um material conhecido foi a principal motiva¸c˜ao desse trabalho, no sentido de gerar um modelo de baixo custo computacional, como o MSM, a partir de um modelo de alta precis˜ao como o FEM. Portanto, partindo da premissa de simplicidade e adequa¸c˜ao do MSM para simula¸c˜oes mecˆanicas interativas, nesta tese propomos uma metodologia para parametrizar o MSM baseada em modelos cont´ınuos. Desenvolvemos duas abordagens orientadas `a dados (data-driven) para a parametriza¸c˜ao do MSM usando modelos FEM e IGA, este ´ultimo como referˆencia de deriva¸c˜ao com elementos de ordem superior. Com base nos resultados experimentais, a precis˜ao alcan¸cada por estas novas metodologias ´e mais elevada do que a de outros trabalhos similiares na literatura. Em particular, a nossa proposta alcan¸ca excelentes resultados na parametriza¸c˜ao do MSM com elementos de ordem superior
Eriksson, Emil. "Simulation of Biological Tissue using Mass-Spring-Damper Models." Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-27663.
Full textMålet med detta projekt var att utvärdera huruvida en modell baserad på massa-fjäderdämpare är meningsfull för att modellera biologisk vävnad. En metod för att automatiskt generera en sådan modell utifrån data tagen från medicinsk 3D-skanningsutrustning presenteras. Denna metod inkluderar både generering av punktmassor samt en algoritm för generering av länkar mellan dessa. Vidare beskrivs en implementation av en simulering av denna modell som körs i realtid genom att utnyttja den parallella beräkningskraften hos modern GPU-hårdvara via OpenCL. Denna implementation använder sig av fjärde ordningens Runge-Kutta-metod för förbättrad stabilitet jämfört med liknande implementationer. Svårigheten att bibehålla stabiliteten samtidigt som den simulerade vävnaden ges tillräcklig styvhet diskuteras genomgående. Flera observationer om modellstrukturens inverkan på den simulerade vävnadens konsistens presenteras också. Denna implementation inkluderar två manipuleringsverktyg, ett flytta-verktyg och ett skärverktyg för att interagera med simuleringen. Resultaten visar tydligt att en modell baserad på massa-fjäder-dämpare är en rimlig modell som är möjlig att simulera i realtid på modern men lättillgänglig hårdvara. Med vidareutveckling kan detta bli betydelsefullt för områden så som medicinsk bildvetenskap och kirurgisk simulering.
Shiva, V. A. "Visualization of wave propagation in elastic solids using a mass-spring lattice model." Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/63194.
Full textVideocassette is VHS format.
Includes bibliographical references.
by Shiva Ayyadurai.
M.S.V.S.
Hall, Anthony R. "The Pseudo-Rigid-Body Model for Fast, Accurate, Non-Linear Elasticity." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3869.
Full textAlajmi, Fawaz M. "FROM "INDEXING" OFFICIALS TO "INDEXING" THE PUBLIC: KUWAITI NEWSPAPERS AGENDA BUILDING, NEWS INDEXING AND TWITTER USE IN KARAMAT WATAN PROTESTS, 2012." OpenSIUC, 2015. https://opensiuc.lib.siu.edu/dissertations/1024.
Full textMerker, Andreas [Verfasser], Martin [Akademischer Betreuer] Hermann, Andre [Akademischer Betreuer] Seyfarth, and Gerhard [Akademischer Betreuer] Zumbusch. "Numerical bifurcation analysis of the asymmetric spring-mass model / Andreas Merker. Gutachter: Martin Hermann ; Andre Seyfarth ; Gerhard Zumbusch." Jena : Thüringer Universitäts- und Landesbibliothek Jena, 2014. http://d-nb.info/1058858025/34.
Full textVilleger, David. "Restitution d'énergie élastique et locomotion (REEL) : une approche adimensionnelle." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/4068/.
Full textThe aim of this paper is to develop a dimensionless approach of the human locomotion, and more specifically of walking and running gaits. In other terms, the main goal of this PhD thesis is to induce locomotor similarity between different-sized humans. These similarities are the same that the physicians look for when they design a prototype from a scale model. Throughout the thesis paper, this approach allows the consideration that a small human is a reduced model of a tall one. Our approach is cross-fielded like Physics, Modelization, and Biomechanics. The dimensional analysis application to the common locomotion models allows to highlight the interest of using the dimensionless numbers of Froude (dimensionless speed) and Strouhal (dimensionless frequency) to study human locomotion. These locomotion models are reduced to the body mass represented at its center of mass oscillating at the end of a massless spring. They take into account an elastic component and enlighten transfers occurring at the center of mass between the kinetic, potential and elastic energies. The ratio of these energies is called Modela. A Modela corresponds to both walking and running, and depends on Froude and Strouhal. First, the experimental conditions such as speed displacement relative to anthropometry (from Froude) and step frequency relative to anthropometry (from Strouhal) allow us to generate locomotor similarity between different-sized subjects for walking and running. These results reveal the interest of the dimensionless approach of the locomotion by showing that the dimensionless behaviors are the same when they are expressed independently of the subject anthropometry. The use of this approach to compare human locomotions is interesting to study behavior different to the gold dimensionless standard. Also, this approach may be a means to highlight a global organization of the movement which is common to many species. Then, the comparison between the simple model and the complex model is investigated. In one hand, the model takes into account an elastic component and only describe the center of mass movement. In the other hand, the human body is represented as a whole of body segment poly-articulated. A link is done between the global movement of the center of mass and the movement of the poly-articular model, and especially regarding for the energy transfers. The link between the models explain how a subject has the same behavior of a spring mass, and how the future works will be able to investigate the fields of the human elasticity and the saving energy mechanisms
Yen, Jasper Tong-Biau. "Force control during human bouncing gaits." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/43698.
Full textFléchon, Elsa. "Définition d'un modèle unifié pour la simulation physique adaptative avec changements topologiques." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10284/document.
Full textThe work made during my PhD, respond to the problematic of physical simulation of the behavior of deformable objects subject to topological changes in interactive time. My work resulted in the definition of a new unified model coupling a complete topological model and a physical model for physical simulation of deformable objects decomposed in surface as volume elements, while performing during this simulation topological changes such as cutting or subdivision local of a mesh element. This operation allowed us to propose an adaptive method where mesh elements are refined during the simulation according to a geometric criterion. For the topological model of our unified model, we made the choice of combinatorial maps and more particularly linear cellular complexes. Their main advantage of the latter is the simplicity of its equations, its intuitive implementation, its interactivity and its ease to handle topological changes. Finally, the definition of a unified model allowed us to propose a model avoiding duplication of information and facilitate the update after topological changes
Holt-Phoenix, Marianne S. (Marianne Shue). "Wave propagation in finite element and mass-spring-dashpot lattice models." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35683.
Full textIncludes bibliographical references (p. 42).
Numerical efficiency comparisons of a four-node finite element model (FEM), a mass-spring lattice model (MSLM), and a mass-spring-dashpot lattice model (MSDLM) are investigated. Specifically, the error in the ultrasonic phase speed with variations in Poisson's ratio and angle of incidence is evaluated in each model of an isotropic elastic solid. With regard to phase speed, materials with constant N grid spaces per P-wavelength having Poisson's ratios between 0.0 and 0.25 are modeled more accurately with the MSLM. Materials with Poisson's ratios between 0.35 and 0.5 and N grid spaces per P-wavelength are more accurately modeled with the FEM. Materials whose Poisson's ratio is between 0.25 and 0.35 are modeled equally accurately. With regard to phase speed, viscoelastic materials modeled with FEM and MSDLM show good agreement with known analytical solutions. The computational expense of all three models is also examined. The number of floating point operations (FLOPS) needed to achieve a specified phase speed accuracy is calculated for each different model. While the FEM and MSLM have nearly the same computation cost, the MSDLM is 5 times more costly than either the FEM or MSLM.
by Marianne S. Holt-Phoenix.
Nav.E.and S.M.
Books on the topic "Mass spring model"
Ochoa Espejo, Paulina. On Borders. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190074197.001.0001.
Full textBook chapters on the topic "Mass spring model"
Lynch, Gordon S., David G. Harrison, Hanjoong Jo, Charles Searles, Philippe Connes, Christopher E. Kline, C. Castagna, et al. "Spring-Mass Model." In Encyclopedia of Exercise Medicine in Health and Disease, 809. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_3063.
Full textMollemans, Wouter, Filip Schutyser, Johan Van Cleynenbreugel, and Paul Suetens. "Tetrahedral Mass Spring Model for Fast Soft Tissue Deformation." In Surgery Simulation and Soft Tissue Modeling, 145–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-45015-7_14.
Full textLiping, Dong, Wang Xiaowei, Zhang Xinqi, Bu Shaoxian, and Liu Guoqing. "Floor Impact Bench-Test Method Based on Mass-Spring Model." In Lecture Notes in Electrical Engineering, 937–46. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7945-5_68.
Full textWilliams, J. G., and M. N. M. Badi. "The effect of damping on the spring-mass dynamic fracture model." In Structural Integrity, 147–61. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0927-4_13.
Full textBoehler, T., and H. O. Peitgen. "Evaluation of Image Registration Using a Mass-Spring Model of the Breast." In IFMBE Proceedings, 2201–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03882-2_584.
Full textPaloc, Celine, Fernando Bello, Richard I. Kitney, and Ara Darzi. "Online Multiresolution Volumetric Mass Spring Model for Real Time Soft Tissue Deformation." In Medical Image Computing and Computer-Assisted Intervention — MICCAI 2002, 219–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45787-9_28.
Full textHuang, Jie, and D. L. Turcotte. "Chaotic Seismic Faulting with a Mass-spring Model and Velocity-weakening Friction." In Fractals and Chaos in the Earth Sciences, 569–89. Basel: Birkhäuser Basel, 1992. http://dx.doi.org/10.1007/978-3-0348-6191-5_4.
Full textWang, Hongjie, Yuanjun Ding, Qingqing Yang, and Haibo Pu. "Cloth Simulation Algorithm Based on the Mass-Spring Model and the Non-planar Vortex Lattice Model." In Lecture Notes in Electrical Engineering, 578–85. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3250-4_72.
Full textMollemans, Wouter, Filip Schutyser, Johan Van Cleynenbreugel, and Paul Suetens. "Fast Soft Tissue Deformation with Tetrahedral Mass Spring Model for Maxillofacial Surgery Planning Systems." In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004, 371–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30136-3_46.
Full textArriola-Rios, Veronica E., and Jeremy Wyatt. "2D Mass-spring-like Model for Prediction of a Sponge’s Behaviour upon Robotic Interaction." In Research and Development in Intelligent Systems XXVIII, 195–208. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-4471-2318-7_14.
Full textConference papers on the topic "Mass spring model"
Córdoba, Oscar. "Mass Spring Interlocked Bladed Disk Model." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15923.
Full textGarcía, Marcos, Luis Pastor, and Angel Rodríguez. "An adaptive multiresolution mass-spring model." In Visual Communications and Image Processing 2005. SPIE, 2005. http://dx.doi.org/10.1117/12.631407.
Full textSelle, Andrew, Michael Lentine, and Ronald Fedkiw. "A mass spring model for hair simulation." In ACM SIGGRAPH 2008 papers. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1399504.1360663.
Full textAugusto Del Carpio Minaya, Roberto, and Yalmar Ponce Atencio. "Applications of spring-mass model on crystalline lattices." In 2017 XLIII Latin American Computer Conference (CLEI). IEEE, 2017. http://dx.doi.org/10.1109/clei.2017.8226473.
Full textAriyanto, Gunawan, and Mark S. Nixon. "Marionette mass-spring model for 3D gait biometrics." In 2012 5th IAPR International Conference on Biometrics (ICB). IEEE, 2012. http://dx.doi.org/10.1109/icb.2012.6199832.
Full textLou, Zhangpeng, Hui Zhang, Yiheng Wei, and Yong Wang. "Super-elasticity handling method in mass-spring model." In 2014 33rd Chinese Control Conference (CCC). IEEE, 2014. http://dx.doi.org/10.1109/chicc.2014.6896025.
Full textKot, Maciej, and Hiroshi Nagahashi. "Verlet with Collisions for Mass Spring Model Simulations." In International Conference on Computer Graphics Theory and Applications. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0006269303140320.
Full textYang, Ziyan, Wenzhe Zhu, and Qing Zhu. "Mass-spring Model for Liquid Object Collision Simulation." In IVSP 2021: 2021 3rd International Conference on Image, Video and Signal Processing. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3459212.3459229.
Full textYu, Haiyan, and Zhaofeng Geng. "An Improved Mass-Spring Model to Simulate Draping Cloth." In 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA). IEEE, 2008. http://dx.doi.org/10.1109/icicta.2008.12.
Full textHissem, Simon, and Mamadou Lamine Doumbia. "Infinite Spring-Mass Chain Model Using Fibonacci Wave Functions." In 2019 Advances in Science and Engineering Technology International Conferences (ASET). IEEE, 2019. http://dx.doi.org/10.1109/icaset.2019.8714460.
Full text