To see the other types of publications on this topic, follow the link: Mass transfer. Heat.

Dissertations / Theses on the topic 'Mass transfer. Heat'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Mass transfer. Heat.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Nadim, Pedram. "Irreversibility of combustion, heat and mass transfer." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-13651.

Full text
Abstract:
Combustion is by far the most commonly used technology for energy conversion. The analysis of entropy generation and exergy loss is normally used to optimize thermal energy technologies such as gas turbines. The loss of exergy in the combustor is the largest of all component losses in gas turbine systems. The exergy efficiency of gas turbine combustors is typically 20-30%. In recent years the focus on reduction of climate gas and pollutant emissions from combustion has been a driving factor for research on combustion efficiency. The emphasis on fuel economy and pollution reduction from combustion motivates a study of the exergy efficiency of a combustion process. A bulk exergy analysis of the combustor does not take into account the complexity of the combustion process. The spatial dimensions of the flame must be accounted for in order gain detailed information about the entropy generation. This motivates a study of the local entropy production in a flame and quantifying the mechanisms that reduce the exergetic efficiency. The entropy production in combustion is also believed to have an effect on the stability of the flame. As most combustors operate with turbulent flow the emphasis of this report is on turbulent combustion.The source of exergy destruction or irreversibility in combustion is generally attributed to four different mechanisms: chemical reaction, internal heat transfer, mass diffusion of species, and viscous dissipation. The irreversibilities from the first three sources have been computed for a turbulent hydrogen H2 jet diffusion flame using prescribed probability density functions and data from experiments. The contribution of each source of exergy destruction is locally quantifed in the flame. Two different modeling assumptions are made, one based on a fast chemistry assumption and the other based on curve fitted relations from experimental data. The second law efficiency of the flame was found to be 98.7% when assuming fast chemistry, and 76.0% when curve fits from experimental data where used.The contribution from viscous dissipation has in previous studies been found to be negligible, and in order to simplify the modeling of the turbulent flow its contribution to the total entropy production has not been studied in this report.
APA, Harvard, Vancouver, ISO, and other styles
2

Keyhani, Alireza. "Heat and mass transfer in layered seedbed." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq23997.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wee, H. K. "Heat and mass transfer in confined spaces." Thesis, University of Canterbury. Chemical and Process Engineering, 1986. http://hdl.handle.net/10092/5879.

Full text
Abstract:
A novel experimental technique had been used to investigate the simultaneous transfer of heat and moisture in a simulated building cavity by natural convection. This technique employed two porous plastic plates as the two cavity walls and this arrangement allowed the imposition of a simultaneous moisture gradient on top of a temperature gradient and vice-versa. Both aiding and opposing-flow conditions were investigated for the vertical and horizontal cavity configuration. The aspect-ratio of the experimental cavity used was 7.0 and the fluid investigated was air. The experimental results were correlated in the form of Nusselt and/or Sherwood number versus an appropriately defined Rayleigh number which depended on the type of gradient causing the flow. The Nusselt and Sherwood numbers were found to agree well with the theoretical values of this work obtained from numerical calculation using a finite-difference technique. The temperature, concentration, stream-function and velocity fields from the numerical calculation also augmented the experimental results. As no previous results on the rate of moisture-transfer and s interaction with the rate of heat-transfer in an actual building cavity were available, the results of this work addresses this gap in the literature. Under the conditions investigated, which corresponded to the actual temperature and moisture gradients in a typical building cavity in New Zealand, the simultaneous temperature gradient had increased significantly the rate of moisture transfer while the presence of the simultaneous moisture gradient had not increased significantly the rate of heat transfer.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Guodong. "Heat and mass transfer in porous media." Thesis, University of Leeds, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.392321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Reichrath, Sven. "Convective heat and mass transfer in glasshouses." Thesis, University of Exeter, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Souccar, Adham. "Heat transfer and mass transfer with heat generation in drops at high peclet number /." Connect to Online Resource-OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1177603981.

Full text
Abstract:
Dissertation (Ph.D.)--University of Toledo, 2007.
Typescript. "Submitted as partial fulfillment of the requirements for The Doctor of Philosophy degree in Engineering." Bibliography: leaves 65-74.
APA, Harvard, Vancouver, ISO, and other styles
7

Souccar, Adham W. "Heat Transfer and Mass Transfer with Heat Generation in Drops at High Peclet Number." University of Toledo / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1177603981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kilic, Ilker. "Heat And Mass Transfer Problem And Some Applications." Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614140/index.pdf.

Full text
Abstract:
Numerical solutions of mathematical modelizations of heat and mass transfer in cubical and cylindrical reactors of solar adsorption refrigeration systems are studied. For the resolution of the equations describing the coupling between heat and mass transfer, Bubnov-Galerkin method is used. An exact solution for time dependent heat transfer in cylindrical multilayered annulus is presented. Separation of variables method has been used to investigate the temperature behavior. An analytical double series relation is proposed as a solution for the temperature distribution, and Fourier coefficients in each layer are obtained by solving some set of equations related to thermal boundary conditions at inside and outside of the cylinder.
APA, Harvard, Vancouver, ISO, and other styles
9

Lindblom, Jenny. "Condensation irrigation : simulations of heat and mass transfer." Licentiate thesis, Luleå : Luleå University of technology, 2006. http://epubl.luth.se/1402-1757/2006/08.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Porter, Simon William. "Heat and mass transfer during structured cereal baking." Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.505758.

Full text
Abstract:
The majority of modern cereal baking ovens are tunnel ovens with multiple zones, each of which is individually controlled. A baking profile is set by the oven operator, which describes the target temperatures and air velocities in each of the zones along the length of the oven. There may be up to ten zones in modern tunnel ovens; it is thus a complex procedure to generate an optimum profile. A computer numerical model was developed to model the baking process and to make predictions of the biscuit temperature, heat flux and moisture content through the bake.
APA, Harvard, Vancouver, ISO, and other styles
11

Galbraith, Graham H. "Heat and mass transfer within porous building materials." Thesis, University of Strathclyde, 1992. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21508.

Full text
Abstract:
The thermal and structural performance of building elements can be significantly impaired by the presence of excess moisture. At present, designers have available only simplistic steady-state techniques to predict such effects, for example that presented by Glaser in 1959. These simple models recognise moisture transport in vapour form only and do not allow information on material moisture content to be obtained directly. They are also based on the assumption that the material transport properties are independent of the prevailing environmental conditions, whereas they are in fact complex functions of parameters such as relative humidity. This research has been carried out to develop a set of model equations which account for both liquid and vapour transfer through porous structures, and which enable material moisture content profiles to be produced. The equations generated in this work are transient and enable the effects of moisture and thermal capacity to be considered. An experimental investigation has also been carried out to produce a methodology which can be used to obtain the required material properties. These equations and material properties have been combined with realistic boundary conditions to produce a finite difference model which enables simple wall structures to be analysed in terms of temperature, vapour pressure, relative humidity, moisture content and moisture flow rate. The use of this FORTRAN 77 computer code is illustrated by application to traditional and timber-framed wall constructions. The results illustrate the applicability and flexibility of such an approach and confirm the importance of its further development in the future.
APA, Harvard, Vancouver, ISO, and other styles
12

Sabir, Hisham. "Heat and mass transfer processes in absorption systems." Thesis, King's College London (University of London), 1993. https://kclpure.kcl.ac.uk/portal/en/theses/heat-and-mass-transfer-processes-in-absorption-systems(ab68d065-c159-4292-ad39-b7a820ac0054).html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hussain, Arshad. "Heat and mass transfer in tubular inorganic membranes." [S.l.] : [s.n.], 2006. http://diglib.uni-magdeburg.de/Dissertationen/2006/arshussain.htm.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Shao, Ming. "Modelling simultaneous heat and mass transfer in wood." Thesis, Virginia Tech, 1994. http://hdl.handle.net/10919/42073.

Full text
Abstract:
The fundamental and quantitative study of heat and mass transfer processes in wood plays an important role for understanding many important production processes, such as wood drying and hot-pressing. It will help us improve the existing products and production techniques and develop new manufacturing technology. The most difficult aspect of the study is the complicated interactions of heat and mass transfer mechanisms. Extensive characterization of these physical processes using a strictly experimental approach is extremely difficult because of the excessively large number of variables that must be considered. However, mathematical modeling and numerical techniques serve as a powerful tool to help us understand the complicated physical processes. The goal of this research is to model the simultaneous heat and mass transfer in wood. The specific objectives of this research are: 1) develop a computer simulation program, implementing an existing one-dimensional mathematical drying model, using a finite difference approach, to numerically evaluate the mathematical model. 2) study sensitivity of the heat and mass transfer model to determine the effects of wood physical properties and environmental conditions on the drying processes.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
15

Staton, JoAnna Christen II. "Heat and Mass Transfer Characteristics of Desiccant Polymers." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/9785.

Full text
Abstract:
Desiccant-enhanced air conditioning equipment has exhibited both the capability to improve humidity control and the potential to save energy costs by lowering the latent energy requirement of the supply air stream. The resulting increasing popularity of desiccant-enhanced air conditioning systems has sparked new interest in the search for a better, more efficient desiccant material. The ultimate goal of this research was to develop a material that, when applied to an existing air-to-air heat exchanger, would achieve the necessary heat and mass transfer in a single process, thus transforming a sensible heat exchanger into a total enthalpy exchanger. This study focuses on the development and determination of appropriate polymeric desiccant materials for use in different heat and mass transfer applications. Various candidate materials were initially studied. It was decided that polyvinyl alcohol best met the pre-determined selection criteria. After the focus material was chosen, numerical models representing two heat and mass transfer applications were created. One-dimensional numerical models were developed for the performance studies of a rotary wheel total enthalpy exchanger. A two-dimensional numerical model was developed for the performance studies of a fixed plate total enthalpy exchanger as well. Material characterization tests were performed to collect material property information required by the numerical models. Sensible, latent, and total efficiencies gathered from both the rotary wheel total enthalpy exchanger and the fixed plate total enthalpy exchanger models indicate potential uses for some candidate polyvinyl alcohol materials.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
16

Glockling, James L. D. "Heat and mass transfer in specific aerosol systems." Thesis, London South Bank University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Pembery, J. G. A. "Mass transfer modelling of heat transfer in partially blocked nuclear fuel bundles." Thesis, University of Exeter, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.354029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Okorafor, Agbai Azubuike. "A study of heat and mass transfer in a double-diffusive system /." Available from the University of Aberdeen Library and Historic Collections Digital Resources. Restricted: no access until May 13, 2009, 2009. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=26048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

McClelland, Elizabeth A. "Heat and mass transfer in an axisymmetric sudden expansion." Thesis, Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/16462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Tzevelecos, Wassilis. "Contribution to Heat and Mass Transfer for Space Experiments." Doctoral thesis, Universite Libre de Bruxelles, 2018. https://dipot.ulb.ac.be/dspace/bitstream/2013/269864/6/contratWT.pdf.

Full text
Abstract:
This manuscript has been realized in the frame of SELENE experiment research activities. SELENE is the ac-ronym of Self-rewetting fluids for ENErgy management and consists of a space project aiming to investigate heat and mass transfer phenomena in mono-groove configuration with self-rewetting fluids (SRFs). Self-rewetting fluids are mixture showing an anomalous trend of surface tension with temperature, an inversion of the surface tension slope after certain temperature. As consequence, when the minimum in surface ten-sion is crossed, surface tension gradient at the meniscus interface pulls the liquid towards the warmest region, preventing hot spots. This mechanism is completely spontaneous and has an interesting potential when applied to heat transfer applications as heat pipes (HPs). In HPs heat is removed by the liquid at the warmest region (the evaporator) and transported at the coldest zone (the condenser) by phase change; here, heat is removed by the pipe and dissipated outside through a radiator. To operate correctly, liquid is supplied to the evaporator by capillarity and the liquid vapour is allowed to flow back to condenser from a dedicated pipe region where liquid is not allowed. Vapour condensation releases at the condenser the heat to be dissipated. When SRFs are replacing working fluid in HP applications and temperatures are higher than the characteristic minimum in surface tension, capillary force is assisted by inverse Marangoni flow at the vapour-liquid interface.Since heat pipe performances are related to liquid supplied at the evaporator, in order to compare SRFs and not SRFs working fluids, it is needed to split the contribution of Marangoni and capillary force in the liquid flow. Marangoni effect is related to surface tension gradient that, in a mixture as SRF, is dependent on temperature and local composition at the liquid interface. For all these reasons, SELENE is designed to be the link between scientific research on HPs and heat transfer applications using SRFs. SELENE consists of a mono-groove with trapezoidal section that can be considered as a “clump” of an Inner Grooved Heat Pipe (IGHP) and, in order to split capillary and Marangoni contribution, it is integrated dedicated tools providing the required data in terms of concentration and liquid meniscus shape. Experimental data are used to build a simplified thermo-soluto-fluido dynamic model describing the thermo-mechanic mechanisms between the liquid bulk and the vapour flow. In the manuscript here presented it has been carried on a technology development of the required diag-nostics for the SELENE space project. The diagnostics have been designed to work in microgravity condi-tions even if they are tested on ground. As concentration diagnostic, in the text are proposed several tech-niques and more interest is spent on the adaptation of I-VED (In vivo Embolic Detection) technology meas-uring fluid AC impedance to retrieve composition information; the technology is not yet mature to be inte-grated in SELENE but it presents interesting features to be investigated in microgravity conditions. As me-niscus reconstruction technique it is proposed a new and innovative technology developed in the frame of the presented thesis and it consists of a non-intrusive optical technique aiming to retrieve liquid meniscus shape (and so curvature) from a single visualization window mounted at the top of the SELENE breadboard.An analytical approach aiming to retrieve a simplified mathematical model of the transfer mechanisms is also provided in the text. The analytical analysis clearly shows the relations between the experimental measured data and the velocity profiles in the liquid and vapour regions. In addition, since in SELENE exper-iment the heat conduction across the groove itself is not negligible, in the text it is provided a semi-empirical thermal model based on the Multi Lumped Model (MLM) theory and able to retrieve local heat exchanged information along the pipe length. The model is used to compare experiments with different working fluids at different operational regimes.
Doctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
21

Song, Yang. "Solids transportation, heat and mass transfer in rotary dryers." Thesis, University of Ottawa (Canada), 2003. http://hdl.handle.net/10393/26346.

Full text
Abstract:
In this thesis, the mechanisms of solids transportation, heat and mass transfer within rotary dryers were first examined. Some experimental data obtained in pilot-scale and industrial rotary dryers were used to investigate the influences of moisture content of solids and gas temperature on solids transportation, typically on solids mean residence time distribution, and on heat and mass transfer to estimate the volumetric heat and mass transfer coefficients. One pilot-scale rotary dryer with direct contact between the gas and the solids with co-current flow has been designed, constructed and tested in our laboratory. It mainly consists of four parts: an electric fan, an electric heater, a solids feeding system and a rotary cylinder. Numerous experiments were performed to investigate the dynamic characteristics of solids transportation in this pilot-scale rotary dryer. (Abstract shortened by UMI.)
APA, Harvard, Vancouver, ISO, and other styles
22

Oh, Sung Hyuk. "Experimental and numerical investigation of turbulent flow and heat (mass) transfer in a two-pass trapezoidal channel with turbulence promoters." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-3198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Parra, Saldivar Maria Luisa. "Heat and mass transfer behaviours of building materials and structures." Thesis, Cranfield University, 2005. http://hdl.handle.net/1826/4019.

Full text
Abstract:
Heat storage as a means to respond to the requirements for improved energy efficiency motivated this study. The objective was to evaluate the impact of thermal energy storage systems in dwellings under Mexican climatic conditions. In the first part of this work thermal behaviors of adobe traditional architecture is discussed; in the second part a latent heat storage system using phase change materials (PCMs) is proposed and assessed. The high thermal mass structural elements of adobe traditional architecture have been charactefted as heat wave modulators. Nevertheless, the moisture content in these structures also plays a significant role as a means for heat storage and potentially enhancing thermal lag. The objective of this part of the study was to assess the scope of existing coupled heat and mass transport models regarding water contained latent heat storage on porous structures. The significant contribution of latent heat storage recognized in adobe structures, led to the study of a solar-thermal storage system using (PCMs). The objective of this part of the study was twofold: 1) Enhance the existing computational models on the Stephan problem by considering the effect of regional variations (weather conditions imposed) on the boundary conditions. 2) Evaluate the impact of the solar-thermal system proposed when applied in dwellings in view of regional variations under Mexican weather conditions. Solar-thermal storage systems independent of the structure offer the possibility to be applied to existing buildings as well as new constructions. The proposal is a storage element that constitutes internal blinds in windows. The computational model of the Stephan problem was solved with the enthalpy method. Simulations were run under different sets of climatic conditions. For the first time the main factors for promoting system's optimisation, when gathered in a single comparison study, provided a more general insight on system's performance. Experimental work was also carried out regarding the charging of the heat storage unit by heat gains other than direct radiation, and the storage unit's performance as insulator. A large-scale solar simulator was constructed. Statistical analysis of experimental results showed interesting findings including: The important role that internal heat gains play on the charging of the latent heat storage unit proposed. A larger effect on the discharging ratio was found with lower air temperatures than with faster air flow rates. The faster discharging rate tests also released slightly more energy. PCM volume was found to be the most critical factor on system performance. The importance of providing the means to discharge the total quantity of heat stored was pointed out. For the cooling mode, elements to enhance discharging might be required. For system control, thermal insulation was found to be an effective measure when the discharging is required to occur over a longer period. The multiple PCM unit was found to be more efficient during the charging process (storing more energy) than units containing a single PCM. Nevertheless the single PCM unit performed better for cooling than the multiple PCM unit. The question was raised as to what extent PCM thermal conductivity actually influences system's performance. The thermal storage system proposed in this study reduced the heating system energy consumption requirements for an experimental room by 28.6%.
APA, Harvard, Vancouver, ISO, and other styles
24

Kadylak, David Erwin. "Effectiveness method for heat and mass transfer in membrane humidifiers." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/7092.

Full text
Abstract:
A thermodynamic model for use in predicting heat and water transfer across a membrane in a membrane humidifier was created that could take into account fuel cell operating conditions. Experiments were conducted to obtain the necessary information to make the model complete, and also to validate its use over a range of temperatures and flow rates. The latent effectiveness and latent number of transfer units (ε-NTU) method for mass transfer in membrane humidity exchangers was applied to PEMFC membrane humidifiers to comprise the heat and mass transfer thermodynamic model. Two limitations that cause deviations in the theoretical outlet conditions previously reported were discovered: 1. using a constant enthalpy of vaporization derived from the reference temperature in the Clausius-Clapeyron equation; and, 2. simplifying the relationship between relative humidity and absolute humidity as linear. In the model presented here, these limitations are alleviated by using an effective mass transfer coefficient Ueff. The model was created in Mathcad and the constitutive equations are solved iteratively to find the flux of water through the membrane. The new procedure was applied to three types of membrane and compared to the curves of εL and NTUL found using Zhang and Niu’s method, which is normally applied to energy recovery ventilators (ERVs). For a 70°C isothermal case, a deviation in latent effectiveness predictions was observed of 29% for Type-I membranes, 23% for linear-type membranes, and 46% for Type-III membranes, as compared to the latent effectiveness values obtained with the ERV method. Experiments were conducted on a commercially available fuel cell humidifier to determine which parameters could be removed from a full-factorial experimental matrix. It was discovered that pressure had a lower effect on water transport than temperature over the practical operating range of fuel cell systems, so pressure effects were neglected throughout the study. The focus of the study was then on the effect of overall temperature. Furthermore, it was determined that water recovery ratio is the best performance metric because it takes into account the water supplied to the humidifier. Two different membranes were characterized to incorporate into the thermodynamic model. The first, used as a baseline, was a porous polymer membrane with a hydrophilic additive. The second membrane was a competing novel ionic membrane. Both membranes showed similar behavior, with low water uptake profiles at relative humidities less than 80%, and a steep increase in water uptake after 80% relative humidity. The porous membrane exhibited greater maximum sorption than the ionic membrane. Experiments were conducted with samples of the porous and ionic membrane in a single cell humidifier at isothermal conditions at temperatures of 25°C, 50°C, and 75°C. The ionic membrane showed greater water transfer over the range of laminar flows investigated. The ionic membrane’s water recovery was almost unaffected by flow rate; whereas the porous membrane displayed a decrease in water recovery as flow rate increased. Finally, the model was correlated with the experimental data by obtaining a corresponding diffusion coefficient for each membrane over the range of temperatures tested.
APA, Harvard, Vancouver, ISO, and other styles
25

Francis, Nicholas Donald. "Heat and mass transfer in a semi-porous textile composite." Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/17085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Roberts, David Nigel. "Heat and mass transfer studies in sodium-argon filled enclosures." Thesis, London South Bank University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Li, Yi. "Heat and mass transfer for the diffusion driven desalination process." [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0013737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

ARAÚJO, PAULO MURILLO DE SOUZA. "HEAT AND MASS TRANSFER BETWEEN LIQUID FILM AND AIR STREAM." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1986. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=20587@1.

Full text
Abstract:
O objetivo deste trabalho é analisar as transferências de momentum, calor e massa num canal bidimensional inclinado, onde escoam um filme líquido descendente e uma corrente turbulenta de ar de sentido oposto, ou de mesmo sentido oposto, ou de mesmo sentido. O filme líquido, suposto laminar, consiste numa solução fraca, ou degenerada, de trietileno glicol em água. A placa inferior do canal é mantida aquecida numa temperatura uniforme, de modo a facilitar a remoção de água do líquido para a fase gasosa. A corrente de ar deve ser turbulenta, para garantir taxas convenientes da massa de água transferida. Considera-se, não obstante, a possibilidade do ar também escoar liminarmente. A placa superior do canal, ou cobertura é adiabática e ambas as placas são impermeáveis à transferência de água. A parte hidrodinamica do problema é resolvida separadamente. Atribui-se maior importância à determinação dos perfis de temperatura e concentração de águas nas duas fases. Pretende-se que a aparelhagem acima descrita opere como um regenerador da substância líquida higroscópica, tendo este sido previamente usado num secador de ar, em aplicação de fim industrial ou agrícola. A tarefa proposta pelo problema é a simulação das condições operativas do trocador de massa. Como resultado desta simulação, tenciona-se predizer os valores dos coeficientes de transferências de calor e massa, variando amplamente as taxas de escoamento, tanto da fase gasosa, quanto da líquida. Na verdade, diversos pesquisadores têm revelado, nos últimos anos, um grande interesse no estudo de regeneradores do tipo aqui analisado. Toda vez que se tem disponibilidade de energia a temperaturas moderadas e baixo custo, como energia solar ou calor de rejeito industrial, parece indicado regenerar desta forma o desumidificante líquido nas instalações de condicionamento de ar por resfriamento evaporativo. Estabelecidas as equações diferenciais parciais do problema e as condições de contorno pertinentes, elas são resolvidas através de algoritmos obtidos por diferenças finitas, dentro do enfoque de volumes de controle. O procedimento numérico é interativo, usando-se o computador digital na obtenção da solução. Verifica-se que os resultados se mantêm dentro da analogia entre transferência de calor e massa, conforme era esperado. A partir dos resultados, podem-se estabelecer algumas correlações para os principais parâmetros do problema. Propõe-se, por fim, uma metodologia para o projeto do equipamento. Para isto, não é necessário fazer uso direto do método numérico, pois existem algumas poucas equações analíticas, simples, que podem ser facilmente manipuladas num microcomputador ou, até mesmo, numa calculadora eletrônica. Estas equações são deduzidas a partir da aplicação da teoria de penetração ao problema. As correlações dos resultados numéricos são, entretanto, essenciais ao bom emprego da teoria penetração.
The combined momentum, heat and mass transfer is analysed in a two domensional inclined channnel for a countercurrent, or co-current turbulent air strem flowing past a liquid falling film. The film flow, supposed to be laminar, consists of a weak, or co-current tubulent air stream flowing past a liquid falling film. The film flow, supposed to be laminar, consists of a weak, or degenerate, solution of triethylene glycol and water. The film flow, supposed to be laminar, consists of a weak, or degenerate, solution of triethylene glycol and water. The lower plate of the channel is maintained at a constant, relatively high from the liquid to the gas phase. The stream of air is usually turbulent, thus assuring convenient rates of tranferred mass of water. Nevertheless, the possibility of laminar flow in the gas is not avoided. The second plate of the channel is considered as adiabatic and both plates are impervious to water. The hydrodynamic part of the problem is solved separately, and the determination of temperature and concentration of water profiles in the two phases is of major importance. The apparatus above described is intended to be a regenerator of the hygroscopic liquid, previously used in an air dryer, for industrial or agricultural purposes. The tash suggested by the problem is then to simulate the conditions, under which this mass exchanger will operate. Following the simulation, heat and mass transfer coefficientes can be predicted for a large range of flow rates of both gas an liquid phases. In fact, in recent years several investigators have manifested an increasing interest in developing studies of such equipment. In situations where a source of energy at low temperature is freely available, and this is the case of solar energy or industrial rejects, the employment of liquid dehumidifier regenerators is particularly attractive for evaporative cooling air conditioning systems. The partial differential equations of the problem, accompanied by suitable boundary conditions, are solved by a finite difference scheme, based on the volume of control approach. There are iterative procedures involved and solutions is reached in a mainframe computer. The results seem to be in accordance with the expected analoggy between heat and mass transfer. Some correlations are presented for the principal parameters of the problem. Lastly, a methodology is proposed for the design of the equipment. In spite of the complexity of the problem, it is possible to provide the user with a few simple analytic equations, which can be solved in any micro-computer or even in a pocket calculation. Theses equations arise from the employment of the penetration theorym briefly discussed and compared with numerical results. Indubitably, the use of this theory must be in compliance with the previously obtained numerical correlations.
APA, Harvard, Vancouver, ISO, and other styles
29

Mattingly, Brett T. (Brett Thomas). "Containment analysis incorporating boundary layer heat and mass transfer techniques." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/84749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Tien, Hwa-Chong. "Analysis of flow, heat and mass transfer in porous insulations /." The Ohio State University, 1989. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487672631599499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Khalafallah, Bahjat H. "Coupled heat and mass transfer in concrete exposed to fire." Thesis, Aston University, 2001. http://publications.aston.ac.uk/14160/.

Full text
Abstract:
The first investigation of this study is concerned with the reasonableness of the assumptions related to diffusion of water vapour in concrete and with the development of a diffusivity equation for heated concrete. It has been demonstrated that diffusion of water vapour does occur in concrete at all temperatures and that the type of diffusion is concrete is Knudsen diffusion. Neglecting diffusion leads to underestimating the pressure. It results in a maximum pore pressure of less than 1 MPa. It has also been shown that the assumption that diffusion in concrete is molecular is unreasonable even when the tortuosity is considered. Molecular diffusivity leads to overestimating the pressure. It results in a maximum pore pressure of 2.7 MPa of which the vapour pressure is 1.5 MPa while the air pressure is 1.2 MPa. Also, the first diffusivity equation, appropriately named 'concrete diffusivity', has been developed specifically for concrete that determines the effective diffusivity of any gas in concrete at any temperature. In thick walls and columns exposed to fire, concrete diffusivity leads to a maximum pore pressures of 1.5 and 2.2 MPa (along diagonals), respectively, that are almost entirely due to water vapour pressure. Also, spalling is exacerbated, and thus higher pressures may occur, in thin heated sections, since there is less of a cool reservoir towards which vapour can migrate. Furthermore, the reduction of the cool reservoir is affected not only by the thickness, but also by the time of exposure to fire and by the type of exposure, i.e. whether the concrete member is exposed to fire from one or more sides. The second investigation is concerned with examining the effects of thickness and exposure time and type. It has been demonstrated that the build up of pore pressure is low in thick members, since there is a substantial cool zone towards which water vapour can migrate. Thus, if surface and/or explosive spalling occur on a thick member, then such spalling must be due to high thermal stresses, but corner spalling is likely to be pore pressure spalling. However, depending on the exposure time and type, the pore pressures can be more than twice those occurring in thick members and thought to be the maximum that can occur so far, and thus the enhanced propensity of pore pressure spalling occurring on thin sections heated on opposite sides has been conclusively demonstrated to be due to the lack of a cool zone towards which moisture can migrate. Expressions were developed for the determination of the maximum pore pressures that can occur in different concrete walls and columns exposed to fire and of the corresponding times of exposure.
APA, Harvard, Vancouver, ISO, and other styles
32

Haq, Inam Ul. "Heat and mass transfer analysis for crud coated PWR fuel." Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/6373.

Full text
Abstract:
In water-cooled nuclear reactors, various species are present in the coolant, either in ionic solution, or entrained as very fine particles. Most arise from corrosion of primary circuit surfaces, or from chemicals, such as boric acid, lithium hydroxide, zinc and hydrogen, deliberately added to the coolant. These materials deposit on the surfaces of fuel pins, typically in the upper regions of the core, forming what is generally termed “crud”. This thesis reports a study of the thermal-hydraulic consequences of this deposit. These crud deposits are generally found to contain a large population of through-thickness chimneys, and it is believed that this gives rise to a wick-boiling mechanism of heat transfer. A coupled two-dimensional model of the processes of heat conduction, advection and species diffusion in the crud has been developed. An iterative scheme has been employed to solve the set of coupled equations of each process. The wick boiling process has been found to be an efficient heat transfer mode, taking away about 80% of the heat generated. It has also been found that consideration of heat transfer in the clad can increase the predicted solute concentration in the crud. The effects of some important parameters, such as chimney density, chimney radius, porosity of the crud, crud thickness, clad heat flux and boron concentration in the coolant have been investigated. The fuel thermal performance has been characterized in terms of an effective crud thermal conductivity, and the non-linear dependence this has on parameters such as crud thickness and chimney density had been determined. Lastly, it is observed that plausible pore sizes of the crud, coupled with higher temperatures in the crud, may be such that a film of vapour is generated at the base of the crud. Initial estimates are presented of the cladding temperatures and solute concentration that may be generated as a consequence of this vapour layer.
APA, Harvard, Vancouver, ISO, and other styles
33

Jia, Dening. "Heat and mass transfer in pulsed fluidized bed of biomass." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/61087.

Full text
Abstract:
Biomass is a promising energy source that has been considered in a variety of thermal conversion processes where fluidized beds with their exceptional heat and mass transfer rates, are often considered as potential candidates. However, the fluidization of biomass is held back by its cohesive nature. This work has demonstrated that pulsed gas flow in fluidized bed is highly effective in overcoming channeling, partial and complete defluidization, without the need for inert bed particles. Both heat transfer and mass transfer were investigated in a pulsed fluidized bed with 0.15 m by 0.10 m rectangular cross-section area, and a fluidized bed with a tapered bottom to improve reactor performance. Biomass used in this work included Douglas fir, pine and switchgrass. Batch drying test was selected as an indirect indicator of gas–solid contact, heat and mass transfer. Mass transfer was evaluated through batch drying tests, where better gas–solid contact and mass transfer was assessed through the water removal efficiency. An optimum operating condition was identified after analyzing the intricate relationship between pulsation frequency, gas flow rate and the hydrodynamics. A two-phase drying model that linked single-particle mass transfer to macroscopic hydrodynamics in fluidized bed was implemented to verify the effect of flow rate, temperature and biomass properties on drying and mass transfer. Good agreement was observed between the modelled effective diffusivity and experimental results. Bed-to-surface heat transfer coefficients of all three biomass species in two reactor geometries were measured at various operating conditions. The heat transfer coefficient was influenced greatly by the intensity and frequency of gas pulsation, where both particle convection and gas convection existed. A new heat transfer model was proposed to address the influence of gas pulsation. Modelling results showed good agreement with experimental data.
Applied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
34

Gilbert, Gregory P. "Flow through a model fin and tube heat exchanger and its influence on mass and heat transfer /." Title page, contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09ENS/09ensg464.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hublitz, Inka. "Heat and mass transfer of a low pressure Mars greenhouse simulation and experimental analysis /." [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0013488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Pekdemir, Turgay. "Convective mass transfer from stationary and rotating cylinders in a jet flow." Thesis, University of Exeter, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Eghbali, Davoud A. "Combined heat and mass transfer in gas-liquid two-phase systems." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/17867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Shawesh, Abdussalam Mohamed. "A study of heat and mass transfer in Dual Water Heaters /." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0002/MQ44040.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Inzoli, Isabella, Jean Marc Simon, and Signe Kjelstrup. "Surface resistance to heat and mass transfer in a silicalite membrane." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-193396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kapasi, Shabir F. "A study of heat and mass transfer characteristics of jet impingement." Thesis, Nottingham Trent University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Anderson, Harry. "Stability effects of heat and mass transfer on thin liquid films." Thesis, Cranfield University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hosler, Carrie E. "Fluid flow, heat, and mass transfer of barite mineralization in Missouri /." free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p1421142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mahdavi, Nejad Alireza. "Numerical Study of Heat and Mass Transfer Using Phase Change Materials." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-dissertations/500.

Full text
Abstract:
Phase Change Materials (PCM) absorb and release heat at preset temperatures. Due to their relatively high values of latent heat, they are capable of storing and releasing large amounts of energy during phase change. When a PCM is in its solid phase, it will absorb heat as the external temperature rises. The temperature of the PCM will mirror the external temperature until the melting point of PCM is reached. At this stage, the PCM will begin to melt with almost no change in its temperature. PCM plays an opposite role when the external temperature drops. It releases the stored energy back while going through phase change from liquid phase to solid phase. The present work is a numerical study towards fundamental understanding of the impact of using PCM on enhancement of heat and mass transfer in several scenarios. A numerical analysis has been carried out to determine the impact of presence of PCM on the insulating characteristics of paper board packaging. Two different cases of a layered PCM and uniformly dispersed PCM within the packaging wall are considered. The numerical results illustrate significant reduction in exchange of heat between the exterior and the interior of the packaging. Specifically, the unique concept of utilizing PCM in drying of paper is proposed and a numerical investigation is performed to determine the corresponding transport characteristics. The results indicate that the PCM acts as a heat source and a heat sink alternatingly throughout the conventional paper drying process, enhancing the drying energy efficiency. This study also included presence of gas-fired infrared emitters in the drying process as well for which the spectral absorption coefficient of PCM was measured and incorporated into the theoretical model. Finally, the impact of the presence of PCM in convective air-drying of moist paper is numerically investigated. The hot air ow is generated by an in-line jet nozzle. The air impinges on the exposed surface of the moist paper while the other side is considered to be perfectly insulated. The results provide the corresponding air flow field as well as air temperature distribution in between the nozzle exit and the surface of the moist paper. The results also reveal the enhancement of drying rates with PCM, fundamentally confirming the role of PCM on enhancing the energy efficiency of convective drying of moist paper.
APA, Harvard, Vancouver, ISO, and other styles
44

Tow, Emily Winona. "Heat and mass transfer in bubble column dehumidifiers for HDH desalination." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/87970.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 109-114).
Heat and mass transfer processes governing the performance of bubble dehumidifier trays are studied in order to develop a predictive model and design rules for efficient and economical design of bubble column dehumidifiers for humidification-dehumidification (HDH) systems. As a result of their high heat transfer coefficients and large interfacial areas, bubble columns are an inexpensive and compact solution for dehumidification in HDH, which has promising applications in small-scale desalination and industrial water remediation. Performance parameters for dehumidifier design for HDH, including a device-specific parallel-flow effectiveness, are explained. A new model for the performance of single bubble trays is developed based on the rapid mixing in the column and the approximation of negligible gas-side resistance. An experiment is performed to measure the heat transfer coefficients outside cooling coils in shallow bubble columns, in which geometric parameters including liquid height and cylinder diameter, height, and horizontal position relative to the sparger orifices are varied. The highest heat transfer coefficients are recorded on cylinders placed in the coalescing region and directly above the sparger orifices. Heat flux and parallel-flow effectiveness of a bubble column dehumidifier are investigated experimentally to validate the model, which predicts the heat transfer rate well with an average absolute error of <3%. The independence of heat flux and effectiveness from liquid depth supports the assumption of negligible gas-side resistance to heat and mass transfer. Despite the mass exchange, the bubble column dehumidifier performs like a typical heat exchanger: the heat flux decreases and effectiveness increases with increasing coil area. The results of this study enable modeling and design of bubble column dehumidifiers for high heat recovery and low capital cost.
by Emily Winona Tow.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
45

Fenner, Markus. "Heat and mass transfer from endogenous combustion processes in packed beds." Thesis, Sheffield Hallam University, 2002. http://shura.shu.ac.uk/19644/.

Full text
Abstract:
Since fires can develop from endogenous smouldering combustion processes deep inside packed beds, especially domestic refuse beds, it is a major task in early fire detection to detect the indications of such combustions as early as possible. Since it is believed that the surface temperature distribution of the bed is affected by the heat and mass transfer from a source of endogenous combustion deep within the bed, the measurement of the surface temperature using IR-Thermography (IRT) has been supposed to be the most promising technique in early combustion detection. The present work thus deals with the heat and mass transfer from endogenous sources of combustion in packed beds, particularly domestic refuse beds, in order to predict the temperature distribution inside and at the surface of these beds and thus, to allow for an assessment of IRT based early combustion detection systems. An IR-thermographically measurable surface temperature increase will only be achieved by sufficient heat transfer from the source of combustion. Experimental procedures and mathematical modelling have shown that the heat transfer by conduction and radiation is ineffective and therefore, no indication will be obtainable from the surface temperature distribution. A more satisfactory increase in the surface temperature is given as soon as additional heat is transferred by the diffusion of gaseous combustion products. As a result, the heat transfer by convection from the hot combustion gases is theoretically analysed, in particular the way in which the gases flow from the combustion to the surface of the bed. The results obtained show that the gas flow is initiated and maintained by buoyancy and thus the gas tends to flow vertically towards the surface with minimal collateral diffusion. It was also shown that heterogeneous polydispersed beds can be treated as homogeneous monodispersed beds as long as average values for the characteristic bed properties can be obtained. Based upon that, a mathematical continuum model was derived by which the temperature distribution inside and at the surface of the bed could be predicted. The theoretically obtained results and their implications were then experimentally verified, confirming that heat is predominantly vertically transferred by the gaseous combustion products. The two final sets of experiments were undertaken in a 27 m3 batch of a representative sample of domestic refuse and a batch of wood chips. Comparing the experimental results with the mathematical predictions, a certain deviation becomes apparent, which is attributed to the not exactly one-dimensional condition inside the bed and especially to the effect of condensation and re-evaporation of the water content of the combustion gas, which has not been included in the model. The temperature of hot spots at the surface, that have the size of only a few square-centimetres, increased to the dew point temperature of the combustion gas, i.e. 65 °C to 85 °C, within the first hour after ignition but remained almost constant at this level for several hours. About 30 minutes before the combustion proceeded to the surface, their temperature increased rapidly but not their size. The rapid temperature increase was attributed to the condensation and re-evaporation ceasing because the entire bed had heated up to a temperature at which these effects no longer occur. All results obtained, especially for the surface temperature development, allow for an assessment of IRT based early combustion detection systems. Whilst, on one hand, sources of endogenous combustion are principally detectable from the surface temperature distribution, on the other hand, the reliable detection of the very small hot spots requires a spatial resolution of the system, which is up to ten times higher than recent state-of-the-art systems can provide.
APA, Harvard, Vancouver, ISO, and other styles
46

Krishnamurthy, Nagendra. "A Study of Heat and Mass Transfer in Porous Sorbent Particles." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/64412.

Full text
Abstract:
This dissertation presents a detailed account of the study undertaken on the subject of heat and mass transfer phenomena in porous media. The current work specifically targets the general reaction-diffusion systems arising in separation processes using porous sorbent particles. These particles are comprised of pore channels spanning length scales over almost three orders of magnitude while involving a variety of physical processes such as mass diffusion, heat transfer and surface adsorption-desorption. A novel methodology is proposed in this work that combines models that account for the multi-scale and multi-physics phenomena involved. Pore-resolving DNS calculations using an immersed boundary method (IBM) framework are used to simulate the macro-scale physics while the phenomena at smaller scales are modeled using a sub-pore modeling technique. The IBM scheme developed as part of this work is applicable to complex geometries on curvilinear grids, while also being very efficient, consuming less than 1% of the total simulation time per time-step. A new method of implementing the conjugate heat transfer (CHT) boundary condition is proposed which is a direct extension of the method used for other boundary conditions and does not involve any complex interpolations like previous CHT implementations using IBM. Detailed code verification and validation studies are carried out to demonstrate the accuracy of the developed method. The developed IBM scheme is used in conjunction with a stochastic reconstruction procedure based on simulated annealing. The developed framework is tested in a two-dimensional channel with two types of porous sections - one created using a random assembly of square blocks and another using the stochastic reconstruction procedure. Numerous simulations are performed to demonstrate the capability of the developed framework. The computed pressure drops across the porous section are compared with predictions from the Darcy-Forchheimer equation for media composed of different structure sizes. The developed methodology is also applied to CO2 diffusion studies in porous spherical particles of varying porosities. For the pore channels that are unresolved by the IBM framework, a sub-pore modeling methodology developed as part of this work which solves a one-dimensional unsteady diffusion equation in a hierarchy of scales represented by a fractal-type geometry. The model includes surface adsorption-desorption, and heat generation and absorption. It is established that the current framework is useful and necessary for reaction-diffusion problems in which the adsorption time scales are very small (diffusion-limited) or comparable to the diffusion time scales. Lastly, parametric studies are conducted for a set of diffusion-limited problems to showcase the powerful capability of the developed methodology.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
47

Yusuf, Mary E. "Heat transfer and mass transport studies in gas-particulate solids flows." Thesis, Glasgow Caledonian University, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.688301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zetterström, Sebastian. "Evaluation of a suction pyrometer : By heat and mass transfer methods." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-36450.

Full text
Abstract:
Sebastian Zetterström, Master of Science in energy systems, Mälardalens University in Västerås. Abstract of Master’s thesis, submitted 16th of August. Evaluation of a suction pyrometer by heat and mass transfer methods. The aim of the thesis is to evaluate the cooling of a specific suction pyrometer which is designed by Jan Skvaril, doctorate at Mälardalens University. First part is explained how the balances and correlations are performed before being implemented in MATLAB, after this  a ANSYS Fluent model is constructed and explained, which is used for the comparison of results. The cooling is performed by using water at an inlet temperature of 10°C and an assumed flue gas temperature of 810°C. Sensitivity analysis are performed to test the stability of the models which yield good results for stability, done by adjusting both flue gas temperature and inlet cooling water temperature which are as well presented for observation. From doing further MATLAB sensitivity analysis which show that the model still performs well and is stable. The resulting cooling water is heated to approximately 24, 8°C and the flue gas is cooled to 22, 4°C, in ANSYS Fluent the answer differs approximately 2°C and results in 20, 4°C which can be considered by looking at the flue gas inlet temperature of 810°C that this can be deemed an insignificant change and can therefore conclude that the comparison between the two platforms match each other good and that calculations can be considered accurate. Keywords:  Suction pyrometer, cooling, heat transfer, thermal resistance network, MATLAB, ANSYS Fluent, simulation
APA, Harvard, Vancouver, ISO, and other styles
49

Boonpongmanee, Thaveesak. "NUMERICAL AND EXPERIMENTAL INVESTIGATION OF HEAT AND MASS TRANSFER IN ROTATING SYSTEMS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=case1112791338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Nagavarapu, Ananda Krishna. "Binary fluid heat and mass exchange at the microscale in internal and external ammonia-water absorption." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45777.

Full text
Abstract:
Absorption space-conditioning systems are environmentally benign alternatives to vapor compression systems and have the capability of being driven by waste heat. However, a lack of practically feasible and economically viable compact heat and mass exchangers is a major limitation in the success of this technology. The viability of the absorption cycle depends upon the performance of the absorber, which experiences large heat and mass transfer resistances due to adverse temperature and concentration gradients during the phase change of the binary mixture working fluid, resulting in large overall component sizes. Understanding of the coupled heat and mass transfer during binary fluid mixture absorption at the microscales is critical for the miniaturization of these components, which will enable broad implementation of this technology. The proposed study aims to achieve this by investigating ammonia-water absorption for two distinct flow configurations: external falling films and internal convective flows. For the falling-film absorption case, ammonia-water solution flows around an array of small diameter coolant tubes while absorbing vapor. This absorber is installed in a test facility comprising all components of a single-effect absorption chiller to provide realistic operating conditions at the absorber. Local temperature, pressure, and flow measurements will be taken over a wide range of operating conditions and analyzed to develop a heat and mass transfer model for falling-film ammonia-water absorption. A microscale convective flow absorber will also be investigated. This absorber consists of an array of parallel, aligned alternating shims with integral microscale features, enclosed between cover plates. These microscale features facilitate flow of various fluid streams and the associated heat and mass transfer. The use of microchannels induces high heat and mass transfer rates without any active or passive surface enhancement. The microscale absorber for small-scale applications will be evaluated over a wide range of operating conditions on a single-effect absorption heat pump breadboard test facility. The study will conclude with a comparison of the two flow configurations for absorption, with recommendations for their application in future miniaturization efforts
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography