To see the other types of publications on this topic, follow the link: Mass transfer. Heat.

Journal articles on the topic 'Mass transfer. Heat'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Mass transfer. Heat.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Nakhman, A. D., and Yu V. Rodionov. "Generalized Solution of the Heat and Mass Transfer Problem." Advanced Materials & Technologies, no. 4 (2017): 056–63. http://dx.doi.org/10.17277/amt.2017.04.pp.056-063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Quitzsch, K. "Heat and Mass Transfer." Zeitschrift für Physikalische Chemie 212, Part_2 (January 1999): 236–38. http://dx.doi.org/10.1524/zpch.1999.212.part_2.236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sucharov, Lance. "Heat and mass transfer." Advances in Water Resources 14, no. 1 (February 1991): 50. http://dx.doi.org/10.1016/0309-1708(91)90031-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Coulson, J. M., J. F. Richardson, J. R. Backhurst, and J. H. Harker. "Fluid flow, heat transfer and mass transfer." Filtration & Separation 33, no. 2 (February 1996): 102. http://dx.doi.org/10.1016/s0015-1882(96)90353-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Blums, E. "Heat and mass transfer phenomena." Journal of Magnetism and Magnetic Materials 252 (November 2002): 189–93. http://dx.doi.org/10.1016/s0304-8853(02)00617-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mykychak, Boris, Petro Biley, and Diana Kindzera. "External Heat-and-Mass Transfer during Drying of Packed Birch Peeled Veneer." Chemistry & Chemical Technology 7, no. 2 (June 10, 2013): 191–95. http://dx.doi.org/10.23939/chcht07.02.191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Speetjens, M. F. M., and A. A. Van Steenhoven. "Heat and Mass Transfer Made Visible." Defect and Diffusion Forum 312-315 (April 2011): 713–18. http://dx.doi.org/10.4028/www.scientific.net/ddf.312-315.713.

Full text
Abstract:
Heat and mass transfer in fluid flows traditionally is examined in terms of temperature and concentration fields and heat/mass-transfer coefficients at fluid-solid interfaces. However, heat/mass transfer may alternatively be considered as the transport of a passive scalar by the total advective-diffusive flux in a way analogous to the transport of fluid by the flow field. This Lagrangian approach facilitates heat/mass-transfer visualisation in a similar manner as flow visualisation and has great potential for transport problems in which insight into (interaction between) the scalar fluxes throughout the entire configuration is essential. This ansatz furthermore admits investigation of heat and mass transfer by well-established geometrical methods from laminar-mixing studies, which offers promising new research capabilities. The Lagrangian approach is introduced and demonstrated by way of representative examples.
APA, Harvard, Vancouver, ISO, and other styles
8

Rafique, M. Mujahid. "Heat and Mass Transfer between Humid Air and Desiccant Channels — A Theoretical Investigation." Modern Environmental Science and Engineering 2, no. 1 (March 2016): 44–50. http://dx.doi.org/10.15341/mese(2333-2581)/01.02.2016/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Travnicek, Z., F. Marsik, and T. Hyhlik. "SYNTHETIC JET IMPINGEMENT HEAT/MASS TRANSFER." Journal of Flow Visualization and Image Processing 13, no. 1 (2006): 67–76. http://dx.doi.org/10.1615/jflowvisimageproc.v13.i1.50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chan, S. H. "HEAT AND MASS TRANSFER IN FOULING." Annual Review of Heat Transfer 4, no. 4 (1992): 363–402. http://dx.doi.org/10.1615/annualrevheattransfer.v4.100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mujumdar, Arun S. "International Heat and Mass Transfer Forum." Drying Technology 7, no. 2 (June 1989): 399–400. http://dx.doi.org/10.1080/07373938908916594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Sobolev, S. L. "On hyperbolic heat-mass transfer equation." International Journal of Heat and Mass Transfer 122 (July 2018): 629–30. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.02.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

S. K. Abbouda, D. S. Chung, P. A. Seib, and A. Song. "Heat and Mass Transfer in Stored Milo. Part I. Heat Transfer Model." Transactions of the ASAE 35, no. 5 (1992): 1569–73. http://dx.doi.org/10.13031/2013.28769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Konovalov, D. A. "Experimental Investigations of Heat and Mass Transfer in Microchannel Heat-Transfer Elements." Journal of Engineering Physics and Thermophysics 89, no. 3 (May 2016): 636–41. http://dx.doi.org/10.1007/s10891-016-1421-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

S. K. Abbouda, P. A. Seib, D. S. Chung, and A. Song. "Heat and Mass Transfer in Stored Milo. Part II. Mass Transfer Model." Transactions of the ASAE 35, no. 5 (1992): 1575–80. http://dx.doi.org/10.13031/2013.28770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Wilk, Joanna, Sebastian Grosicki, and Krzysztof Kiedrzyński. "Preliminary research on mass/heat transfer in mini heat exchanger." E3S Web of Conferences 70 (2018): 02016. http://dx.doi.org/10.1051/e3sconf/20187002016.

Full text
Abstract:
In the paper the authors present the facility for model investigations of heat/mass transfer in the exchanger characterised by small dimensions. Determination of heat transfer coefficients is an important issue in the design of mini heat exchangers. The built facility enables measurements of mass transfer coefficients with the use of limiting current technique. The coefficients received from the experiment are converted into heat transfer coefficients basing on the analogy between mass and heat transfer. The exchanger considered consists of nine parallel minichannels with a square cross-section of 2mm. In real conditions during the laminar flow through the minichannels the convective heat transfer occurs. Analogous conditions are maintained during the model mass transfer experiment. The paper presents the experimental facility and the preliminary results of measurements in the form of voltammograms. The voltammograms show the limiting currents being the base of mass transfer coefficient calculations.
APA, Harvard, Vancouver, ISO, and other styles
17

Lin, Gui-Ping, and Xiu-Gan Yuan. "Mass and heat transfer enhancement of chemical heat pumps." Journal of Thermal Science 2, no. 3 (September 1993): 228–30. http://dx.doi.org/10.1007/bf02650860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Musser, Jordan, Madhava Syamlal, Mehrdad Shahnam, and David Huckaby. "Constitutive equation for heat transfer caused by mass transfer." Chemical Engineering Science 123 (February 2015): 436–43. http://dx.doi.org/10.1016/j.ces.2014.11.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Webb, R. L., and H. Perez-Blanco. "Enhancement of Combined Heat and Mass Transfer in a Vertical-Tube Heat and Mass Exchanger." Journal of Heat Transfer 108, no. 1 (February 1, 1986): 70–75. http://dx.doi.org/10.1115/1.3246907.

Full text
Abstract:
This paper studies enhancement of heat and mass transfer between a countercurrent, gravity-drained water film and air flowing in a vertical tube. The enhancement technique employed is spaced, transverse wires placed in the air boundary layer, near the air-water interface. Heat transfer correlations for turbulent, single-phase heat transfer in pipes having wall-attached spaced ribs are used to select the preferred wire diameter, and to predict the gas phase heat and mass transfer coefficients. Tests were run with two different radial placements of the rib roughness: (1) at the free surface of the liquid film, and (2) the base of the roughness displaced 0.51 mm into the air flow. The authors hypothesize that the best heat/mass transfer and friction performance will be obtained with the roughness at the surface of the water film. Experiments conducted with both roughness placements show that the authors’ hypothesis is correct. The measured heat/mass transfer enhancement agreed very closely with the predicted values. A unique feature of the enhancement concept is that it does not require surface wetting of the enhancement device to provide enhancement.
APA, Harvard, Vancouver, ISO, and other styles
20

Rajavel, Rangasamy, and Kaliannagounder Saravanan. "Heat transfer studies on spiral plate heat exchanger." Thermal Science 12, no. 3 (2008): 85–90. http://dx.doi.org/10.2298/tsci0803085r.

Full text
Abstract:
In this paper, the heat transfer coefficients in a spiral plate heat exchanger are investigated. The test section consists of a plate of width 0.3150 m, thickness 0.001 m and mean hydraulic diameter of 0.01 m. The mass flow rate of hot water (hot fluid) is varying from 0.5 to 0.8 kg/s and the mass flow rate of cold water (cold fluid) varies from 0.4 to 0.7 kg/s. Experiments have been conducted by varying the mass flow rate, temperature, and pressure of cold fluid, keeping the mass flow rate of hot fluid constant. The effects of relevant parameters on spiral plate heat exchanger are investigated. The data obtained from the experimental study are compared with the theoretical data. Besides, a new correlation for the Nusselt number which can be used for practical applications is proposed.
APA, Harvard, Vancouver, ISO, and other styles
21

Cheremisinoff, N. P. "Handbook of heat and mass transfer, Vol. 2: Mass transfer and reactor design." Chemical Engineering Science 42, no. 10 (1987): 2494. http://dx.doi.org/10.1016/0009-2509(87)80132-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Papavassiliou, Dimitrios V., Sepideh Razavi, and Quoc Nguyen. "Coupled Flow and Heat or Mass Transfer." Fluids 5, no. 2 (May 1, 2020): 66. http://dx.doi.org/10.3390/fluids5020066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Vafai, K., and S. Sarkar. "Heat and mass transfer in partial enclosures." Journal of Thermophysics and Heat Transfer 1, no. 3 (July 1987): 253–59. http://dx.doi.org/10.2514/3.36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Yao, Shi-Chune. "Review of "Convective Heat and Mass Transfer"." AIAA Journal 50, no. 5 (May 2012): 1211. http://dx.doi.org/10.2514/1.j051737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Schofield, R. W., A. G. Fane, and C. J. D. Fell. "Heat and mass transfer in membrane distillation." Journal of Membrane Science 33, no. 3 (October 1987): 299–313. http://dx.doi.org/10.1016/s0376-7388(00)80287-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Martynenko, O. G. "Heat and mass transfer bibliography: CIS works." International Journal of Heat and Mass Transfer 44, no. 3 (February 2001): 505–23. http://dx.doi.org/10.1016/s0017-9310(00)00084-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Martynenko, O. G. "Heat and mass transfer bibliography—CIS works." International Journal of Heat and Mass Transfer 36, no. 8 (January 1993): 2007–12. http://dx.doi.org/10.1016/s0017-9310(05)80131-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Martynenko, O. G. "Heat and mass transfer bibliography—CIS works." International Journal of Heat and Mass Transfer 36, no. 7 (May 1993): 1719–25. http://dx.doi.org/10.1016/s0017-9310(05)80158-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Martynenko, O. G. "Heat and mass transfer bibliography—CIS works." International Journal of Heat and Mass Transfer 36, no. 4 (March 1993): 833–44. http://dx.doi.org/10.1016/s0017-9310(05)80268-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Whalley, Peter. "Special Topic Issue—Heat and Mass Transfer." Chemical Engineering Research and Design 74, no. 8 (November 1996): 847–48. http://dx.doi.org/10.1205/026387696523085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Müller-Steinhagen, Hans. "Special Topic Issue – Heat and Mass Transfer." Chemical Engineering Research and Design 77, no. 2 (March 1999): 87–88. http://dx.doi.org/10.1205/026387699525891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Niranjan, K. "Special Issue—Mixing, Heat and Mass Transfer." Food and Bioproducts Processing 82, no. 1 (March 2004): 3. http://dx.doi.org/10.1205/096030804322985245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Lawson, Nick. "Applied Optical Measurements: Heat and Mass Transfer." Measurement Science and Technology 11, no. 7 (June 16, 2000): 1087. http://dx.doi.org/10.1088/0957-0233/11/7/701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Forni, L. "Mass and heat transfer in catalytic reactions." Catalysis Today 52, no. 2-3 (September 14, 1999): 147–52. http://dx.doi.org/10.1016/s0920-5861(99)00072-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Rehm, Thomas R. "Heat and Mass Transfer in Rotating Machinery." Nuclear Technology 78, no. 2 (August 1987): 197. http://dx.doi.org/10.13182/nt87-a33998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kakimoto, Koichi, and Hiroyuki Ozoe. "Heat and mass transfer during crystal growth." Computational Materials Science 10, no. 1-4 (February 1998): 127–33. http://dx.doi.org/10.1016/s0927-0256(97)00090-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Martynenko, O. G. "Heat and mass transfer bibliography—CIS works." International Journal of Heat and Mass Transfer 41, no. 11 (June 1998): 1371–84. http://dx.doi.org/10.1016/s0017-9310(97)00160-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Martynenko, O. G. "Heat and mass transfer bibliography - CIS works." International Journal of Heat and Mass Transfer 43, no. 9 (May 2000): 1493–503. http://dx.doi.org/10.1016/s0017-9310(99)00245-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

LEWIS, ROLAND W., and K. N. SEETHARAMU. "Heat and mass transfer in food processing." IMA Journal of Management Mathematics 5, no. 1 (1993): 303–24. http://dx.doi.org/10.1093/imaman/5.1.303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Narayanan, Shankar, Peter A. Kottke, Yogendra K. Joshi, and Andrei G. Fedorov. "GAS-ASSISTED EVAPORATION HEAT AND MASS TRANSFER." Annual Review of Heat Transfer 19, no. 1 (2016): 159–98. http://dx.doi.org/10.1615/annualrevheattransfer.2016013517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Yao Chu, Tze. "Measurement techniques in heat and mass transfer." International Journal of Heat and Fluid Flow 7, no. 1 (March 1986): 36. http://dx.doi.org/10.1016/0142-727x(86)90041-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Tze Yao Chu. "Measurement techniques in heat and mass transfer." International Journal of Heat and Fluid Flow 7, no. 3 (September 1986): 239. http://dx.doi.org/10.1016/0142-727x(86)90029-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Schmidt, Frank W. "Heat and mass transfer in materials processing." International Journal of Heat and Fluid Flow 13, no. 3 (September 1992): 311. http://dx.doi.org/10.1016/0142-727x(92)90048-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Belevich, M. "Causal description of heat and mass transfer." Journal of Physics A: Mathematical and General 37, no. 8 (February 11, 2004): 3053–69. http://dx.doi.org/10.1088/0305-4470/37/8/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Polat, Suna. "HEAT AND MASS TRANSFER IN IMPINGEMENT DRYING." Drying Technology 11, no. 6 (January 1993): 1147–76. http://dx.doi.org/10.1080/07373939308916894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Mujumdar, A. S. "Transport Phenomena in Heat and Mass Transfer." Drying Technology 11, no. 7 (January 1993): 1917–18. http://dx.doi.org/10.1080/07373939308916939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Smogalev, I. P. "Heat and mass transfer in liquid boiling." Soviet Atomic Energy 60, no. 4 (April 1986): 294–98. http://dx.doi.org/10.1007/bf01123899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bandrowski, J., and J. Zioło. "Heat and mass transfer bibliography—Polish works." International Journal of Heat and Mass Transfer 28, no. 12 (December 1985): 2229–34. http://dx.doi.org/10.1016/0017-9310(85)90041-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Soloukhin, R. I., and O. G. Martynenko. "Heat and mass transfer bibliography—Soviet works." International Journal of Heat and Mass Transfer 28, no. 12 (December 1985): 2235–45. http://dx.doi.org/10.1016/0017-9310(85)90042-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Markatos, N. C. "Heat and mass transfer in packed beds." International Journal of Heat and Mass Transfer 28, no. 12 (December 1985): 2394. http://dx.doi.org/10.1016/0017-9310(85)90063-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography