Academic literature on the topic 'Massive Fundamental Scalar Particle'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Massive Fundamental Scalar Particle.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Massive Fundamental Scalar Particle"

1

SIEGEMUND-BROKA, STEPHAN. "THE EFFECTIVE ACTION FOR COMPOSITE HIGGS PARTICLES." International Journal of Modern Physics A 07, no. 30 (1992): 7561–78. http://dx.doi.org/10.1142/s0217751x92003422.

Full text
Abstract:
There is reason to believe that massive composite (fermion-antifermion) scalar particles closely resembling the usual fundamental scalar Higgs fields exist in theories with dynamically broken gauge symmetries. This composite Higgs couples directly to the fermions in proportion to their symmetry-violating self-energies. Induced couplings to the gauge bosons and self-couplings are calculated as loop effects. This involves deriving the effective action in terms of the full propagators and background fields. The couplings between the composite Higgs and the gauge bosons are the same as those in models with fundamental scalars. The self-couplings are determined and fix all parameters associated with the composite scalars. Comments regarding extending this work to higher orders and concerning the symmetry-violating solutions to the fermion Schwinger-Dyson equation are given.
APA, Harvard, Vancouver, ISO, and other styles
2

KOK, PIETER, and SAMUEL L. BRAUNSTEIN. "RELATIVISTIC QUANTUM INFORMATION PROCESSING WITH BOSONIC AND FERMIONIC INTERFEROMETERS." International Journal of Quantum Information 04, no. 01 (2006): 119–30. http://dx.doi.org/10.1142/s0219749906001736.

Full text
Abstract:
We derive the relativistic transformation laws for the annihilation operators of the scalar field, the massive spin-1 vector field, the electromagnetic field and the spinor field. The technique developed here involves straightforward mathematical techniques based on fundamental quantum field theory, and is applicable to the study of entanglement in arbitrary coordinate transformations. In particular, it predicts particle creation for non-inertial motion. Furthermore, we present a unified description of relativistic transformations and multi-particle interferometry with bosons and fermions, which encompasses linear optical quantum computing.
APA, Harvard, Vancouver, ISO, and other styles
3

Arminjon, Mayeul, and Rainer Wolfgang Winkler. "Motion of a Test Particle According to the Scalar Ether Theory of Gravitation and Application to its Celestial Mechanics." Zeitschrift für Naturforschung A 74, no. 4 (2019): 305–16. http://dx.doi.org/10.1515/zna-2018-0470.

Full text
Abstract:
AbstractThe standard interpretations of special relativity (Einstein–Minkowski) and general relativity (GR) lead to a drastically changed notion of time: the eternalism or block universe theory. This has strong consequences for our thinking about time and for the development of new fundamental theories. It is therefore important to check this thoroughly. The Lorentz–Poincaré interpretation, which sees the relativistic effects as following from a “true” Lorentz contraction of all objects in their motion through the ether, uses a conservative concept of time and is in the absence of gravitation indistinguishable from the standard interpretation; but there exists currently no accepted gravitation theory for it. The scalar ether theory of gravitation is a candidate for such a theory; it is presented and discussed. The equations of motion for a test particle are derived; the case of a uniformly moving massive body is discussed and then specialized to the case of spherical symmetry. Formulas for the acceleration of test particles are given in the preferred frame of the ether and in the rest frame of the massive body that moves with velocityVwith respect to the ether. When the body rests in the ether (V=0), the acceleration is up to orderc−2identical to GR. The acceleration of a test particle forV≠0is given; this makes it possible to fit observations in celestial mechanics to ephemerides withVas a free parameter. The current status of such fits (although to ephemerides and not to observations) is presented and discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Mikki, Said. "Fundamental Spacetime Representations of Quantum Antenna Systems." Foundations 2, no. 1 (2022): 251–89. http://dx.doi.org/10.3390/foundations2010019.

Full text
Abstract:
We utilize relativistic quantum mechanics to develop general quantum field-theoretic foundations suitable for understanding, analyzing, and designing generic quantum antennas for potential use in secure quantum communication systems and other applications. Quantum antennas are approached here as abstract source systems capable of producing what we dub “quantum radiation.” We work from within a generic relativistic framework, whereby the quantum antenna system is modeled in terms of a fundamental quantum spacetime field. After developing a framework explaining how quantum radiation can be understood using the methods of perturbative relativistic quantum field theory (QFT), we investigate in depth the problem of quantum radiation by a controlled abstract source functions. We illustrate the theory in the case of the neutral Klein-Gordon linear quantum antenna, outlining general methods for the construction of the Green’s function of a source—receiver quantum antenna system, the latter being useful for the computation of various candidate angular quantum radiation directivity and gain patterns analogous to the corresponding concepts in classical antenna theory. We anticipate that the proposed formalism may be extended to deal with a large spectrum of other possible controlled emission types for quantum communications applications, including, for example, the production of scalar, fermionic, and bosonic particles, where each could be massless or massive. Therefore, our goal is to extend the idea of antenna beyond electromagnetic waves, where now our proposed QFT-based concept of a quantum antenna system could be used to explore scenarios of controlled radiation of any type of relativistic particles, i.e., effectively transcending the well-known case of photonic systems through the deployment of novel non-standard quantum information transmission carriers such as massive photons, spin-1/2 particles, gravitons, antiparticles, higher spin particles, and so on.
APA, Harvard, Vancouver, ISO, and other styles
5

Jordan, Stephen P., Keith S. M. Lee, and John Preskill. "Quantum computation of scattering in scalar quantum field theories." Quantum Information and Computation 14, no. 11&12 (2014): 1014–80. http://dx.doi.org/10.26421/qic14.11-12-8.

Full text
Abstract:
Quantum field theory provides the framework for the most fundamental physical theories to be confirmed experimentally and has enabled predictions of unprecedented precision. However, calculations of physical observables often require great computational complexity and can generally be performed only when the interaction strength is weak. A full understanding of the foundations and rich consequences of quantum field theory remains an outstanding challenge. We develop a quantum algorithm to compute relativistic scattering amplitudes in massive $\phi^4$ theory in spacetime of four and fewer dimensions. The algorithm runs in a time that is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. Thus, it offers exponential speedup over existing classical methods at high precision or strong coupling.
APA, Harvard, Vancouver, ISO, and other styles
6

Armand, C., and B. Herrmann. "Dark matter indirect detection limits from complete annihilation patterns." Journal of Cosmology and Astroparticle Physics 2022, no. 11 (2022): 055. http://dx.doi.org/10.1088/1475-7516/2022/11/055.

Full text
Abstract:
Abstract While cosmological and astrophysical probes suggest that dark matter would make up for 85% of the total matter content of the Universe, the determination of its nature remains one of the greatest challenges of fundamental physics. Assuming the ΛCDM cosmological model, Weakly Interacting Massive Particles would annihilate into Standard Model particles, yielding γ-rays, which could be detected by ground-based telescopes. Dwarf spheroidal galaxies represent promising targets for such indirect searches as they are assumed to be highly dark matter dominated with the absence of astrophysical sources nearby. Previous studies have led to upper limits on the annihilation cross-section assuming single exclusive annihilation channels. In this work, we consider a more realistic situation and take into account the complete annihilation pattern within a given particle physics model. This allows us to study the impact on the derived upper limits on the dark matter annihilation cross-section from a full annihilation pattern compared to the case of a single annihilation channel. We use mock data for the Cherenkov Telescope Array simulating the observations of the promising dwarf spheroidal galaxy Sculptor. We show the impact of considering the full annihilation pattern within a simple framework where the Standard Model of particle physics is extended by a singlet scalar. Such a model shows new features in the shape of the predicted upper limit which reaches a value of 〈σv〉 = 3.8 × 10-24 cm-3s-1 for a dark matter mass of 1 TeV at 95% confidence level. We suggest considering the complete particle physics information in order to derive more realistic limits.
APA, Harvard, Vancouver, ISO, and other styles
7

FLAMBAUM, V. V. "VARIATION OF THE FUNDAMENTAL CONSTANTS: THEORY AND OBSERVATIONS." International Journal of Modern Physics A 22, no. 27 (2007): 4937–50. http://dx.doi.org/10.1142/s0217751x07038293.

Full text
Abstract:
Review of recent works devoted to the variation of the fine structure constant α, strong interaction and fundamental masses (Higgs vacuum) is presented. The results from Big Bang nucleosynthesis, quasar absorption spectra, and Oklo natural nuclear reactor data give us the space-time variation on the Universe lifetime scale. Comparison of different atomic clocks gives us the present time variation. Assuming linear variation with time we can compare different results. The best limit on the variation of the electron-to-proton mass ratio μ = me/Mp and Xe = me/ΛQCD follows from the quasar absorption spectra:1[Formula: see text]. A combination of this result and the atomic clock results2,3 gives the best limt on variation of [Formula: see text]. The Oklo natural reactor gives the best limit on the variation of Xs = ms/ΛQCD where ms is the strange quark mass:4,5[Formula: see text]. Note that the Oklo data can not give us any limit on the variation of α since the effect of α there is much smaller than the effect of Xs and should be neglected. Huge enhancement of the relative variation effects happens in transitions between close atomic, molecular and nuclear energy levels. We suggest several new cases where the levels are very narrow. Large enhancement of the variation effects is also possible in cold atomic and molecular collisions near Feshbach resonance. How changing physical constants and violation of local position invariance may occur? Light scalar fields very naturally appear in modern cosmological models, affecting parameters of the Standard Model (e.g. α). Cosmological variations of these scalar fields should occur because of drastic changes of matter composition in Universe: the latest such event is rather recent (about 5 billion years ago), from matter to dark energy domination. Massive bodies (stars or galaxies) can also affect physical constants. They have large scalar charge S proportional to number of particles which produces a Coulomb-like scalar field U = S/r. This leads to a variation of the fundamental constants proportional to the gravitational potential, e.g. δα/α = kαδ(GM/rc2). We compare different manifestations of this effect. The strongest limits6kα + 0.17ke = (-3.5 ±6) × 10-7 and kα + 0.13kq = (-1 ± 17) × 10-7 are obtained from the measurements of dependence of atomic frequencies on the distance from Sun2,7 (the distance varies due to the ellipticity of the Earth's orbit).
APA, Harvard, Vancouver, ISO, and other styles
8

Duff, M. J., and K. S. Stelle. "Sir Thomas Walter Bannerman Kibble. 23 December 1932—2 June 2016." Biographical Memoirs of Fellows of the Royal Society 70 (March 24, 2021): 225–44. http://dx.doi.org/10.1098/rsbm.2020.0040.

Full text
Abstract:
Professor Tom Kibble was an internationally-renowned theoretical physicist whose contributions to theoretical physics range from the theory of elementary particles to modern early-Universe cosmology. The unifying theme behind all his work is the theory of non-abelian gauge theories, the Yang–Mills extension of electromagnetism. One of Kibble's most important pieces of work in this area was his study of the symmetry-breaking mechanism whereby the force-carrying vector particles in the theory can acquire a mass accompanied by the appearance of a massive scalar boson. This idea, put forward independently by Brout and Englert, by Higgs, and by Guralnik, Hagen and Kibble in 1964, and generalized by Kibble in 1967, lies at the heart of the Standard Model and all modern unified theories of fundamental particles. It was vindicated in 2012 by the discovery of the Higgs boson at CERN. According to Nobel Laureate Steven Weinberg: ‘Tom Kibble showed us why light is massless’; this is the fundamental basis of electromagnetism.
APA, Harvard, Vancouver, ISO, and other styles
9

Cremaschini, Claudio, and Massimo Tessarotto. "Hamilton–Jacobi Wave Theory in Manifestly-Covariant Classical and Quantum Gravity." Symmetry 11, no. 4 (2019): 592. http://dx.doi.org/10.3390/sym11040592.

Full text
Abstract:
The axiomatic geometric structure which lays at the basis of Covariant Classical and Quantum Gravity Theory is investigated. This refers specifically to fundamental aspects of the manifestly-covariant Hamiltonian representation of General Relativity which has recently been developed in the framework of a synchronous deDonder–Weyl variational formulation (2015–2019). In such a setting, the canonical variables defining the canonical state acquire different tensorial orders, with the momentum conjugate to the field variable g μ ν being realized by the third-order 4-tensor Π μ ν α . It is shown that this generates a corresponding Hamilton–Jacobi theory in which the Hamilton principal function is a 4-tensor S α . However, in order to express the Hamilton equations as evolution equations and apply standard quantization methods, the canonical variables must have the same tensorial dimension. This can be achieved by projection of the canonical momentum field along prescribed tensorial directions associated with geodesic trajectories defined with respect to the background space-time for either classical test particles or raylights. It is proved that this permits to recover a Hamilton principal function in the appropriate form of 4-scalar type. The corresponding Hamilton–Jacobi wave theory is studied and implications for the manifestly-covariant quantum gravity theory are discussed. This concerns in particular the possibility of achieving at quantum level physical solutions describing massive or massless quanta of the gravitational field.
APA, Harvard, Vancouver, ISO, and other styles
10

KHUSNUTDINOV, NAIL. "SELF-INTERACTION FOR PARTICLES IN THE WORMHOLE SPACE-TIMES." International Journal of Modern Physics A 26, no. 22 (2011): 3868–77. http://dx.doi.org/10.1142/s0217751x11054322.

Full text
Abstract:
The self-energy and self-force for particles with electric and scalar charges at rest in the space-time of massless and massive wormholes are considered. The particle with electric charge is always attracted to wormhole throat for arbitrary profile of the throat. The self-force for scalar particle shows different behavior depending on the non-minimal coupling. The self-force for massive scalar field is localized close to the throat of the wormhole.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography