Academic literature on the topic 'Massive MIMO'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Massive MIMO.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Massive MIMO"
Sharma, Manmohan, Sunny Verma, and Shekhar Verma. "Optimization of Cell-Free Massive MIMO System." Journal of Physics: Conference Series 2327, no. 1 (August 1, 2022): 012056. http://dx.doi.org/10.1088/1742-6596/2327/1/012056.
Full textOhgane, Takeo, Toshihiko Nishimura, and Yasutaka Ogawa. "4. Massive MIMO." Journal of the Institute of Image Information and Television Engineers 70, no. 1 (2016): 17–22. http://dx.doi.org/10.3169/itej.70.17.
Full textHandel, Peter, and Daniel Ronnow. "MIMO and Massive MIMO Transmitter Crosstalk." IEEE Transactions on Wireless Communications 19, no. 3 (March 2020): 1882–93. http://dx.doi.org/10.1109/twc.2019.2959534.
Full textChataut, Robin, and Robert Akl. "Massive MIMO Systems for 5G and beyond Networks—Overview, Recent Trends, Challenges, and Future Research Direction." Sensors 20, no. 10 (May 12, 2020): 2753. http://dx.doi.org/10.3390/s20102753.
Full textHwang, Inho, Han Park, and Jeong Lee. "LDPC Coded Massive MIMO Systems." Entropy 21, no. 3 (February 27, 2019): 231. http://dx.doi.org/10.3390/e21030231.
Full textDutta, Ragit. "Performance Analysis of Massive MIMO under pilot contamination." Journal of Physics: Conference Series 2327, no. 1 (August 1, 2022): 012051. http://dx.doi.org/10.1088/1742-6596/2327/1/012051.
Full textMarzetta, Thomas L. "Massive MIMO: An Introduction." Bell Labs Technical Journal 20 (2015): 11–22. http://dx.doi.org/10.15325/bltj.2015.2407793.
Full textLiang, Ning, and Wenyi Zhang. "Mixed-ADC Massive MIMO." IEEE Journal on Selected Areas in Communications 34, no. 4 (April 2016): 983–97. http://dx.doi.org/10.1109/jsac.2016.2544604.
Full textChoudhury, P. K., and M. Abou El-Nasr. "Massive MIMO toward 5G." Journal of Electromagnetic Waves and Applications 34, no. 9 (June 12, 2020): 1091–94. http://dx.doi.org/10.1080/09205071.2020.1783825.
Full textDruzhinina, N. S., and I. M. Daudov. "Analysis of the massive MIMO technology." Journal of Physics: Conference Series 2061, no. 1 (October 1, 2021): 012094. http://dx.doi.org/10.1088/1742-6596/2061/1/012094.
Full textDissertations / Theses on the topic "Massive MIMO"
Ladaycia, Abdelhamid. "Annulation d’interférences dans les systèmes MIMO et MIMO massifs (Massive MIMO)." Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCD037.
Full textMIMO systems use sensor arrays that can be of large-scale (massive MIMO) and are seen as a potential candidate for future digital communications standards at very high throughput. A major problem of these systems is the high level of interference due to the large number of simultaneous transmitters. In such a context, ’conventional’ orthogonal pilot design solutions are expensive in terms of throughput, thus allowing for the so-called ’blind’ or ’semi-blind’ channel identification solutions to come back to the forefront as interesting solutions for identifying or deconvolving these MIMO channels. In this thesis, we started with a comparative performance analysis, based on CRB, to quantify the potential size reduction of the pilot sequences when using semi-blind methods that jointly exploit the pilots and data. Our analysis shows that, up to 95% of the pilot samples can be suppressed without affecting the channel estimation performance when such semi-blind solutions are considered. After that, we proposed new methods for semi-blind channel estimation, that allow to approach the CRB. At first, we have proposed a SB estimator, LS-DF which allows a good compromise between performance and numerical complexity. Other SB estimators have also been introduced based on the subspace technique and on the ML approach, respectively. The latter is optimized via an EM algorithm for which three reduced cost versions are proposed. In the case of a specular channel model, we considered a parametric estimation method based on times of arrival estimation combined with the DF technique
Karlsson, Marcus. "Aspects of Massive MIMO." Licentiate thesis, Linköpings universitet, Kommunikationssystem, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-132718.
Full textDet ställs hårda krav på nästa generations cellulära trådlösa system: att simultant öka datatakten på kommunikationen och dess tillförlitlighet utan att konsumera mer resurser, oavsett om det spektrum eller energi. Massiv mimo (eng: Multiple-Input Multiple-Output) har visat, både i teori och praktik, att tekniken är redo att tackla utmaningen. Massiv mimo kan betjäna många användare samtidigt, med god service, utan att öka den utstrålade effekten jämfört med nuvarande system. Massiv mimo, där basstationerna är utrustade med hundratals antenner, skiljer sig från dagens system vilket gör att många nya problem dyker upp och nya infallsvinklar på befintliga problem krävs. Denna avhandling analyserar två problem, och hur dessa förändras i ett massiv mimo sammanhang: säkerhet för fysiska lagret och överföring av systeminformation. Särskiljt visas att en störsändare med ett stort antal antenner kan överträffa en traditionell störsändare med en enda antenn. Antalet antenner ger störsändaren möjlighet att hitta strukturer i signaler och utnyttja detta för att förbättra störningens effekt. Det stora antalet antenner visar sig vara användbart även för överföring av systeminformation, där basstationen inte har någon kanalkännedom. Antennerna ger möjligheten att tillämpa spatial kodning (eng: space-time block coding). Vi visar hur överföringen utan kanalkännedom kan göras i massiv mimo genom att använda en fix förkodningsmatris för att reducera antalet pilotsymboler. Samtidigt kodar vi spatiellt över antennerna för att tillhandahålla spatiell diversitet.
Becirovic, Ema. "On Massive MIMO for Massive Machine-Type Communications." Licentiate thesis, Linköpings universitet, Kommunikationssystem, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162586.
Full textAlnajjar, Khawla. "Receiver Design for Massive MIMO." Thesis, University of Canterbury. Electrical and Computer Engineering, 2015. http://hdl.handle.net/10092/10517.
Full textWannas, Hussain. "Full Duplex Multiuser MIMO with Massive Arrays." Thesis, Linköpings universitet, Institutionen för systemteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-105268.
Full textORTEGA, ALVARO JAVIER. "SIGNAL DETECTION IN MASSIVE MIMO SYSTEMS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26176@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
Este trabalho de dissertação de mestrado apresenta uma comparação de algumas das técnicas de detecção de sinais mais promissoras para a viabilização de sistemas MIMO de grande porte em termos de desempenho, taxa de erro de bit e complexidade, número médio de flops requeridos por vetor de símbolos recebido. Com este objetivo foram também consideradas as técnicas de detecção clássicas, visando assim ressaltar o desempenho das novas técnicas com relação as antigas. Além disso foram propostas e investigadas novas estruturas para detectores SIC baseados em lista (i.e., com múltiplos ramos) que resultaram em melhor desempenho com menor complexidade quando comparados aos detectores deste tipo já propostos. Na comparação dos algoritmos, foram considerados três cenários diferentes: (i ) monousuário, com ganhos de canal gaussianos complexos independentes e identicamente distribuídos, ou seja, uma propagação que só considera a presença de desvanecimento de Rayleigh; (ii ) múltiplos usuários com canais correlatados e que considera as perdas de propagação de pequena e larga escala num sistema com antena centralizada; e (iii ) múltiplos usuários com canais correlatados e que considera as perdas de propagação de pequena e larga escala num sistema com antena distribuída.
This work dissertation presents a comparison of some of the signal detection techniques most promising for the viability of large MIMO systems in terms of performance, bit error rate, and complexity, average number of flops required by transmitted symbol vector. For this purpose it was also considered classical detection techniques, thus aiming to highlight the performance of new techniques with respect the old. Also it has been proposed and investigated new structures to SIC detectors based on list (i.e., with multiple branches) resulting in better performance with less complexity compared to detectors of this kind already proposed. In the comparison of algorithms, three different scenarios were used: (i ) single user, with channel gains independent and distributed identically complex Gaussian, that is, a spread that only considers the presence of Rayleigh fading; (ii ) multiple users, with correlated channels, and considers the short and large scale path loss in a system with centralized antenna; e (iii ) multiple users, with correlated channels, and considers the short and large scale path loss in a system with distributed antenna.
Payami, Sohail. "Hybrid beamforming for massive MIMO systems." Thesis, University of Surrey, 2017. http://epubs.surrey.ac.uk/842311/.
Full textNgo, Hien Quoc. "Massive MIMO: Fundamentals and System Designs." Doctoral thesis, Linköpings universitet, Kommunikationssystem, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-112780.
Full textYao, Xuefeng. "Performance analysis of massive MIMO networks." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/18847.
Full textNegrão, João Lucas. "Efficient detection : from conventional Mimo to massive Mimo communication systems." Universidade Estadual de Londrina. Centro de Tecnologia e Urbanismo. Programa de Pós-Graduação em Engenharia Elétrica, 2018. http://www.bibliotecadigital.uel.br/document/?code=vtls000218370.
Full textThroughout this work, problems related to communication systems equipped with multiple antennas in the transmitter and receiver (MIMO - Multiple-Input Multiple-Output) are analyzed from the point of view of classical detection, nonlinear optimization, as well as linear pre-coding, from conventional MIMO (some Tx and Rx antennas) to large-scale (massive) MIMO systems. Initially, the detection efficiency of several MIMO detectors were analyzed under the prerogative of highly correlated channels, in which situation, MIMO systems present a high loss of performance, and, in some cases, an increasing complexity. Considering this scenario, we have specifically studied the behavior in terms of compromise complexity x bit error rate (BER), for different detection techniques, such as the successive interference cancellation (SIC), lattice reduction (LR), as well as the combination of each of these with linear detection techniques. In this analysis, different uniform antenna structures with uniform linear array (ULA) and planar array array (UPA) were also considered in both transmitter and receiver side. In addition, different number of antennas and order of modulation were also considered. Next, the MIMO detection problem was studied from a nonlinear optimization perspective, specifically aiming to achieve optimum performance. The detection solution with semi-defined relaxation (SDR - it semidefinite relaxation) were analyzed. The SDR-MIMO detector is an efficient approach capable of achieving near-optimal performance, especially for low and medium modulation orders. We focused our efforts on developing a computationally efficient approach for the maximum likelihood (ML) MIMO detection algorithm based on semi-definite programming (SDP) for M-QAM constellations. Finally, we study an optimal power allocation problem aiming to maximizes the sum-rate capacity of a single cell massive MIMO broadcast channel equipped with zero-forcing beamforming (ZFBF) and regularized channel inversion (RCI) precoding at the base station (BS). Our purpose is to investigate this problem in the large-scale system limit, i.e, when the number of users, K, and antennas at the BS, M, tend to infinity with a ratio β = K/M being held constant. We first derive the signal to interference plus noise (SINR) ratio for both chosen precoders. Then we investigate optimal power allocation schemes that maximize the sum-rate per antenna under an average power constraint and we show that the problem is convex and the power allocation follows the well-known Water-Filling strategy. We also studied a problem related to an optimal power allocation at a finite group of clustered users and determine the impact of this scheme in the ergodic sum-rate capacity.
Books on the topic "Massive MIMO"
Cheng, Xiang, Shijian Gao, and Liuqing Yang. mmWave Massive MIMO Vehicular Communications. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-97508-1.
Full textYang, Howard H., and Tony Q. S. Quek. Massive MIMO Meets Small Cell. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43715-6.
Full textLiu, Leibo, Guiqiang Peng, and Shaojun Wei. Massive MIMO Detection Algorithm and VLSI Architecture. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6362-7.
Full textLe-Ngoc, Tho, and Ruikai Mai. Hybrid Massive MIMO Precoding in Cloud-RAN. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02158-0.
Full textZhao, Long, Hui Zhao, Kan Zheng, and Wei Xiang. Massive MIMO in 5G Networks: Selected Applications. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-68409-3.
Full textGao, Zhen, Yikun Mei, and Li Qiao. Sparse Signal Processing for Massive MIMO Communications. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-5394-3.
Full textGao, Zhen, Ziwei Wan, Yikun Mei, Keke Ying, and Kuiyu Wang. Millimeter-Wave/Sub-Terahertz Ultra-Massive MIMO Transmission Technology. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2388-5.
Full textUnited States. National Aeronautics and Space Administration., ed. Visualization of unsteady computational fluid dynamics: Final technical report for grant #NAG2-884. Cambridge, MA: Computational Aerospace Sciences Laboratory, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1994.
Find full textUnited States. National Aeronautics and Space Administration., ed. Visualization of unsteady computational fluid dynamics: Final technical report for grant #NAG2-884. [Washington, DC: National Aeronautics and Space Administration, 1997.
Find full textBook chapters on the topic "Massive MIMO"
Larsson, Erik G., and Emil Björnson. "Massive MIMO." In Encyclopedia of Wireless Networks, 771–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-78262-1_136.
Full textLarsson, Erik G., and Emil Björnson. "Massive MIMO." In Encyclopedia of Wireless Networks, 1–4. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-32903-1_136-1.
Full textNgo, Hien Quoc. "Massive MIMO." In 5G and Beyond, 101–27. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58197-8_4.
Full textVook, Frederick W., Amitava Ghosh, and Timothy A. Thomas. "Massive MIMO Communications." In Towards 5G, 342–64. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118979846.ch15.
Full textVan Chien, Trinh, and Emil Björnson. "Massive MIMO Communications." In 5G Mobile Communications, 77–116. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34208-5_4.
Full textGregorio, Fernando, Gustavo González, Christian Schmidt, and Juan Cousseau. "Massive MIMO Systems." In Signal Processing Techniques for Power Efficient Wireless Communication Systems, 193–216. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32437-7_8.
Full textZhao, Long, Hui Zhao, Kan Zheng, and Wei Xiang. "Massive MIMO Technology." In SpringerBriefs in Electrical and Computer Engineering, 7–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68409-3_2.
Full textRoy, Radhika Ranjan. "Ultra-Massive MIMO." In Artificial Intelligence-Based 6G Networking, 42–44. New York: Auerbach Publications, 2024. https://doi.org/10.1201/9781003499480-4.
Full textRoy, Radhika Ranjan. "Massive MIMO Radar." In Artificial Intelligence-Based 6G Networking, 67–79. New York: Auerbach Publications, 2024. https://doi.org/10.1201/9781003499480-9.
Full textXu, Wei, Yongming Huang, and Ming Xiao. "Millimeter Wave Massive MIMO." In Encyclopedia of Wireless Networks, 830–33. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-78262-1_114.
Full textConference papers on the topic "Massive MIMO"
Jiang, Wei, and Hans D. Schotten. "Cell-Free Terahertz Massive MIMO: A Novel Paradigm Beyond Ultra-Massive MIMO." In 2024 IEEE International Mediterranean Conference on Communications and Networking (MeditCom), 197–202. IEEE, 2024. http://dx.doi.org/10.1109/meditcom61057.2024.10621129.
Full textSun, Haijian, Chris Ng, Yiming Huo, Rose Qingyang Hu, Ning Wang, Chi-Ming Chen, Kasturi Vasudevan, et al. "Massive MIMO." In 2022 IEEE Future Networks World Forum (FNWF). IEEE, 2022. http://dx.doi.org/10.1109/fnwf55208.2022.00138.
Full textSun, Haijian, Chris Ng, Yiming Huo, Rose Qingyang Hu, Ning Wang, Chi-Ming Chen, Kasturi Vasudevan, et al. "Massive MIMO." In 2023 IEEE Future Networks World Forum (FNWF). IEEE, 2023. http://dx.doi.org/10.1109/fnwf58287.2023.10520592.
Full textLejosne, Yohan, Manijeh Bashar, Dirk Slock, and Yi Yuan-Wu. "From MU massive MISO to pathwise MU massive MIMO." In 2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2014. http://dx.doi.org/10.1109/spawc.2014.6941308.
Full textVinogradova, Julia, Emil Bjornson, and Erik G. Larsson. "Jamming Massive MIMO using Massive MIMO: Asymptotic separability results." In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. http://dx.doi.org/10.1109/icassp.2017.7952798.
Full textLiu, Liang, and Wei Yu. "Massive device connectivity with massive MIMO." In 2017 IEEE International Symposium on Information Theory (ISIT). IEEE, 2017. http://dx.doi.org/10.1109/isit.2017.8006693.
Full textKudathanthirige, Dhanushka, and Gayan Amarasuriya. "Distributed Massive MIMO Downlink." In ICC 2019 - 2019 IEEE International Conference on Communications (ICC). IEEE, 2019. http://dx.doi.org/10.1109/icc.2019.8761446.
Full textLarsson, Erik G. "Fundamentals of massive MIMO." In 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2015. http://dx.doi.org/10.1109/spawc.2015.7226986.
Full textBjornson, Emil. "Massive MIMO for 5G." In 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2015. http://dx.doi.org/10.1109/spawc.2015.7226987.
Full textKudathanthirige, Dhanushka, and Gayan Amarasuriya. "Massive MIMO NOMA Downlink." In GLOBECOM 2018 - 2018 IEEE Global Communications Conference. IEEE, 2018. http://dx.doi.org/10.1109/glocom.2018.8647417.
Full textReports on the topic "Massive MIMO"
Saeed, Muhammad Kamran. Pilot Contamination and Channel Estimation In Massive MIMO Systems. Ames (Iowa): Iowa State University, May 2024. http://dx.doi.org/10.31274/cc-20240624-1126.
Full textVanDyke, J. P., J. L. Tomkins, and M. D. Furnish. Measures of effectiveness for BMD mid-course tracking on MIMD massively parallel computers. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/83111.
Full text