Academic literature on the topic 'Materiały membranowe'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Materiały membranowe.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Materiały membranowe"
BURKIN, A. N., D. K. PANKEVICH, and V. G. KUDRITSKIY. "СТРУКТУРА И СВОЙСТВА МЕМБРАННЫХ ТЕКСТИЛЬНЫХ МАТЕРИАЛОВ." Polymer materials and technologies 6, no. 3 (2020): 16–28. http://dx.doi.org/10.32864/polymmattech-2020-6-3-16-28.
Full textYoshida, Ryo. "Self-Oscillating Soft Materials." MEMBRANE 31, no. 6 (2006): 307–12. http://dx.doi.org/10.5360/membrane.31.307.
Full textDamayanti, Alia, Wini Hidayanti, Ali Masduqi, Eddy S. Soedjono, Widiyastuti, and Sarwoko Mangkoedihardjo. "The use of shells as membrane material for seawater desalination." International Journal of Academic Research 5, no. 6 (December 10, 2013): 5–8. http://dx.doi.org/10.7813/2075-4124.2013/5-6/a.1.
Full textMiyazato, Itsuki, and Keisuke Takahashi. "Materials Informatics : Summary and Examples." MEMBRANE 46, no. 6 (2021): 325–30. http://dx.doi.org/10.5360/membrane.46.325.
Full textNoble, Richard D. "New Materials for Selective Gas Separations." MEMBRANE 31, no. 2 (2006): 91–94. http://dx.doi.org/10.5360/membrane.31.91.
Full textTaguchi, Shogo. "Disk–like Membrane for Functional Material." MEMBRANE 45, no. 3 (2020): 94–99. http://dx.doi.org/10.5360/membrane.45.94.
Full textMAEDA, Mizuo, and Shohei INOUE. "Synthetic polypeptides as materials for functional membranes." membrane 10, no. 6 (1985): 328–36. http://dx.doi.org/10.5360/membrane.10.328.
Full textSumaru, Kimio. "Functional Membranes Composed of Organic Photochromic Materials." MEMBRANE 30, no. 3 (2005): 132–37. http://dx.doi.org/10.5360/membrane.30.132.
Full textIshihara, Kazuhiko, Yuuki Inoue, and Ryouske Matusno. "Nanobiofunctions on Cell Membrane-inspired Polymer Materials." membrane 35, no. 5 (2010): 217–23. http://dx.doi.org/10.5360/membrane.35.217.
Full textMiyatake, Kenji, and Masahiro Watanabe. "Hydrocarbon Membrane Materials for Polymer Electrolyte Fuel Cells." MEMBRANE 30, no. 5 (2005): 264–68. http://dx.doi.org/10.5360/membrane.30.264.
Full textDissertations / Theses on the topic "Materiały membranowe"
Lin, Han. "GRAPHENE OXIDE-BASED MEMBRANE FOR LIQUID AND GAS SEPARATION." University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1595260029225206.
Full textBorkar, Neha. "Characterization of microporous membrane filters using scattering techniques." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1289943937.
Full textLloyd, Michael C. "Novel materials for membrane separation processes." Thesis, Aston University, 1995. http://publications.aston.ac.uk/9680/.
Full textHerigstad, Matthew Omon. "Hybrid Particle-Nonwoven Membrane Materials for Bioseparations." NCSU, 2009. http://www.lib.ncsu.edu/theses/available/etd-04042009-120426/.
Full textBoukili, Aishah. "Synthesis and characterisation of sulphonated polyethersulphone membrane materials." University of Western Cape, 2020. http://hdl.handle.net/11394/7337.
Full textWith current climate change, growing population, and rapid industrialization of developing countries, water is increasingly becoming a scare resource. Within a power plant, processes that consume most water are demineralized water production (boiler make-up), heat rejection (cooling) and emission control (wet flue gas desulfurization). Eskom’s fleet of existing coal-fired power plants are not equipped with SO2 abatement technologies and therefore retrofitting of the plants will be required to meet the compliance levels for SO2 emissions.
Giorgini, Federica. "Caratterizzazione dei materiali per membrane di dialisi attraverso lo studio dei meccanismi di trasporto." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17904/.
Full textZhou, Yi. "Membrane-Based Gas Separation For Carbon Capture." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595254659184073.
Full textTam, Chung Ming. "Use of liquid chromatography in membrane material characterization." Thesis, University of Ottawa (Canada), 1989. http://hdl.handle.net/10393/5701.
Full textVieira, Delia do Carmo. "Fabricação de elementos vítreos porosos para o depósito de biopolímeros visando a obtenção de membranas com superfícies ativas." Universidade de São Paulo, 2002. http://www.teses.usp.br/teses/disponiveis/88/88131/tde-18062002-142324/.
Full textThis work is focused in two main aspects: i) The processing and characterization of porous vitreous pieces, produced from waste glass and ii) The deposition of chitosan (CHI) and carboximethilcelullose (CMC) on the vitreous surface. The evaluation of the active aspects aiming at interactions with the herbicide atrazine (ATZ) was realized in aqueous medium. The processing follows the filler principle making use of NaCl and MgCO3 as porous phases formation. Characterization showed that NaCl acts as a soluble, inert phase, with interaction over NaCl-Matrix interface, resulting in cristobalite phase as final structure. Conversely, the MgCO3 reacts along the matrix generating new phases such as CaMg(SiO3)2. The final porous and matrix structure also differs to each used salt, mainly concerning morphological aspects of the porous where semiquantitive analysis point to the Na+ in glass-NaCl interface and to Mg++ as the main chain modifiers. Measurements by porosimetry has showed that in the materials processed with NaCl the porous structure are typically open with uniform size distribution and present a certain regularity of forms when compared with the membranes processed with MgCO3. Concerning an herbicide interaction, which was evaluated by spectroscopic techniques inferring interaction between chemically active surfaces and ATZ. The herbicide removal through CHI and CHI+CMC deposited films resulted numerically lower than those values attained to glass surface absent of films. Nevertheless, the results point that to a better interaction between CHI and ATZ when both are dissolved at pH 3,0. By XPS scanning it was possible to follow the variation of the surface concentration with increasing of the elements O (1s), C (1s), N (1s) e Cl (2s) confirming surface interaction, despite not being feasible to define what functional groups take place in the interaction. Numerical analysis presents herbicide removal in the order of 10-12% concerning measure performed over a single membrane. Complementary tests of metal removal (Cd) confirmed the advantage of CHI surface in this type of interaction, making evident that composed filtration system could be ideal in the removal of distinct contaminants.
Achoundong, Carine Saha Kuete. "Engineering economical membrane materials for aggressive sour gas separations." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50289.
Full textBooks on the topic "Materiały membranowe"
Chu, Liang-Yin. Smart Membrane Materials and Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18114-6.
Full textPinnau, Ingo, and Benny D. Freeman, eds. Advanced Materials for Membrane Separations. Washington, DC: American Chemical Society, 2004. http://dx.doi.org/10.1021/bk-2004-0876.
Full textFendler, J. H., ed. Membrane-Mimetic Approach to Advanced Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0020989.
Full textFendler, Janos H. Membrane-mimetic approach to advanced materials. Berlin: Springer-Verlag, 1994.
Find full textYampolskii, Yuri, and Eugene Finkelshtein, eds. Membrane Materials for Gas and Vapor Separation. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119112747.
Full textGray, Stephen, Toshinori Tsuru, Yoram Cohen, and Woei-Jye Lau, eds. Advanced Materials for Membrane Fabrication and Modification. Boca Raton : Taylor & Francis a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781315184357.
Full textWłodarczyk, Renata. Badania właściwości użytkowych materiałów stosowanych na interkonektory ogniw paliwowych typu PEMFC: Examination of functional properties of materials used for interconnectors in PEMFC fuel cells = Analisi delle proprietà dei materiali utilizzati negli interconnettori delle celle a combustibile PEMFC. Częstochowa: Wydawnictwo Politechniki Częstochowskiej, 2011.
Find full textVäisänen, Pasi. Characterisation of clean and fouled polymeric membrane materials. Lappeenrante: Lappeenranta University of Technology, 2004.
Find full text1966-, Khayet Mohamed, and Wright Chris J, eds. Membrane modification: Technology and applications. Boca Raton: Taylor & Francis, 2012.
Find full textRossiter, Walter J. Interim criteria for polymer-modified bituminous roofing membrane materials. Gaithersburg, MD: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.
Find full textBook chapters on the topic "Materiały membranowe"
Mulder, Marcel. "Materials and Material Properties." In Basic Principles of Membrane Technology, 22–70. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1766-8_2.
Full textMulder, Marcel. "Materials and Material Properties." In Basic Principles of Membrane Technology, 17–53. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-017-0835-7_2.
Full textLLOYD, DOUGLAS R. "Membrane Materials Science." In Materials Science of Synthetic Membranes, 1–21. Washington, D.C.: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0269.ch001.
Full textYampolskii, Yuri. "Polyacetylene-Based Membrane Materials." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_2147-1.
Full textBobone, Sara. "Materials and Methods." In Peptide and Protein Interaction with Membrane Systems, 19–27. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06434-5_3.
Full textBobone, Sara. "Materials and Methods." In Peptide and Protein Interaction with Membrane Systems, 103–10. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06434-5_6.
Full textPasquarelli, Alberto. "Proteome and Membrane Channels." In Learning Materials in Biosciences, 257–90. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76469-2_10.
Full textSengupta, Arijit, Xianghong Qian, and S. Ranil Wickramasinghe. "Chapter 4. Magnetically Responsive Membrane." In Smart Materials Series, 83–124. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016377-00083.
Full textCaihong, Lei, and Xu Ruijie. "Melt-Stretching Polyolefin Microporous Membrane." In Submicron Porous Materials, 81–105. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53035-2_4.
Full textHe, Yubin, Jianqiu Hou, and Tongwen Xu. "Membrane Materials for Ion Exchange Membrane Fuel Cell Applications." In Advanced Materials for Membrane Fabrication and Modification, 475–504. Boca Raton : Taylor & Francis a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781315184357-16.
Full textConference papers on the topic "Materiały membranowe"
YASAR, Abdullah Irfan, and Fikret YILDIZ. "Investigation of Different Membrane Materials Effects in CMUT Membrane Behaviour." In 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). IEEE, 2019. http://dx.doi.org/10.1109/ismsit.2019.8932848.
Full textFreiherrova, Nela, and Martin Krejsa. "Approaches of biaxial testing of membrane materials." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2020. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0082045.
Full textShi, Jinjun, Jiusheng Guo, and Bor Jang. "A New Type of High Temperature Membrane for Proton Exchange Membrane Fuel Cells." In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97043.
Full textGaddamwar, Sagar S., Anand N. Pawar, and Pramod A. Naik. "Similitude of membrane helical coil with membrane serpentine tube for characteristics of high-pressure syngas: A review." In PROCEEDINGS OF THE INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2017): Metallurgy and Advanced Material Technology for Sustainable Development. Author(s), 2018. http://dx.doi.org/10.1063/1.5038684.
Full textHemmati, Hafez, and Robert Magnusson. "Nanoimprinted nanocomposite membrane-type metamaterials." In Optical Components and Materials XVI, edited by Michel J. Digonnet and Shibin Jiang. SPIE, 2019. http://dx.doi.org/10.1117/12.2510282.
Full textJEONG, C. CHUL HO, HO BUM PARK, and YOUNG MOO LEE. "THERMO-CONTROLLED HIGH PERFORMANCE GAS SEPARATION MEMBRANE MATERIAL: NOVEL ORGANIC MOLECULAR SIEVE MEMBRANE." In Proceedings of the 4th International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702623_0123.
Full textTalley, Christopher, William Clayton, Paul Gierow, Greg Laue, Jennie McGee, and James Moore. "Advanced Membrane Materials for Improved Solar Sail Capabilities." In 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-1561.
Full textGalizia, Michele, Ilaria Puccini, Massimo Messori, Maria Grazia De Angelis, Giulio C. Sarti, A. D’Amore, Domenico Acierno, and Luigi Grassia. "Mass Transport in Nanocomposite Materials for Membrane Separations." In V INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2010. http://dx.doi.org/10.1063/1.3455585.
Full textJiang, Jianwen. "Computational Membrane Separations." In 7th World Congress on Mechanical, Chemical, and Material Engineering. Avestia Publishing, 2021. http://dx.doi.org/10.11159/iccpe21.001.
Full textScovazzo, Paul, Paul Todd, Jedrick Burgos, Nina Lattarulo, and Alex Hoehn. "Membrane-Based Humidity Control in Microgravity: A Comparison of Membrane Materials and Design Equations." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/972275.
Full textReports on the topic "Materiały membranowe"
Krishnan, G. N., A. Sanjurjo, A. S. Damle, B. J. Wood, and K. H. Lau. Thermal/chemical degradation of inorganic membrane materials. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/10185708.
Full textShih, Wei-Heng, and Tejas Patil. DEVELOPMENT OF MESOPOROUS MEMBRANE MATERIALS FOR CO2 SEPARATION. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/804177.
Full textWei-Heng Shih, Tejas Patil, and Qiang Zhao. DEVELOPMENT OF MESOPOROUS MEMBRANE MATERIALS FOR CO2 SEPARATION. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/812171.
Full textKenneth A. Mauritz and Robert B. Moore. Improved Membrane Materials for PEM Fuel Cell Application. Office of Scientific and Technical Information (OSTI), June 2008. http://dx.doi.org/10.2172/951322.
Full textShih, Wei-Heng, Qiang Zhao, and Nanlin Wang. DEVELOPMENT OF MESOPOROUS MEMBRANE MATERIALS FOR CO2 SEPARATION. Office of Scientific and Technical Information (OSTI), May 2002. http://dx.doi.org/10.2172/795760.
Full textShih, Wei-Heng, Qiang Zhao, and Tejas Patil. DEVELOPMENT OF MESOPOROUS MEMBRANE MATERIALS FOR CO2 SEPARATION. Office of Scientific and Technical Information (OSTI), May 2002. http://dx.doi.org/10.2172/795762.
Full textSmith, G. S., A. Nowak, and C. Safinya. Advanced biomolecular materials based on membrane-protein/polymer complexation. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/296874.
Full textRossiter, Walter J, Jr, and James F. Seiler. Interim criteria for polymer-modified bitiminous roofing membrane materials. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.bss.167.
Full textKrishnan, G. N., A. Sanjurjo, B. J. Wood, and K. H. Lau. Thermal and chemical degradation of inorganic membrane materials. Topical report. Office of Scientific and Technical Information (OSTI), April 1994. http://dx.doi.org/10.2172/10164139.
Full textRossiter, Walter J. Jr, and Tinh Nguyen. Cleaning of aged EPDM rubber roofing membrane material for patching:. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.4525.
Full text