Academic literature on the topic 'Material Innovation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Material Innovation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Material Innovation"
Mizuno, Hiroyuki. "Innovation and Material." Materia Japan 37, no. 3 (1998): 159–60. http://dx.doi.org/10.2320/materia.37.159.
Full textGuo, Yuan, and Xin Shi. "Innovation Design Method of Product Base on Materials Innovation Technologies." Advanced Materials Research 605-607 (December 2012): 271–75. http://dx.doi.org/10.4028/www.scientific.net/amr.605-607.271.
Full textLeontev, Mikhail. "Socio-psychological aspects of innovation behavior of workers in construction organizations." MATEC Web of Conferences 251 (2018): 05021. http://dx.doi.org/10.1051/matecconf/201825105021.
Full textSwenson, David W. "Material Innovations in Alternative Energy - Collaboration, Systems and Opportunities." Key Engineering Materials 380 (March 2008): 67–78. http://dx.doi.org/10.4028/www.scientific.net/kem.380.67.
Full textSumiyama, Kenji. "Material Innovation from Metallic Clusters." Materia Japan 35, no. 1 (1996): 42–47. http://dx.doi.org/10.2320/materia.35.42.
Full textLi, Qing Shan, Wei Hong, Jing Sun, Jun Liu, Wei An Yu, Zhu Bai Liu, and Guang Zhong Xing. "Thinking Innovative Approaches and Materials Innovative Practice." Advanced Materials Research 427 (January 2012): 259–64. http://dx.doi.org/10.4028/www.scientific.net/amr.427.259.
Full textvan der Leeuw, S. E. "Archaeology, Material Culture and Innovation." SubStance 19, no. 2/3 (1990): 92. http://dx.doi.org/10.2307/3684671.
Full textGrogan, A. "Material world [fashion-tech innovation]." Engineering & Technology 9, no. 5 (June 1, 2014): 46–9. http://dx.doi.org/10.1049/et.2014.0518.
Full textKikkawa, Takahiro, Shuntaro Arai, Masamichi Hashimoto, and Atsuhiro Fujimori. "Material Innovation of Organo-aluminosilicate." Transactions of the Materials Research Society of Japan 39, no. 2 (2014): 243–46. http://dx.doi.org/10.14723/tmrsj.39.243.
Full textLewandowska, Lucyna. "The capital barrier to innovation in the small and medium-sized enterprises." Comparative Economic Research. Central and Eastern Europe 12, no. 1-2 (February 11, 2010): 99–113. http://dx.doi.org/10.2478/v10103-009-0006-7.
Full textDissertations / Theses on the topic "Material Innovation"
Akin, Tugce. "Communication Of Smart Materials: Bridging The Gap Between Material Innovation And Product Design." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610999/index.pdf.
Full textInformation Hierarchy for Smart Materials Communication for Industrial / Product Design&rsquo
. Industrial and product designers are invited to use the findings of the thesis to assist in developing a common smart materials language and culture, enriched by details, technicalities, opportunities, and creative and innovative material attributes. The study commences with the creation of a concise and compact reservoir of technical knowledge on smart materials and critically contrasts two established systems of classification for smart materials. Then, the subject of materials information appropriate to industrial design is discussed, highlighting channels through which smart materials information may be communicated at an optimum level so as to be amenable to exploitation by industrial designers. A sectoral analysis of smart materials use follows, including the presentation of factors that may hinder their more extensive exploitation in major industrial sectors. v The thesis concludes that smart materials have potential to initiate a breakthrough in the materials universe, and that industrial designers have a role in promoting smart materials knowledge, the capabilities of smart materials, and their innovation possibilities. It is recomended that since smart materials are a new generation of materials quite different from the conventional, they be promoted carefully through the proposed Information Hierarchy.
Sinisterra, Maria Alexandra 1975. "Rethinking emergency habitats for refugees : balancing material innovation and culture." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28813.
Full textIncludes bibliographical references (p. 110-117).
This thesis propose an alternative approach to emergency housing for Colombian refugees, helping development agencies put the displaced community on the road to permanent housing. An environmentally friendly 'smart' material is proposed, based on case studies, material tests, experiments and literature research. This is not just a limited shelter solution, but goes beyond construction to include a balanced combination of building technology, material innovation and culture, that promotes an environment for sustainable development: a habitat.
by Maria Alexandra Sinisterra.
S.M.
Prendeville, Sharon. "Ecodesign and material selection for eco-innovation in office furniture products." Thesis, Cardiff Metropolitan University, 2015. http://hdl.handle.net/10369/7576.
Full textHarrington, K. "Concrete as a fabrication material for simple hulls : A marine innovation study." Thesis, University of Sunderland, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378997.
Full textHald, Saga. "Sustainable Material Selection:Guiding the Multi-Criteria Process to Design for Sustainable Innovation." Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-18869.
Full textMaassen, Anne-Christine Stephanie. "Solar cities in Europe : a material semiotic analysis of innovation in urban photovoltaics." Thesis, Durham University, 2012. http://etheses.dur.ac.uk/3592/.
Full textQuarta, Francesca. "Innovation technology of scrap’s recycling: material characterization and creation of a parameters’ hierarchy for “DECISTOR SPS”." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amslaurea.unibo.it/1484/.
Full textAshton, Elisa Guerra. "Design, inovação e sustentabilidade : estudo da reciclagem de produtos multi-materiais poliméricos sem separação prévia." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/169250.
Full textThis study deals with issues related to product design and material selection, facing the environmental issues. Developments in design and materials usage unleashed the tendency of developing unsustainable products, as the multi-materials. These products cause severe negative environmental impacts, since its recycling is difficulted by the complexity in separating the materials. In this context, it is argued, through literature review and practical studies, the need of developing short-term solutions to this problem. The objective is to study multi-material products recycling, without previous sorting, aiming the use of the resulting material in applications with added value. The research is divided in three parts: (I) Bibliographic Review, (II) Practical Study A and (III) Practical Study B. Bibliographic Review presents the scientific and theoretic context regarding the central themes for later discussion of the results obtained in the practical parts. Practical Study A involves the reprocessing of multi-material toothbrushes through micronization. Subsequently, the resulting material is characterized by scanning electron microscopy (SEM), density test, tensile test and dynamic mechanical analysis (DMA). It is also presented the selection of potential areas of application for the new recycled material through Materials Properties Charts and a viability test of the selected application. In Practical Study B, two samples of different particle sizes were used to evaluate the influence of the recycled material’s particle sizes. In the characterization stage, in addition to the tests conducted in Study A, granulometric distribution, hardness test, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were also performed. The results demonstrated the technical feasibility of reprocessing multi-material toothbrushes through the traditional mechanical recycling process, without previous sorting. The recycled material presented potential for application in synthetic laminates for shoes and components production. Regarding the particles size influence, it was found that there was no significant influence in the resulted material. There is also the technological contribution which is the proposition of an alternative for the recycling of theoretically "non-recyclable" products, contributing to the reduction of solid waste generation.
Almqvist, Marcus, and Charlotta Lundberg. "A Business Modelling Framework for the Front End of Innovation. : Customising a Guiding Material for an Early Phase of the Innovation Process for a Swedish Fintech Company." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263089.
Full textDet svenska Fintech-bolaget som behandlas i denna masteruppsats har föreslagit en process genom vilken alla nya idéer ska gå igenom innan dess genomförbarhet testas i en ’Proof-of-Concept’. Denna process är på företaget kallad ‘Proof-of-Concept-processen’. Idag finns det inget material som hjälper och guidar idéägaren genom en av de mer omfattande faserna av processen. Syftet med denna masteruppsats är att utveckla ett material för denna fas. Materialet baseras på en litteraturstudie och kvalitativa intervjuer. De ämnen som ingår i litteraturstudien är: ‘Innovation’, ‘Uncertainty’, ‘Front End of Innovation’ och ‘Business Modelling’. Kvalitativa semi-strukturerade intervjuer utfördes separat med tre av ledningens fyra medlemmar. Kontinuerlig diskussion fördes med företagshandledaren för att facilitera ramverkets utveckling. Resultatet består av två delar, (1) resultaten från intervjuerna med ledningsgruppen som syftar till att ligga till grund för kravspecifikationen på vilka komponenter materialet ska innehålla och (2) ett ramverk för hur affärsmodellering kan ske i detta stadie av innovationsprocessen. Resultatet är ett material med företagets grafiska profil för att det ska kunna bli behandlat som ett internt dokument. En version av materialet som inte har företagets grafiska språk presenteras. Ramverket presenteras tillsammans med en djupare analys av de separata byggstenar som tillsammans utgör dess struktur, samt förslag på tekniker som syftar till att hjälpa användaren av materialet att utveckla sin idé inför nästa utvärderingsmöte och möjliggöra en demokratisering av innovationsprocessen. Ramverkets struktur är ett resultat av inspiration från existerande ramverk samt intervjuerna vilket bidrar till dess anpassning till företagets specifika innovationsprocess. Vi anser att resultatet är ett ramverk för affärsmodellering som beskriver rekommendationer för hur man hanterar de tidiga faserna av innovationsprocessen. Ramverket och dess teoretiska bakgrund är baserat på ett brett utbud av litteratur och författare. Avslutningsvis hävdar vi att ramverket kan betraktas som en bro mellan två relativt unga forskningsområden ’Front End of Innovation’ och ’Business Modelling’ med sitt primära tillämpningsområde på det behandlade företaget.
Lind, von Mentzer Andrea, and Micaela Lockner. "Cirkulär+plast=sant? : En studie om innovativa material till cirkulära förpackningar som alternativ till petroleum plast (från restprodukter i livsmedelsindustrin)." Thesis, Mittuniversitetet, Institutionen för design, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-38950.
Full textBooks on the topic "Material Innovation"
Gold, Rich. The plenitude: Creativity, innovation, and making stuff. Cambridge, MA: MIT Press, 2007.
Find full textGold, Rich. The Plenitude: Creativity, Innovation, and Making Stuff. Cambridge, Mass: MIT Press, 2006.
Find full textInternational, Symposium on Materials Degradation: Innovation Inspection Control and Rehabilitation (2005 Calgary AB). Materials degradation: innovation, inspection, control and rehabilitation: Proceedings of the International Symposium on Material Degradation: Innovation, Inspection, Control and Rehabilitaiton : August 21-24, 2005, Calgary, Alberta, Canada. Montréal: Canadian Institute of Mining, Metallurgy and Petroleum, 2005.
Find full textFerguson, Rebecca. Educational visions: The lessons from 40 years of innovation. London: Ubiquity Press, 2019.
Find full textLam, Yanta H. T. Bamboo and contemporary product design in China: Application and design innovation in a traditional Asian material. Birmingham: University of Central England in Birmingham, 1999.
Find full textInternationale Ausstellungstagung für Material-Technologie und Werkstoff-Anwendungen (1993 Leipzig, Germany). INNOMATA 93: Innovation by materials : Katalog, Programm : Internationale Ausstellungstagung für Material-Technologie und Werkstoff-Anwendungen : Sonderveranstaltung Intelligent Processing, Smart Materials, Leipzig, 22.-25. November 1993. Frankfurt am Main: Die Gesellschaft, 1993.
Find full textKargin, Nikolay, and Yuliya Laamarti. Innovations in social and educational systems (for example recreational activities). ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1086386.
Full textMoskowitz, Sanford L. Advanced Materials Innovation. Hoboken, New Jersey: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118986073.
Full text(Firm), MatériO, ed. Material World 3: Innovative materials for architecture and design. Amsterdam: Frame Publishers, 2011.
Find full textGermanà, Maria Luisa, ed. Permanenze e innovazioni nell'architettura del MediterraneoMediterranean Architecture between Heritage and Innovation. Florence: Firenze University Press, 2011. http://dx.doi.org/10.36253/978-88-6655-007-5.
Full textBook chapters on the topic "Material Innovation"
Georghiou, Luke, J. Stanley Metcalfe, Michael Gibbons, Tim Ray, and Janet Evans. "Plasticisers: Synthetic Material for Cordage." In Post-Innovation Performance, 260–65. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-07455-6_31.
Full textJansen, J. L. A. "Dematerialisation and innovation policy." In Managing a Material World, 285–96. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5125-2_20.
Full textReyes-Cueva, E., Javier Martínez-Gómez, and Mónica Delgado Yánez. "Phase Change Materials. Material Selection Based on Better Thermal Properties: A Literature Review." In Innovation and Research, 450–63. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60467-7_37.
Full textvon Helldorff, Katja, Simone Kellerhoff, Anja Carsten, and Johannes Dietrich. "Material Mafia – Kreisläufe für die Weiterverwendung von Ressourcen." In Innovation und Gesellschaft, 383–91. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-16545-1_22.
Full textSchebek, Liselotte, Witold-Roger Poganietz, Silke Feifel, and Saskia Ziemann. "Technological Innovation and Anthropogenic Material Flows." In Competition and Conflicts on Resource Use, 135–53. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10954-1_10.
Full textKuijpers, Maikel H. G. "Material Is the Mother of Innovation." In A Cultural Economic Analysis of Craft, 257–70. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02164-1_20.
Full textMarres, Noortje. "Engaging Devices: The Inter-articulation of Technology, Democracy and Innovation." In Material Participation, 62–83. London: Palgrave Macmillan UK, 2015. http://dx.doi.org/10.1007/978-1-137-48074-3_3.
Full textMarres, Noortje. "Eco-homes as Instruments of Material Politics: Engagement, Innovation, Change." In Material Participation, 108–35. London: Palgrave Macmillan UK, 2015. http://dx.doi.org/10.1007/978-1-137-48074-3_5.
Full textSaleem, A., A. Raza, and S. Ahmad. "Psychophysical Approach in Manual Material Handling: Review." In Design Science and Innovation, 815–20. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9054-2_96.
Full textCherrez, Mario, Javier Martìnez-Gomez, Juan Francisco Nicolalde, and Augusto Riofrio. "Material Selection Based on Multicrieria Decision Methods for Brake Disc Manufacture." In Innovation and Research, 428–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60467-7_35.
Full textConference papers on the topic "Material Innovation"
Lecce, Chiara, and Marinella Ferrara. "The Design-driven Material Innovation Methodology." In Systems & Design: Beyond Processes and Thinking. Valencia: Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/ifdp.2016.3243.
Full textHornbuckle, Rosie. "Materials Liaisons: facilitating communication in Design-Driven Material Innovation (DDMI) projects." In Design Research Society Conference 2018. Design Research Society, 2018. http://dx.doi.org/10.21606/drs.2018.446.
Full textJin Wang, Lufang Zhang, and Xiaojian Liu. "Material application and innovation in furniture design." In 2009 IEEE 10th International Conference on Computer-Aided Industrial Design & Conceptual Design. IEEE, 2009. http://dx.doi.org/10.1109/caidcd.2009.5375316.
Full textTANABE, IKUO, and PAULO DA SILVA. "DEVELOPMENT OF MATERIAL OPTIMIZATION TECHNOLOGY FOR INNOVATION." In HPSM/OPTI 2018. Southampton UK: WIT Press, 2018. http://dx.doi.org/10.2495/hpsm180111.
Full textBasting, Dirk, Heinrich Endert, Rainer Paetzel, and Bernard K. Nikolaus. "Excimer laser: innovation in industrial material processing." In Photonics West '96, edited by Jan J. Dubowski, Jyotirmoy Mazumder, Leonard R. Migliore, Chandrasekhar Roychoudhuri, and Ronald D. Schaeffer. SPIE, 1996. http://dx.doi.org/10.1117/12.237721.
Full textGokhale, Sanjiv, and Mike Argent. "Innovation in Pipe Material for Microtunneling Applications." In Construction Institute Sessions at ASCE Civil Engineering Conference 2001. Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40591(269)13.
Full textTong, Zhi-Neng. "Discussion on the Innovation of Wall Body Material." In 2012 International Conference on Biomedical Engineering and Biotechnology (iCBEB). IEEE, 2012. http://dx.doi.org/10.1109/icbeb.2012.153.
Full textKoike, J., M. Hosseini, H. T. Hai, D. Ando, and Y. Sutou. "Material innovation for MOL, BEOL, and 3D integration." In 2017 IEEE International Electron Devices Meeting (IEDM). IEEE, 2017. http://dx.doi.org/10.1109/iedm.2017.8268485.
Full textBrosens, Lore, and Marina Emmanouil. "EDUCATION INNOVATION THROUGH MATERIAL INNOVATION IN PRIMARY EDUCATION: THE ‘GROW-IT-YOURSELF’ WORKSHOP." In 21st International Conference on Engineering and Product Design Education. The Design Society, 2019. http://dx.doi.org/10.35199/epde2019.39.
Full textGalabada, Harsha, P. Dhammika Dharmaratne, Himahansi Galkangda, Malsha Mendis, Renuka Nilmini, and Rangika Umesh Halwatura. "Soil as an innovative sustainable flooring material." In 2020 From Innovation to Impact (FITI). IEEE, 2020. http://dx.doi.org/10.1109/fiti52050.2020.9424881.
Full textReports on the topic "Material Innovation"
Chappell, Mark, Wu-Sheng Shih, Cynthia Price, Rishi Patel, Daniel Janzen, John Bledsoe, Kay Mangelson, et al. Environmental life cycle assessment on CNTRENE® 1030 material and CNT based sensors. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42086.
Full textFall, Kelsey, David Perkey, Zachary Tyler, and Timothy Welp. Field measurement and monitoring of hydrodynamic and suspended sediment within the Seven Mile Island Innovation Laboratory, New Jersey. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/40980.
Full textTaylor, Antoinette. Innovation in Materials Science: Electromagnetic Metamaterials Summary. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1055757.
Full textOreski, Gernot, Joshua Stein, Gabriele Eder, Karl Berger, Laura Bruckman, Jan Vedde, Karl-Anders Weiss, Tadanori Tanahashi, Roger French, and Samuli Ranta. Designing New Materials for Photovoltaics: Opportunities for Lowering Cost and Increasing Performance through Advanced Material Innovations. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1779380.
Full textWarren, James A., and Ronald F. Boisvert. Building the Materials Innovation Infrastructure: Data and Standards. Gaithersburg, MD: National Institute of Standards and Technology, November 2012. http://dx.doi.org/10.6028/nist.ir.7898.
Full textKennedy, Alan, Jonathon Brame, Taylor Rycroft, Matthew Wood, Valerie Zemba, Charles Weiss, Matthew Hull, Cary Hill, Charles Geraci, and Igor Linkov. A definition and categorization system for advanced materials : the foundation for risk-informed environmental health and safety testing. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41803.
Full textRao, Gopal. Materials & Engineering: Propelling Innovation MRS Bulletin Special Issue Session. Office of Scientific and Technical Information (OSTI), May 2016. http://dx.doi.org/10.2172/1251379.
Full textScott, Elizabeth. Innovations in Advanced Materials and Metals Manufacturing Project (IAM2). Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1369257.
Full textTaylor, Emmanuel, Caroline Kramer, Brian Marchionini, Ridah Sabouni, Kerry Cheung, and Dominic F. Lee. Materials Innovation for Next-Generation T&D Grid Components. Workshop Summary Report. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1225432.
Full textHorton, L. L. Workshop on innovation in materials processing and manufacture: Exploratory concepts for energy applications. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/10176806.
Full text