To see the other types of publications on this topic, follow the link: Material.

Journal articles on the topic 'Material'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Material.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Benítez, Solano. "Materia y material." Astrágalo. Cultura de la Arquitectura y la Ciudad, no. 22 (2017): 11–20. https://doi.org/10.12795/astragalo.2017.i22.02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Anand S A, Megha, Y. Arun Kumar, and M. S Srinath. "Material Properties of Additive Manufactured Composite Materials." International Journal of Science and Research (IJSR) 11, no. 5 (2022): 1454–57. http://dx.doi.org/10.21275/sr22518180520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maugin, Gérard. ""Material" mechanics of materials." Theoretical and Applied Mechanics, no. 27 (2002): 1–12. http://dx.doi.org/10.2298/tam0227001g.

Full text
Abstract:
The paper outlines recent developments and prospects in the application of the continuum mechanics expressed intrinsically on the material manifold itself. This includes applications to materially inhomogeneous materials physical effects which, in this vision, manifest themselves as quasi-in homogeneities, and the notion of thermo dynamical driving force of the dissipative progress of singular point sets on the material manifold with special emphasis on fracture, shock waves and phase-transition fronts. .
APA, Harvard, Vancouver, ISO, and other styles
4

TAKATORI, Eiichi. "Material Recycling of Polymer Materials and Material Properties of the Recycled Materials." NIPPON GOMU KYOKAISHI 87, no. 11 (2014): 441–46. http://dx.doi.org/10.2324/gomu.87.441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Takatori, E. "Material Recycling of Polymer Materials & Material Properties of the Recycled Materials." International Polymer Science and Technology 42, no. 7 (2015): 9–14. http://dx.doi.org/10.1177/0307174x1504200702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lurie, K. A. "MATERIAL OPTIMIZATION AND DYNAMIC MATERIALS." Cybernetics and Physics, Volume 10, 2021, Number 2 (October 1, 2021): 84–87. http://dx.doi.org/10.35470/2226-4116-2021-10-2-84-87.

Full text
Abstract:
The paper is about the connection between material optimization in dynamics and a novel concept of dynamic materials (DM) defined as inseparable union of a framework and the fluxes of mass, momentum, and energy existing in time dependent material formations. An example of a spatial-temporal material geometry is discussed as illustration of a DM capable of accumulating wave energy. Finding the optimal material layouts in dynamics demonstrates conceptual difference from a similar procedure in statics. In the first case, the original constituents are distributed in space-time, whereas in the seco
APA, Harvard, Vancouver, ISO, and other styles
7

Saakes, Daniel. "Material light: exploring expressive materials." Personal and Ubiquitous Computing 10, no. 2-3 (2005): 144–47. http://dx.doi.org/10.1007/s00779-005-0021-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yoshitake, Michiko. "Materials Curation: Material Design by Multi-Disciplinary Use of Material Information." Journal of the Japan Institute of Metals 80, no. 10 (2016): 603–11. http://dx.doi.org/10.2320/jinstmet.j2016035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Moreno, A., E. Bou, María C. Navarro, and J. García. "Influencia de los materiales plásticos sobre las características de los engobes. I Tipo de material arcilloso." Boletín de la Sociedad Española de Cerámica y Vidrio 39, no. 5 (2000): 617–21. http://dx.doi.org/10.3989/cyv.2000.v39.i5.778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Paton, B. E., and V. I. Trefilov. "Proposals for the ISS: Production of new unique materials in space («Material» Project)." Kosmìčna nauka ì tehnologìâ 6, no. 4 (2000): 20–21. http://dx.doi.org/10.15407/knit2000.04.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Rudolph, Matthias, Oleg Lobkis, and Dale E. Chimenti. "Effizient Material charakterisieren / Efficient Materials Characterisation." Materials Testing 40, no. 9 (1998): 346–49. http://dx.doi.org/10.1515/mt-1998-400905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Vieira, A. C., A. T. Marques, R. M. Guedes, and V. Tita. "Material model proposal for biodegradable materials." Procedia Engineering 10 (2011): 1597–602. http://dx.doi.org/10.1016/j.proeng.2011.04.267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Selfridge, A. R. "Approximate Material Properties in Isotropic Materials." IEEE Transactions on Sonics and Ultrasonics 32, no. 3 (1985): 381–94. http://dx.doi.org/10.1109/t-su.1985.31608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Cho, A. "MATERIALS SCIENCE:New Material Promises Chillier Currents." Science 287, no. 5455 (2000): 945a—946. http://dx.doi.org/10.1126/science.287.5455.945a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Marlor, S. S., I. Miskioglu, and J. Ligon. "DYNAMIC MATERIAL PROPERTIES IN BIREFRINGENT MATERIALS." Experimental Techniques 18, no. 4 (1994): 39–42. http://dx.doi.org/10.1111/j.1747-1567.1994.tb00288.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kostick, Dennis S. "The material flow concept for materials." Nonrenewable Resources 5, no. 4 (1996): 211–33. http://dx.doi.org/10.1007/bf02257436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Maatouki, Ismail, Ralf Müller, and Dietmar Gross. "Material Forces in elasto-plastic Materials." PAMM 8, no. 1 (2008): 10441–42. http://dx.doi.org/10.1002/pamm.200810441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kumar, Amit. "2D Material-Enhanced Phase Change Materials." International Journal for Research in Applied Science and Engineering Technology 13, no. 5 (2025): 1946–47. https://doi.org/10.22214/ijraset.2025.70579.

Full text
Abstract:
Phase change materials (PCMs) are promising options for thermal energy storage systems because of their well-known high energy density and consistent thermal output. Nevertheless, the low thermal conductivity and phase transition leakage of conventional PCMs severely restrict their usefulness. A recent successful tactic to get around these issues is the incorporation of two-dimensional (2D) materials into PCMs. The impact of 2D material-enhanced PCMs on energy storage applications is highlighted in this review, which also discusses recent advancements, new trends, and difficulties related to t
APA, Harvard, Vancouver, ISO, and other styles
19

Kishimoto, Satoshi, and Norio Shinya. "Fabrication of Metallic Closed Cellular Materials for Multi-functional Materials(International Workshop on Smart Materials and Structural Systems, W03 Jointly organized by Material & Processing Division, Material & Mechanics Division, Dynamics & Control Division and Space Engineering Division.)." Reference Collection of Annual Meeting 2004.8 (2004): 314–15. http://dx.doi.org/10.1299/jsmemecjsm.2004.8.0_314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Furuya, Yasubumi, and T. Okazaki. "Recent Progress of Rapid-Solidified Multi-Functional Actuator/Sensor Materials and Devices for Smart Man/Material Interface and Systems(International Workshop on Smart Materials and Structural Systems, W03 Jointly organized by Material & Processing Division, Material & Mechanics Division, Dynamics & Control Division and Space Engineering Division.)." Reference Collection of Annual Meeting 2004.8 (2004): 294–95. http://dx.doi.org/10.1299/jsmemecjsm.2004.8.0_294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Mujkic, Zlatan, Nikita Krekhovetckii, and Andrzej Kraslawski. "Material Pinch Location and Critical Materials Recycling." International Journal of Management and Sustainability 8, no. 1 (2019): 10–19. http://dx.doi.org/10.18488/journal.11.2019.81.10.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Friedel, Robert, and Ezio Manzini. "The Material of Invention: Materials and Design." Technology and Culture 32, no. 1 (1991): 133. http://dx.doi.org/10.2307/3106019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Horiuchi, Naohiro, Norio Wada, Miho Nakamura, Akiko Nagai, and Kimihiro Yamashita. "Material Science and Applications of Vector Materials." Journal of the Japan Society of Powder and Powder Metallurgy 58, no. 5 (2011): 287–96. http://dx.doi.org/10.2497/jjspm.58.287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Janani, R., and A. Sankar. "Material management and effective utilization of materials." Materials Today: Proceedings 37 (2021): 3118–24. http://dx.doi.org/10.1016/j.matpr.2020.09.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ragauskas, Paulius, and Rimantas Belevičius. "IDENTIFICATION OF MATERIAL PROPERTIES OF COMPOSITE MATERIALS." Aviation 13, no. 4 (2009): 109–15. http://dx.doi.org/10.3846/1648-7788.2009.13.109-115.

Full text
Abstract:
Present paper describes the facilities of composite material properties identification technique using specimen vibration tests, genetic algorithms, finite elements analysis and specimen shape optimization. In identification process the elastic constants in a numerical model is updated so that the output from the numerical code fits the results from vibration testing. Main problem analysed in this paper is that Poisson's ratio is the worst determined elastic characteristic due to its low influence on specimen eigenfrequencies. It is shown that it is possible to increase its influence by choosi
APA, Harvard, Vancouver, ISO, and other styles
26

Shrivastava, Abhishek. "Smart Materials - A Review on Smart Material." International Journal for Research in Applied Science and Engineering Technology 8, no. 9 (2020): 1268–73. http://dx.doi.org/10.22214/ijraset.2020.31761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

van van Zuijlen, Mitchell, Paul Upchurch, Sylvia Pont, and Maarten Wijntjes. "Material property space analysis for depicted materials." Journal of Vision 19, no. 10 (2019): 251a. http://dx.doi.org/10.1167/19.10.251a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Tani, Junji, Toshiyuki Takagi, and Jinhao Qiu. "Intelligent Material Systems: Application of Functional Materials." Applied Mechanics Reviews 51, no. 8 (1998): 505–21. http://dx.doi.org/10.1115/1.3099019.

Full text
Abstract:
This article presents a review of recent important developments in the field of intelligent material systems. Intelligent material systems, sometimes referred to as smart materials, can adjust their behavior to changes of external or internal parameters analogously to biological systems. In these systems, sensors, actuators and controllers are seamlessly integrated with structural materials at the macroscopic or mesoscopic level. In general, sensors and actuators are made of functional materials and fluids such as piezoelectric materials, magnetostrictive materials, shape memory alloys, polyme
APA, Harvard, Vancouver, ISO, and other styles
29

Häupl, Peter, and Heiko Fechner. "Hygric Material Properties of Porous Building Materials." Journal of Thermal Envelope and Building Science 26, no. 3 (2003): 259–84. http://dx.doi.org/10.1177/109719603032799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Allen, Emily A., Lee D. Taylor, and John P. Swensen. "Smart material composites for discrete stiffness materials." Smart Materials and Structures 28, no. 7 (2019): 074007. http://dx.doi.org/10.1088/1361-665x/ab1ec9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hosono, Hideo. "NANO-MATERIALS 2004: beyond traditional material discipline." Science and Technology of Advanced Materials 5, no. 4 (2004): 407. http://dx.doi.org/10.1016/j.stam.2004.02.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Bardenhagen, S. G., J. U. Brackbill, and D. Sulsky. "The material-point method for granular materials." Computer Methods in Applied Mechanics and Engineering 187, no. 3-4 (2000): 529–41. http://dx.doi.org/10.1016/s0045-7825(99)00338-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mackevich, J., and S. Simmons. "Polymer outdoor insulating materials. II. Material considerations." IEEE Electrical Insulation Magazine 13, no. 4 (1997): 10–16. http://dx.doi.org/10.1109/57.603554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Yakymyshyn, Christopher P. "Acoustic damping material for electro-optic materials." Journal of the Acoustical Society of America 124, no. 3 (2008): 1391. http://dx.doi.org/10.1121/1.2986178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Maugin, Gérard A., Marcelo Epstein, and Carmine Trimarco. "Pseudomomentum and material forces in inhomogeneous materials." International Journal of Solids and Structures 29, no. 14-15 (1992): 1889–900. http://dx.doi.org/10.1016/0020-7683(92)90180-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Clima, S., D. Garbin, W. Devulder, et al. "Material relaxation in chalcogenide OTS SELECTOR materials." Microelectronic Engineering 215 (July 2019): 110996. http://dx.doi.org/10.1016/j.mee.2019.110996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Khadykina, E. A., and Z. A. Meretukov. "Composite Material Based on Plant Raw Materials." Materials Science Forum 974 (December 2019): 406–12. http://dx.doi.org/10.4028/www.scientific.net/msf.974.406.

Full text
Abstract:
Modern global trends show the preferred low-rise construction, even in large cities. Lightweight concrete is the most common material for low-rise construction. Existing lightweight concrete with the wood residues addition have several disadvantages due to the properties of the aggregate. In the southern regions of Russia, walnut grows in large quantities. Only a small part of the shell is processed, the rest is buried in the ground or burned. The proposed aggregate from crushed walnut shell has several advantages compared to the traditional natural organic fillers: low water demand and decay,
APA, Harvard, Vancouver, ISO, and other styles
38

Dylla, H. F., M. A. Ulrickson, D. K. Owens, et al. "Material behavior and materials problems in TFTR." Journal of Nuclear Materials 155-157 (July 1988): 15–26. http://dx.doi.org/10.1016/0022-3115(88)90223-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lellep, J., and J. Majak. "Optimal material orientation of nonlinear orthotropic materials." Mechanics of Composite Materials 35, no. 3 (1999): 233–40. http://dx.doi.org/10.1007/bf02257254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ritter, John E. "Predicting lifetimes of materials and material structures." Dental Materials 11, no. 2 (1995): 142–46. http://dx.doi.org/10.1016/0109-5641(95)80050-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Hrubiak, R., Lyci George, Surendra K. Saxena, and Krishna Rajan. "A materials database for exploring material properties." JOM 61, no. 1 (2009): 59–62. http://dx.doi.org/10.1007/s11837-009-0011-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Yosipof, Abraham, Klimentiy Shimanovich, and Hanoch Senderowitz. "Materials Informatics: Statistical Modeling in Material Science." Molecular Informatics 35, no. 11-12 (2016): 568–79. http://dx.doi.org/10.1002/minf.201600047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Shevtsov, V. I. "Evaporation of materials in an oxidizing material." Combustion, Explosion, and Shock Waves 21, no. 6 (1985): 707–12. http://dx.doi.org/10.1007/bf01463676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Viard, Antoine-Emmanuel, Justin Dirrenberger, and Samuel Forest. "Propagating material instabilities in planar architectured materials." International Journal of Solids and Structures 202 (October 2020): 532–51. http://dx.doi.org/10.1016/j.ijsolstr.2020.05.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Drach, Borys, Igor Tsukrov, Romana Piat, and Stefan Dietrich. "Material properties of anisotropic materials with pores." PAMM 11, no. 1 (2011): 507–8. http://dx.doi.org/10.1002/pamm.201110245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Nishi, Yosihtake. "2004 Research for Intelligent Materials & System(International Workshop on Smart Materials and Structural Systems, W03 Jointly organized by Material & Processing Division, Material & Mechanics Division, Dynamics & Control Division and Space Engineering Division.)." Reference Collection of Annual Meeting 2004.8 (2004): 312–13. http://dx.doi.org/10.1299/jsmemecjsm.2004.8.0_312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Asodariya, Ashish B. "Material Science in Automotive Engineering Lightweight Material for Fuel Efficiency." International Journal of Research Publication and Reviews 5, no. 9 (2024): 1450–55. http://dx.doi.org/10.55248/gengpi.5.0924.2527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Tatsumi, Hijikata. "Inner Material/Material." TDR/The Drama Review 44, no. 1 (2000): 34–42. http://dx.doi.org/10.1162/10542040051058834.

Full text
Abstract:
For the first time in English, we present many of Hijikata's aesthetic and poetic texts. These texts are put into context by Kurihara Nanako's introductory essay. The section includes an interview with Hijikata and a conversation between Hijikata and Japanese experimental theatre innovator Suzuki Tadashi.
APA, Harvard, Vancouver, ISO, and other styles
49

Sheka, Elena F. "DIRAC MATERIAL GRAPHENE." Radioelectronics. Nanosystems. Information Technologies 8, no. 2 (2016): 131–53. http://dx.doi.org/10.17725/rensit.2016.08.131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hryhorov, Andrii, Olena Yatskevych, Alona Tulska, Mikhailo Nahliuk, Vyacheslav Kononovych, and Dmytro Usachov. "Polymer Waste as a Prospective Raw Material for the Production of Petroleum Products and Construction Materials." Chemistry & Chemical Technology 19, no. 2 (2025): 369–77. https://doi.org/10.23939/chcht19.02.369.

Full text
Abstract:
A comprehensive approach to the disposal of solid polymer waste through the technological processing into various types of fuel, lubricants and construction materials is provided. The proposed approach will lead to the improvement of the environmental situation in Ukraine (due to the reduction of the number of landfills). The proposed method of solid polymer waste processing includes their collection, sorting, cleaning and thermal processing.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!