Academic literature on the topic 'Materials bioactius'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Materials bioactius.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Materials bioactius"

1

Reséndiz-Hernández, P. J., D. A. Cortés-Hernández, M. M. G. Saldívar-Ramírez, et al. "Novel bioactive materials: silica aerogel and hybrid silica aerogel/pseudowollastonite." Boletín de la Sociedad Española de Cerámica y Vidrio 53, no. 5 (2014): 235–39. http://dx.doi.org/10.3989/cyv.282014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cao, Wanpeng, and Larry L. Hench. "Bioactive materials." Ceramics International 22, no. 6 (1996): 493–507. http://dx.doi.org/10.1016/0272-8842(95)00126-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mohapatra, Upasana, Susant Mohanty, Sonu Acharya, Bismay Singh, and Debarchita Sarangi. "Bioactive Restorative Materials." Indian Journal of Public Health Research & Development 10, no. 11 (2019): 1151. http://dx.doi.org/10.5958/0976-5506.2019.03669.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Enkel, Bénédicte, Cécile Dupas, Valérie Armengol, et al. "Bioactive materials in endodontics." Expert Review of Medical Devices 5, no. 4 (2008): 475–94. http://dx.doi.org/10.1586/17434440.5.4.475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Greenspan, David C. "Bioactive ceramic implant materials." Current Opinion in Solid State and Materials Science 4, no. 4 (1999): 389–93. http://dx.doi.org/10.1016/s1359-0286(99)00021-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kokubo, T., T. Matsushita, and H. Takadama. "Titania-based bioactive materials." Journal of the European Ceramic Society 27, no. 2-3 (2007): 1553–58. http://dx.doi.org/10.1016/j.jeurceramsoc.2006.04.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tarle, Zrinka, and Matej Par. "Bioactive dental composite materials." Rad Hrvatske akademije znanosti i umjetnosti. Medicinske znanosti 533, no. 43 (2018): 83–100. http://dx.doi.org/10.21857/mnlqgc02ky.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bernardos, A., and L. Kouřimská. "Applications of mesoporous silica materials in food – a review." Czech Journal of Food Sciences 31, No. 2 (2013): 99–107. http://dx.doi.org/10.17221/240/2012-cjfs.

Full text
Abstract:
Mesoporous silica materials have been developed for some applications in the health field. These solids are used for the controlled release of bioactive molecules, as catalysts in the synthesis of essential nutrients, as sensors to detect unhealthy products etc., with many applications in food technologies. By combining mesoporous silica materials with food, we can create healthier products, the products that improve our quality of life. The development of mesoporous materials applied to food could result in protecting bioactive molecules during their passage though the digestive system. For t
APA, Harvard, Vancouver, ISO, and other styles
9

Forero, Paola, Francisco Romero, Oscar Rojas, Astrid Giraldo, and John Henao. "RECUBRIMIENTOS BASE VIDRIOS BIOACTIVOS POR PROYECCIÓN TÉRMICA PARA APLICACIONES EN IMPLANTES ORTOPÉDICOS: ESTADO ACTUAL." Revista Colombiana de Materiales, no. 16 (January 29, 2021): 70–89. http://dx.doi.org/10.17533/udea.rcm.n16a04.

Full text
Abstract:
A continuación, se presenta una revisión del estado del arte de recubrimientos base vidrio bioactivo por proyección térmica. En este trabajo se explican algunos conceptos relevantes sobre las características y propiedades de los vidrios bioactivos, así como los métodos de síntesis para la obtención de estos materiales como materia prima para la proyección térmica. Se mencionan los esfuerzos que se han realizado en las últimas décadas para desarrollar recubrimientos base vidrio bioactivo para aplicaciones ortopédicas y se presenta una perspectiva hacia el futuro próximo en relación con este tip
APA, Harvard, Vancouver, ISO, and other styles
10

Ortega, Benjamín, and Hannia Gonzalez. "FUNCIONALIZACIÓN DE PRÓTESIS POLIMÉRICAS POR PROYECCIÓN TÉRMICA: UNA REVISIÓN." Revista Colombiana de Materiales, no. 16 (January 29, 2021): 90–103. http://dx.doi.org/10.17533/udea.rcm.n16a05.

Full text
Abstract:
Se presenta una revisión de la literatura acerca de la funcionalización de materiales poliméricos para su uso en aplicaciones ortopédicas por proyección térmica. Los recubrimientos bioactivos sobre materiales con base polimérica son una alternativa desarrollada con el propósito de mejorar las propiedades superficiales de estos materiales. La modificación superficial mediante la incorporación de un material bioactivo es una opción atractiva para mejorar el desempeño de materiales al ser implantados en el organismo. Primero se describen de manera breve los conceptos referentes a la proyección té
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Materials bioactius"

1

Rappe, Katrin Steffanie. "Evaluación de la osteointegración y osteoconducción de implantes de titanio poroso bioactivos: valoración con microscopía electrónica de retrodispersión en un modelo de implantación ortotópica en conejos." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/669592.

Full text
Abstract:
En los últimos años, la ciencia de los biomateriales aplicada a los sustitutos óseos se ha centrado en la investigación de nuevos implantes elaborados con materiales que, además de presentar una estructura de poros interconectados esencial para un adecuado crecimiento óseo que asegure el anclaje del implante, presenten también unas óptimas propiedades biomecánicas. Los estudios más recientes se centran en el desarrollo de implantes a base de metales porosos bioactivos, como el titanio, que presentan buenas propiedades mecánicas al soportar adecuadamente las condiciones de carga. Diversos estud
APA, Harvard, Vancouver, ISO, and other styles
2

Eghtesadi, Neda. "Mechanical properties of resorbable PCL/FastOs® BG composite materials." Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/13636.

Full text
Abstract:
Mestrado em Materiais e Dispositivos Biomédicos<br>Bioresorbable composites nowadays play an increasingly important role in the modern medicine, especially in orthopaedics for the fixation of bone fractures and tendons. Contrarily to the metallic counterparts, they prevent a second surgical operation to remove them, because they will be gradually integrated in the bone tissues. Finding ways to improve their physical and mechanical properties to better fit the intended specific conditions and environments has been a goal in many researches. It has already established that size, shape, as
APA, Harvard, Vancouver, ISO, and other styles
3

Takadama, Hiroaki. "MECHANISM OF APATITE FORMATION ON BIOACTIVE MATERIALS." 京都大学 (Kyoto University), 2001. http://hdl.handle.net/2433/150685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Azevedo, Maria Manuel Goncalves. "Hypoxia-mimicking bioactive materials for skeletal tissue engineering." Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/9005.

Full text
Abstract:
The next generation of regenerative medicine solutions will depend on smart materials that can activate “self-healing” mechanisms. Cells respond to changes in pO2 through a hypoxia-sensing pathway, the HIF-1 pathway, which activates numerous processes necessary for bone and cartilage development and for normal tissue repair. Control of these processes is critical in tissue engineering (TE), therefore this thesis aimed to develop novel hypoxia-mimicking materials for skeletal TE. Resorbable bioactive glasses (BG) were chosen as the delivery system for a hypoxia-stimulating ion, Co2+. Two series
APA, Harvard, Vancouver, ISO, and other styles
5

Kimu, Hyonmin. "Design of Bioactive Materials with High Fracture Toughness." Kyoto University, 1997. http://hdl.handle.net/2433/202290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Eriksson, Alexander. "Bioactivity testing of dental materials." Thesis, Uppsala universitet, Tillämpad materialvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-382042.

Full text
Abstract:
Ever since Hench et al. first discovered bioactive glass in 1969, extensive interest was created because of the materials ability to chemically bond with living tissue. In this project the bioactivity of three different compositions of the bioactive glass Na2O-CaO-SiO2 have been studied. The compositions of the different glasses were A (25% Na2O, 25% CaO and 50% SiO2), B (22.5% Na2O, 22.5% CaO and 55% SiO2) and C (20% Na2O, 20% CaO and 60% SiO2). Their bioactivity was tested through biomimetic evaluation, in this case by soaking samples of each glass in simulated body fluid (SBF) and phosphate
APA, Harvard, Vancouver, ISO, and other styles
7

Brown, Lindsey. "The role of silicon in osteoinduction by bioactive materials." Thesis, Queen Mary, University of London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ho, Emily Marcolongo Michele S. "Engineering bioactive polymers for the next generation of bone repair /." Philadelphia, Pa. : Drexel University, 2005. http://dspace.library.drexel.edu/handle/1860/474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Perrin, Eloïse. "Elaboration et caractérisation d'un biomatériau bioactif et résorbable à base de polylactide et de verre bioactif." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI110.

Full text
Abstract:
Cette étude porte sur le développement et la caractérisation d’un biomatériau d’ostéosynthèse bioactif, biorésorbable et présentant une tenue mécanique la plus élevée possible. Il a pour vocation de favoriser la repousse osseuse tout en remplaçant temporairement les fonctions mécaniques de l’os. Le matériau, élaboré à base d’un polyacide lactique et de verre bioactif, doit pouvoir être transformé par injection moulage de manière à obtenir des formes complexes de petites tailles telles que des vis, des ancres ou des plaques d’ostéosynthèse. Le bioverre permet au matériau de se lier facilement à
APA, Harvard, Vancouver, ISO, and other styles
10

Gwinner, Fernanda Pelógia Camargo [UNESP]. "Influência da adição de bioactive glass na liberação de íons do cimento de ionômero de vidro modificado por resina." Universidade Estadual Paulista (UNESP), 2009. http://hdl.handle.net/11449/105480.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:35:01Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-06-18Bitstream added on 2014-06-13T20:25:44Z : No. of bitstreams: 1 gwinner_fpc_dr_sjc.pdf: 429388 bytes, checksum: 8f66379f177aa22a57995cbad67ae92f (MD5)<br>Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)<br>Esse estudo in vitro avaliou o efeito da adição de diferentes concentrações e composições de bioactive glass (BAG) ao cimento de ionômero de vidro modificado por resina (CIVMR) (Fuji II LC) na liberação de íons Ca2+ e PO4 3- após a imersão em simulador de fluido cor
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Materials bioactius"

1

G, Gebelein Charles, Carraher Charles E, and Foster Van R, eds. Applied bioactive polymeric materials. Plenum Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gebelein, Charles G., Charles E. Carraher, and Van R. Foster, eds. Applied Bioactive Polymeric Materials. Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5610-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Santin, Matteo, and Gary Phillips, eds. Biomimetic, Bioresponsive, and Bioactive Materials. John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118129906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jafari, Seid Mahdi, and Ali Rashidinejad. Spray Drying Encapsulation of Bioactive Materials. CRC Press, 2021. http://dx.doi.org/10.1201/9780429355462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Maver, Tina, Uroš Maver, Tanja Pivec, Manja Kurečič, Zdenka Peršin, and Karin Stana Kleinschek. Bioactive Polysaccharide Materials for Modern Wound Healing. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89608-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stanisław, Błażewicz, ed. Biopolymers: Lignin, proteins, bioactive nanocomposites. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

V, Rajendran. Bioactive glasses for implant applications. Defence Research and Development Organisation, Ministry of Defence, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Biomimetic, bioresponsive, and bioactive materials: An introduction to integrating materials with tissues. Wiley, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bououdina, Mohamed. Emerging research on bioinspired materials engineering. Information Science Reference, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nauchnyĭ, seminar "Issledovanii︠a︡ ot︠s︡enka i. kontrolʹ kachestva biologicheski aktivnykh veshchestv" (1st 2005 Kirov Russia). Issledovanii︠a︡, ot︠s︡enka, i kontrolʹ kachestva biologicheski aktivnykh veshchestv: Materialy I i II nauchnykh seminarov : 2005-2006 gg. Triada pli︠u︡s, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Materials bioactius"

1

Dorfmann, Luis, and Chris Paetsch. "Modeling Bioactive Materials." In Nonlinear Mechanics of Soft Fibrous Materials. Springer Vienna, 2015. http://dx.doi.org/10.1007/978-3-7091-1838-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kaur, Gurbinder. "Biodegradable MetalsBiodegradable Metals as Bioactive Materials." In Bioactive Glasses. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45716-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Min. "Bioactive Materials and Processing." In Biological and Medical Physics, Biomedical Engineering. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06104-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nogiwa-Valdez, Akemi A., Dora A. Cortés-Hernández, José M. Almanza-Robles, and Alejandra Chávez-Valdez. "Bioactive Zirconia Composites." In Materials Science Forum. Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-993-8.193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chiesa, Roberto, and Alberto Cigada. "Biomimetic, Bioresponsive, and Bioactive Materials: Integrating Materials with Tissue." In Biomimetic, Bioresponsive, and Bioactive Materials. John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118129906.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Razi, Saeed Mirarab, and Ali Rashidinejad. "Bioactive Compounds." In Spray Drying Encapsulation of Bioactive Materials. CRC Press, 2021. http://dx.doi.org/10.1201/9780429355462-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kaur, Gurbinder. "The Potential of GlassesGlasses /CeramicsCeramics as Bioactive MaterialsBioactive Materials." In Bioactive Glasses. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45716-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gentsch, R., and H. G. Börner. "Designing Three-Dimensional Materials at the Interface to Biology." In Bioactive Surfaces. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/12_2010_80.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Livage, Jacques, Thibaud Coradin, and Cécile Roux. "Bioactive Sol-Gel Hybrids." In Functional Hybrid Materials. Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602372.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kaur, Gurbinder. "PolymersPolymers as Bioactive Materials-I: Natural and Non-degradable Polymers." In Bioactive Glasses. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45716-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Materials bioactius"

1

Riveiro, A., R. Soto, R. Comesaña, et al. "Laser surface texturing of bioactive materials." In ICALEO® 2012: 31st International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2012. http://dx.doi.org/10.2351/1.5062558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bunker, Bruce C., Dale L. Huber, Ronald P. Manginell, et al. "Incorporation of bioactive materials into integrated systems." In Optical Science and Technology, SPIE's 48th Annual Meeting, edited by Elizabeth A. Dobisz. SPIE, 2003. http://dx.doi.org/10.1117/12.509314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chang, Jiang, and Lei Chen. "Silicate-based Bioactive Materials for Bone Regeneration." In In Commemoration of the 1st Asian Biomaterials Congress. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812835758_0022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sathyadeep, MK, Dayanand Pai, and ShyamSundar Sankar. "Bioactive materials for 3D printing: A review." In PROCEEDINGS OF THE 14TH ASIA-PACIFIC PHYSICS CONFERENCE. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0036113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aniket and Ahmed R. El-Ghannam. "Zeta Potential of Silica Calcium Phosphate Nanocomposite: Effect of Material Composition and Medium pH." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192883.

Full text
Abstract:
Biodegradable ceramics have lately found exciting applications in orthopedic and maxillofacial surgeries as agents for bone repair, drug delivery vehicles and filling materials. A novel bioactive resorbable ceramic that demonstrated a superior mechanical properties, bioactivity and resorbability compared to traditional calcium phosphate ceramics or bioactive glass is bioactive silica-calcium phosphate nanocomposite (SCPC) [1, 2]. Previous studies have demonstrated that the enhanced bioactivity of SCPC is attributed to its nano structure as well as other physicochemical properties of the materi
APA, Harvard, Vancouver, ISO, and other styles
6

Lukowiak, Anna, Marzena Fandzloch, Katarzyna Halubek-Gluchowska, et al. "Luminescent bioactive nanoglasses and graphene-based composites." In Optical Components and Materials XVIII, edited by Michel J. Digonnet and Shibin Jiang. SPIE, 2021. http://dx.doi.org/10.1117/12.2578963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Totu, Eugenia Eftimie, Selim Isildak, Daniel Costinel Petre, et al. "Bioactive Hybrid Material with Applications in Dental Medicine." In 2019 E-Health and Bioengineering Conference (EHB). IEEE, 2019. http://dx.doi.org/10.1109/ehb47216.2019.8969895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vlaisavljevich, Eli, Logan P. Janka, Keat G. Ong, and Rupak M. Rajachar. "Magnetoelastic Materials as Novel Bioactive Coatings for Bone Anchored Prostheses." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206406.

Full text
Abstract:
Enhanced fibroblast activity at the implant-soft tissue interface is a key concern to the long-term success of many implanted biomaterials. Uncontrolled fibrosis has been shown to dramatically decrease the stability, function, and lifespan of biomedical implants. Fibrosis, defined as the overgrowth of various tissues about the implant, is caused by the excess synthesis of extracellular matrix components, primarily collagen, and often leads to walling off and hardening (calcification) of tissues at the biomaterial interface (1). Fibrosis is currently a major deterrent to stable bone anchored pr
APA, Harvard, Vancouver, ISO, and other styles
9

Kumar, R. Roop, and M. Wang. "MANUFACTURE AND CHARACTERIZATION OF FUNCTIONALLY GRADED BIOACTIVE COATINGS." In Processing and Fabrication of Advanced Materials VIII. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811431_0015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Huang, Chuanjun, Yibing Xie, Limin Zhou, Haitao Huang, Jian Lu, and Yihe Zhang. "Bioactive modification of NiTi shape memory alloy." In International Conference on Smart Materials and Nanotechnology in Engineering. SPIE, 2007. http://dx.doi.org/10.1117/12.779312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!