Academic literature on the topic 'Materials – Creep – Testing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Materials – Creep – Testing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Materials – Creep – Testing"
Hyde, C. J., Thomas H. Hyde, and Wei Sun. "Small Ring Testing of High Temperature Materials." Key Engineering Materials 734 (April 2017): 168–75. http://dx.doi.org/10.4028/www.scientific.net/kem.734.168.
Full textWolfenden, A., LC McDonald, and KT Hartwig. "Cryogenic Creep Testing." Journal of Testing and Evaluation 19, no. 2 (1991): 107. http://dx.doi.org/10.1520/jte12542j.
Full textKrál, Petr, Jiří Dvořák, Marie Kvapilová, Jaroslav Lukeš, and Vaclav Sklenička. "Constant Load Testing of Materials Using Nanoindentation Technique." Key Engineering Materials 606 (March 2014): 69–72. http://dx.doi.org/10.4028/www.scientific.net/kem.606.69.
Full textKuwano, Reiko, and Richard J. Jardine. "On measuring creep behaviour in granular materials through triaxial testing." Canadian Geotechnical Journal 39, no. 5 (October 1, 2002): 1061–74. http://dx.doi.org/10.1139/t02-059.
Full textDuan, Xiaochang, Hongwei Yuan, Wei Tang, Jingjing He, and Xuefei Guan. "A Phenomenological Primary–Secondary–Tertiary Creep Model for Polymer-Bonded Composite Materials." Polymers 13, no. 14 (July 18, 2021): 2353. http://dx.doi.org/10.3390/polym13142353.
Full textSklenička, Vàclav, Květa Kuchařová, Marie Kvapilová, Luboš Kloc, Jiří Dvořák, and Petr Král. "High-Temperature Creep Tests of Two Creep-Resistant Materials at Constant Stress and Constant Load." Key Engineering Materials 827 (December 2019): 246–51. http://dx.doi.org/10.4028/www.scientific.net/kem.827.246.
Full textMaxwell, A. S., M. A. Monclus, N. M. Jennett, and G. Dean. "Accelerated testing of creep in polymeric materials using nanoindentation." Polymer Testing 30, no. 4 (June 2011): 366–71. http://dx.doi.org/10.1016/j.polymertesting.2011.02.002.
Full textDobeš, F., and K. Milička. "Application of creep small punch testing in assessment of creep lifetime." Materials Science and Engineering: A 510-511 (June 2009): 440–43. http://dx.doi.org/10.1016/j.msea.2008.04.087.
Full textBallokova,, Beata, Pavol Hvizdos,, Michal Besterci,, Marcus Zumdick,, and Alexander Bohm,. "Creep Testing of MoSi2 - Bases Composites." High Temperature Materials and Processes 25, no. 3 (June 2006): 139–42. http://dx.doi.org/10.1515/htmp.2006.25.3.139.
Full textGanesh Kumar, J., K. Laha, and M. D. Mathew. "Small Punch Creep Testing Technique for Remnant Life Assessment." Applied Mechanics and Materials 592-594 (July 2014): 739–43. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.739.
Full textDissertations / Theses on the topic "Materials – Creep – Testing"
Elmansy, N. M. "Deformation of bituminous highway pavement materials." Thesis, University of Bradford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373221.
Full textGrover, Parmeet Singh. "An accelerated test procedure for creep-fatigue crack growth testing." Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/20188.
Full textSyed, Asif S. A. "Time dependent micro deformation of materials." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362108.
Full textFARINA, LUIS C. "Caracterizacao viscoelastica por meio de ensaios de fluencia e ruptura por fluencia de compositos polimericos de matriz de resina epoxidica e fibra de carbono." reponame:Repositório Institucional do IPEN, 2009. http://repositorio.ipen.br:8080/xmlui/handle/123456789/9391.
Full textMade available in DSpace on 2014-10-09T14:04:31Z (GMT). No. of bitstreams: 0
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Williams, Valorie Sharron 1960. "In situ microviscoelastic measurements by polarization interferometry." Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276691.
Full textStang, Eric Thomas. "Constitutive Modeling of Creep in Leaded and Lead-Free Solder Alloys Using Constant Strain Rate Tensile Testing." Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1548338008633472.
Full textYeakle, Colin. "Experimental Testing and Numerical Modeling to Capture Deformation Phenomenon in Medical Grade Polymers." Miami University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=miami1313771863.
Full textGupta, Bhaawan. "Advanced electromagnetic non-destructive testing on creep degraded high chromium ferritic steels : Characterization, Modelling and physical interpretation." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI074.
Full textUnder constant high temperatures and pressure, the material undergoes mechanical creep degradation which leads to microstructural changes. These microstructural changes if not monitored on time, can lead to some serious fatal accidents such as in power plants. To investigate these microstructural changes, the material has to be shaped in a certain specific shape and size to have the imaging analysis using Scanning electron microscopy, Electron backscatter diffract ion etc. which are destructive in nature and involve high equipment cost. In order to overcome this issue, this thesis work, incorporates three different non-destructive techniques, to study the evolution of magnetic signatures with respect to the level of rupture they are exposed to. It is legitimate to assume that all the microstructural changes that occur in the material can be reflected in the corresponding magnetic signatures measured. The material that has been studied here is high chromium creep degraded steel which is used in the thermal power plant. The magnetic signatures are evaluated in terms of microstructural information to draw the conclusions. Some magnetic parameters from the curves, such as coercivity, magnetic reversibility are derived which show strong correlations with the microstructure. Similarly, techniques based on Hysteresis curves, and magnetic Barkhausen Noise are also implemented. To further quantify the results obtained from the magnetic signatures of the materials, a model has been developed to derive model parameters in order to physically interpret the microstructural changes. The modelling technique will help in overcoming the issue of lack of standards in NDT, irrespective of the experimental set-up involved. The parameters are compared to reveal sensitivity based on the technique. Finally, conclusion has been drawn to check which parameters are correlated to microstructure for a particular NDT technique used
Yu, Cheng-Han. "Anisotropic mechanical behaviors and microstructural evolution of thin-walled additively manufactured metals." Licentiate thesis, Linköpings universitet, Konstruktionsmaterial, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-169054.
Full textAdditiv tillverkning, eller 3D-utskrifter, är tillverkningsmetoder där man skapar ett tredimensionellt objekt genom att tillföra material lager for lager. Till skillnad från konventionella avverkande tillverkningsmetoder elimineras många geometriska begränsningar vilket ger större designfrihet och metoderna har därför väckt stort intresse inom en rad olika områden, inklusive flyg-, fordons- och medicinska tillämpningar. I denna avhandling studeras mekaniska egenskaper hos tunnväggiga komponenter tillverkade med en vanligt förekommande laserbaserad pulverbädds-teknik, laser powder bed fusion (LPBF). Det studerade materialet är Hastelloy X, en Ni-baserad superlegering som är vanligt förekommande for både nytillverkning och reparation av komponenter för gasturbiner. Inverkan av mikrostruktur på deformationsmekanismerna vid förhöjda temperaturer undersöks systematiskt. Detta arbete syftar till att ge grundläggande och generisk kunskap som kan tillämpas på olika materialtyper med en kubiskt tätpackad (FCC) kristallstruktur. Det är vanligt att man hittar en utdragen kornstruktur orsakad av den riktade tillförseln av laserenergi i LPBF-processen, vilket kan relateras till olika processparametrar och kan variera mellan utrustningar frän olika leverantörer. Denna avhandling inleds med studien av effekten av scanningsstrategi vid tillverkning av rostfritt stål 316L i en EOS M290-utrustning. En statistisk texturanalys med hjälp av neutrondiffraktion påvisar en tydlig övergång mellan olika mikrostrukturer när olika scanningsstrategier tillämpas. En scanningsrotation på 67 mellan varje lager är en typisk standardinställning med avsikt att sanka anisotropin i materialet, dock finns den utdragna kornstrukturen oftast kvar. I denna avhandling studeras därför de anisotropa egenskaperna hos material tillverkade med 67 scanningsrotation. Effekten av tunnväggiga strukturer i LPBF undersöks genom att studera en uppsättning platta HX-prover, med olika nominella tjocklekar från 4 mm ner till 1 mm, samt en referensgrupp med cylindriska prov med en diameter på 18 mm. Kristallografisk textur som liknar den av Goss-typ återfinns i de cylindriska proverna vilket gradvis övergår från en fibertextur med <011> i byggriktningen for 4mm-proven till en fibertextur med <001> i tvärriktningen for 1mm-proven. Dragprovning med en töjningshastighet på 10−3 s−1 har utförts på de platta provstavarna från rumstemperatur upp till 700 ℃. En sänkning av styrkan uppvisas när proven blir tunnare, vilket kan antas bero på att det lastbarande tvärsnittet överskattas på grund av den grova ytan. En metod för tvärsnittskalibrering föreslås genom att kompensera for ytråheten, och valet av lämplig ytfinhetsparameter motiveras med hänsyn till den beräknade Taylor-faktorn och förekomsten av restspänningar. Den stora termiska gradienten som uppstår for LPBF-processen inducerar en hög dislokationstäthet vilket höjer materialets styrka och följaktligen uppvisar LPBF HX högre sträckgräns an konventionellt tillverkad, smidda HX, men förmågan till deformationshårdnande samt duktiliteten i materialet sänks samtidigt. Tester utförda i två olika belastningsriktningar, vertikalt respektive horisontellt mot byggriktningen, demonstrerar det anisotropiska mekaniska beteendet. De vertikala testerna uppvisar lägre hållfasthet men bättre duktilitet vilket kan relateras till en större benägenhet for kristallstukturen att rotera när deformationsgraden ökar. Samtidigt är den utdragna kronstukturen ansvarig for den lägre duktiliteten for de horisontella proverna. En övergång från ett duktilt till ett mer sprött beteende noterades vid 700 ℃, och därför initierades ytterligare en studie där tester med två lägre töjningshastigheter, 10−5 s−1 och 10−6 s−1, utfördes vid 700 ℃. Det kan noteras att krypskador återfinns i tester med en långsam deformationshastighet och deformationstvillingar uppstår endast i de vertikala provstavarna där det främst bildas tvillingar i korn orienterade med <111> riktningen längs belastningsriktningen. Den stora förmågan till rotation i kristallstrukturen och deformationstvillingarna bidrar till att den vertikala duktiliteten förblir hög även i testerna med en låg deformationshastighet. Testerna med en långsam draghastighet bidrar därför till en bättre förståelse av krypbeteendet i LPBF Nibaserade superlegeringar. Sammanfattningsvis så bidrar denna avhandling till bättre förståelse av de mekaniska egenskaperna hos LPBF HX i olika utföranden och förhållanden, inklusive geometriberoende, temperaturberoende, deformationshastighetsberoende samt inverkan av kristallografisk textur. Den genererade kunskapen kommer att vara till stor nytta vid fortsatta studier av olika mekaniska egenskaper som utmattning och kryp, samt bidrar till att möjliggöra en mer robust design for LPBF-tillämpningar.
SABBAGH, ABDULGHANY OMAR. "DESIGN AND VISCOELASTOPLASTIC CHARACTERIZATION OF A LIME-DUNE SAND-ASPHALT MIX (REPLACING AGGREGATE, MATERIAL LAWS, CREEP COMPLIANCE, RUTTING)." Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/183924.
Full textBooks on the topic "Materials – Creep – Testing"
Laufenberg, Theodore. Creep testing of structural composite panels: A literature review and proposed standards. [Madison, Wis.?: Forest Products Laboratory, 1987.
Find full textSwindeman, R. W. Verification of allowable stresses in ASME section III subsection NH for grade 91 steel. New York, NY: ASME Standards Technology, LLC, 2009.
Find full textJ, Gooch D., How I. M, and UK High Temperature Mechanical Testing Committee., eds. Techniques for multiaxial creep testing. London: Elsevier Applied Science, 1986.
Find full textA, Neĭmark L., Argonne National Laboratory, and U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research., eds. Results of mechanical tests and supplementary microstructural examinations of the TMI-2 lower head samples. Washington, D.C: Division of Systems Research, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1994.
Find full textElmansy, Nabih Mohamed. Deformation of bituminous highway pavement materials: Effect of mix composition and binder modification by theaddition of ethylene viny acetate on the deformation of bituminous highway pavement mixes... by abotatory dynamic creep testing. Bradford, 1986.
Find full textJ, Rossiter Walter, and National Institute of Standards and Technology (U.S.), eds. Performance of tape-bonded seams of EPDM membranes: Effect of material and application factors on peel creep-rupture response. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Find full text1944-, Green David W., and Forest Products Laboratory (U.S.), eds. Mechanical grading of 6-inch-diameter lodgepole pine logs for the Traveler's Rest and Rattlesnake Creek bridges. Madison, WI: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 2005.
Find full textBook chapters on the topic "Materials – Creep – Testing"
John, Vernon. "Creep and Creep Testing." In Testing of Materials, 78–89. London: Macmillan Education UK, 1992. http://dx.doi.org/10.1007/978-1-349-21969-8_7.
Full textHyde, T. H., W. Sun, and C. J. Hyde. "An Overview of Small Specimen Creep Testing." In Advanced Structured Materials, 201–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35167-9_19.
Full textGould, David, and Malcolm S. Loveday. "A Reference Material for Creep Testing." In Harmonisation of Testing Practice for High Temperature Materials, 85–109. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2888-9_6.
Full textSzabó, Péter János. "Discontinuous Creep Behaviour of 15Mo3 Type Steel." In Materials Science, Testing and Informatics II, 261–66. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-957-1.261.
Full textSaxena, A., T. Hollstein, G. A. Webster, and T. Yokobori. "Intercomparison of Creep Crack Growth Data." In Harmonisation of Testing Practice for High Temperature Materials, 211–40. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2888-9_10.
Full textWanhill, R. J. H., D. V. V. Satyanarayana, and N. Eswara Prasad. "Structural Alloy Testing: Part 2—Creep Deformation and Other High-Temperature Properties." In Aerospace Materials and Material Technologies, 185–207. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2143-5_10.
Full textBozorg-Haddad, Amir, and Magued Iskander. "Compressive Creep of Reinforced Polymeric Piling." In Testing and Specification of Recycled Materials for Sustainable Geotechnical Construction, 545–61. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2011. http://dx.doi.org/10.1520/stp49488t.
Full textBozorg-Haddad, Amir, and Magued Iskander. "Compressive Creep of Reinforced Polymeric Piling." In Testing and Specification of Recycled Materials for Sustainable Geotechnical Construction, 545–61. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2011. http://dx.doi.org/10.1520/stp154020120027.
Full textSun, Wei Ming, Bing Bing Chen, Wei Ya Jin, and Zeng Liang Gao. "Stress Relaxation Testing For Analysis of 12Cr1MoVG Steel for Creep Strength Evaluation." In Key Engineering Materials, 408–11. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-456-1.408.
Full textWebster, G. A. "Determination of Multiaxial Stress Creep Deformation and Rupture Criteria." In Harmonisation of Testing Practice for High Temperature Materials, 289–93. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2888-9_14.
Full textConference papers on the topic "Materials – Creep – Testing"
Tahir, Fraaz, and Yongming Liu. "Development of creep-dominant creep-fatigue testing for Alloy 617." In 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-0668.
Full textMolenaar, J. M. M. "Complex modulus and creep susceptibility of asphalt mixture." In Sixth International RILEM Symposium on Performance Testing and Evaluation of Bituminous Materials. RILEM Publications SARL, 2003. http://dx.doi.org/10.1617/2912143772.064.
Full textJones, Thomas, William Doggett, Clarence Stanfield, and Omar Valverde. "Accelerated Creep Testing of High Strength Aramid Webbing." In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
20th AIAA/ASME/AHS Adaptive Structures Conference
14th AIAA. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-1771.
Liu, Yu, and Zhanping You. "Determining Burger's Model Parameters of Asphalt Materials Using Creep-Recovery Testing Data." In Symposium on Pavement Mechanics and Materials at the Inaugural International Conference of the Engineering Mechanics Institute. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/41008(334)3.
Full textLi, R., T. H. Hyde, W. Sun, and B. Dogan. "Modelling and Data Interpretation of Small Punch Creep Testing." In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57204.
Full textTrtnik, Gregor, and Marijana Serdar. "COST Action TU1404—Recent Advances of WG1: Testing of Cement-Based Materials." In 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479346.116.
Full textBruchhausen, Matthias, Tim Austin, Stefan Holmström, Eberhard Altstadt, Petr Dymacek, Spencer Jeffs, Robert Lancaster, Roberto Lacalle, Karel Matocha, and Jana Petzová. "European Standard on Small Punch Testing of Metallic Materials." In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65396.
Full textButtlar, W. G. "Evaluating creep compliance of asphaltic paving mixtures using a hollow-cylinder tensile tester." In Sixth International RILEM Symposium on Performance Testing and Evaluation of Bituminous Materials. RILEM Publications SARL, 2003. http://dx.doi.org/10.1617/2912143772.066.
Full textDogan, B., U. Ceyhan, K. Nikbin, and D. Dean. "Standardisation of High Temperature Crack Growth Testing of Weldments." In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93856.
Full textLaney, Scot J. "Evaluation of the Creep Strength of 9Cr-1Mo-V and 1Cr-1Mo-1/4V Castings and Weldments Using Accelerated Creep Testing." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14615.
Full text