Journal articles on the topic 'Materials for positive electrode'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Materials for positive electrode.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
He, Hao, Jingjing Huang, Jiarui Wang, and Xin Xu. "Research status and prospect of electrode materials for lithium-ion battery." Applied and Computational Engineering 23, no. 1 (2023): 1–9. http://dx.doi.org/10.54254/2755-2721/23/20230601.
Full textHe, Hao. "Research status and prospect of electrode materials for lithium-ion battery." Applied and Computational Engineering 23, no. 7 (2023): 1–9. http://dx.doi.org/10.54254/2755-2721/23/ojs/20230601.
Full textYang, Qixin, Qingjiang Liu, Wei Ling, et al. "Porous Electrode Materials for Zn-Ion Batteries: From Fabrication and Electrochemical Application." Batteries 8, no. 11 (2022): 223. http://dx.doi.org/10.3390/batteries8110223.
Full textTharrington, Cade T., Michael J. Petrecca, Orlin D. Velev, and Peter S. Fedkiw. "Novel Polymeric Morphologies as Positive Electrodes in Lithium-Ion Batteries." ECS Meeting Abstracts MA2024-02, no. 67 (2024): 4536. https://doi.org/10.1149/ma2024-02674536mtgabs.
Full textYourey, William. "Silicon Negative Electrodes—What Can Be Achieved for Commercial Cell Energy Densities." Batteries 9, no. 12 (2023): 576. http://dx.doi.org/10.3390/batteries9120576.
Full textKida, Yusuke, Atsunori Ikezawa, Takeyoshi Okajima, and Hajime Arai. "Charge-Discharge Behavior of Spinel-Type Manganese Dioxide for Positive Electrode Materials for Aqueous Proton Batteries." ECS Meeting Abstracts MA2024-02, no. 9 (2024): 1406. https://doi.org/10.1149/ma2024-0291406mtgabs.
Full textLin, Jiajian. "Progress in the Application of Nanotechnology in Lithium-ion Batteries." Highlights in Science, Engineering and Technology 121 (December 24, 2024): 385–91. https://doi.org/10.54097/mhqd6509.
Full textLam, Emily, Milad Alizadeh-Meghrazi, Alessandra Schlums, et al. "Exploring textile-based electrode materials for electromyography smart garments." Journal of Rehabilitation and Assistive Technologies Engineering 9 (January 2022): 205566832110619. http://dx.doi.org/10.1177/20556683211061995.
Full textGo, Nan Young, Min Seo Cho, and Ji Heon Ryu. "Electrode Design and Processing for Enhancing Performance of LiMn0.6Fe0.4PO4 Positive Electrode in Lithium-Ion Batteries." ECS Meeting Abstracts MA2024-02, no. 7 (2024): 933. https://doi.org/10.1149/ma2024-027933mtgabs.
Full textEliseeva, Svetlana N., Mikhail A. Kamenskii, Elena G. Tolstopyatova, and Veniamin V. Kondratiev. "Effect of Combined Conductive Polymer Binder on the Electrochemical Performance of Electrode Materials for Lithium-Ion Batteries." Energies 13, no. 9 (2020): 2163. http://dx.doi.org/10.3390/en13092163.
Full textSakuda, A., N. Taguchi, T. Takeuchi, et al. "Amorphous Niobium Sulfides as Novel Positive-Electrode Materials." ECS Electrochemistry Letters 3, no. 7 (2014): A79—A81. http://dx.doi.org/10.1149/2.0091407eel.
Full textSaulnier, M., A. Auclair, G. Liang, and S. B. Schougaard. "Manganese dissolution in lithium-ion positive electrode materials." Solid State Ionics 294 (October 2016): 1–5. http://dx.doi.org/10.1016/j.ssi.2016.06.007.
Full textRatynski, Maciej, Bartosz Hamankiewicz, Michal Krajewski, Maciej Boczar, Dominika Ziolkowska, and Andrzej Czerwinski. "Single Step, Electrochemical Preparation of Copper-Based Positive Electrode for Lithium Primary Cells." Materials 11, no. 11 (2018): 2126. http://dx.doi.org/10.3390/ma11112126.
Full textMagara, Kazushi, Tomooki Hosaka, Ryoichi Tatara, and Shinichi Komaba. "Potassium Vanadium Fluorides as Positive Electrode Materials for K-Ion Batteries." ECS Meeting Abstracts MA2023-02, no. 4 (2023): 549. http://dx.doi.org/10.1149/ma2023-024549mtgabs.
Full textDu, Xiaobing, Zhuanglong Lin, Xiaoxia Wang, Kaiyou Zhang, Hao Hu, and Shuge Dai. "Electrode Materials, Structural Design, and Storage Mechanisms in Hybrid Supercapacitors." Molecules 28, no. 17 (2023): 6432. http://dx.doi.org/10.3390/molecules28176432.
Full textKwon, Nam Hee, Joanna Conder, Mohammed Srout, and Katharina M. Fromm. "Surface Modifications of Positive-Electrode Materials for Lithium Ion Batteries." CHIMIA International Journal for Chemistry 73, no. 11 (2019): 880–93. http://dx.doi.org/10.2533/chimia.2019.880.
Full textFujihara, Yui, Dai Kutsuzawa, and Takeshi Kobayashi. "Application of Reference Electrode for All-Oxide Solid-State Battery to Reveal Electrode Reactions and Degradation Mechanisms." ECS Meeting Abstracts MA2024-02, no. 8 (2024): 1140. https://doi.org/10.1149/ma2024-0281140mtgabs.
Full textCheng, Yang-Tse. "(Invited) Understanding the Coupled Electrochemical-Mechanical Behavior of Materials for Improving the Performance and Durability of Lithium-Ion Batteries." ECS Meeting Abstracts MA2022-01, no. 2 (2022): 373. http://dx.doi.org/10.1149/ma2022-012373mtgabs.
Full textBachman, Ridge M., Callaway Pate, Peter Owuor, Abdullah Khan, and Derek M. Hall. "Comparing Electrode Overpotential Contributions in Vrfbs Amongst Multiple Techniques." ECS Meeting Abstracts MA2024-01, no. 1 (2024): 185. http://dx.doi.org/10.1149/ma2024-011185mtgabs.
Full textShi, Jingzhe. "The Future Trend of Manganese Positive Electrode." Highlights in Science, Engineering and Technology 83 (February 27, 2024): 801–8. http://dx.doi.org/10.54097/2e9j5t71.
Full textYabuuchi, Naoaki. "(Invited) Nanostructured Positive Electrode Materials for Li-Ion Battery Applications." ECS Meeting Abstracts MA2024-02, no. 5 (2024): 574. https://doi.org/10.1149/ma2024-025574mtgabs.
Full textdel Campo, Eva Maria, Marek Marcinek, Laurence J. Hardwick, Alex R. Neale, and Grażyna Zofia Żukowska. "Operando Raman Microscopy Studies on Next Generation Positive Electrode and Electrolyte Materials." ECS Meeting Abstracts MA2024-02, no. 4 (2024): 492. https://doi.org/10.1149/ma2024-024492mtgabs.
Full textWang, Faxing, Xiongwei Wu, Chunyang Li, et al. "Nanostructured positive electrode materials for post-lithium ion batteries." Energy & Environmental Science 9, no. 12 (2016): 3570–611. http://dx.doi.org/10.1039/c6ee02070d.
Full textLu, Congcong, Chengyu Tu, Yu Yang, Yunping Ma, and Maiyong Zhu. "Construction of Fe3O4@Fe2P Heterostructures as Electrode Materials for Supercapacitors." Batteries 9, no. 6 (2023): 326. http://dx.doi.org/10.3390/batteries9060326.
Full textChen, Xin, and Julia Louise Payne. "Double Perovskites: Promising Positive Electrode Materials for Potassium Ion Batteries." ECS Meeting Abstracts MA2024-01, no. 53 (2024): 2769. http://dx.doi.org/10.1149/ma2024-01532769mtgabs.
Full textLi, Wangda, Bohang Song, and Arumugam Manthiram. "High-voltage positive electrode materials for lithium-ion batteries." Chemical Society Reviews 46, no. 10 (2017): 3006–59. http://dx.doi.org/10.1039/c6cs00875e.
Full textKatayama, Misaki, and Kazuo Kato. "Simultaneous Analysis of Reaction Distribution at LiFePO4 and LiCoO2 Electrodes of Lithium-Ion Batteries." ECS Meeting Abstracts MA2024-02, no. 4 (2024): 454. https://doi.org/10.1149/ma2024-024454mtgabs.
Full textAttias, Ran, Daniel Sharon, Arie Borenstein, et al. "Asymmetric Supercapacitors Using Chemically Prepared MnO2as Positive Electrode Materials." Journal of The Electrochemical Society 164, no. 9 (2017): A2231—A2237. http://dx.doi.org/10.1149/2.0161712jes.
Full textDupré, N. "Positive electrode materials for lithium batteries based on VOPO4." Solid State Ionics 140, no. 3-4 (2001): 209–21. http://dx.doi.org/10.1016/s0167-2738(01)00818-9.
Full textGuyomard, Dominique, Annie Le Gal La Salle, Yves Piffard, Alain Verbaere, and Michel Tournoux. "Negative and positive electrode materials for lithium-ion batteries." Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry 2, no. 11-13 (1999): 603–10. http://dx.doi.org/10.1016/s1387-1609(00)88572-2.
Full textEllis, Brian L., Kyu Tae Lee, and Linda F. Nazar. "Positive Electrode Materials for Li-Ion and Li-Batteries†." Chemistry of Materials 22, no. 3 (2010): 691–714. http://dx.doi.org/10.1021/cm902696j.
Full textQiu, Mingwei. "Technologies for the Use of Positive Electrode Materials for New Energy Vehicles." MATEC Web of Conferences 386 (2023): 03004. http://dx.doi.org/10.1051/matecconf/202338603004.
Full textLi, Xiang, Yan Wang, Linze Lv, Guobin Zhu, Qunting Qu, and Honghe Zheng. "Electroactive organics as promising anode materials for rechargeable lithium ion and sodium ion batteries." Energy Materials 2, no. 2 (2022): 200014. http://dx.doi.org/10.20517/energymater.2022.11.
Full textXie, Jian, and Qichun Zhang. "Recent progress in rechargeable lithium batteries with organic materials as promising electrodes." Journal of Materials Chemistry A 4, no. 19 (2016): 7091–106. http://dx.doi.org/10.1039/c6ta01069e.
Full textRajesh, John Anthuvan, Jong-Young Park, Ramu Manikandan, and Kwang-Soon Ahn. "Rationally Designed Bimetallic Co–Ni Sulfide Microspheres as High-Performance Battery-Type Electrode for Hybrid Supercapacitors." Nanomaterials 12, no. 24 (2022): 4435. http://dx.doi.org/10.3390/nano12244435.
Full textFuruhata, Shun, Yosuke Ugata, and Naoaki Yabuuchi. "Factors Affecting Performance on Electrode Materials for Proton Batteries." ECS Meeting Abstracts MA2024-02, no. 67 (2024): 4419. https://doi.org/10.1149/ma2024-02674419mtgabs.
Full textVinodh, Rajangam, Rajendran Suresh Babu, Sangaraju Sambasivam, et al. "Recent Advancements of Polyaniline/Metal Organic Framework (PANI/MOF) Composite Electrodes for Supercapacitor Applications: A Critical Review." Nanomaterials 12, no. 9 (2022): 1511. http://dx.doi.org/10.3390/nano12091511.
Full textMinyawi, Bashaer A., Mohammad Vaseem, Nuha A. Alhebshi, Amal M. Al-Amri, and Atif Shamim. "Printed Electrodes Based on Vanadium Dioxide and Gold Nanoparticles for Asymmetric Supercapacitors." Nanomaterials 13, no. 18 (2023): 2567. http://dx.doi.org/10.3390/nano13182567.
Full textForoutan Koudahi, Masoud, and Elzbieta Frackowiak. "The Electrode/Electrolyte Interface in MXene-Based Electrochemical Capacitors." ECS Meeting Abstracts MA2023-02, no. 60 (2023): 2906. http://dx.doi.org/10.1149/ma2023-02602906mtgabs.
Full textHao, Zhen Dong, Xiaolong Xu, Hao Wang, Jingbing Liu, and Hui Yan. "Research Progress on Surface Coating Layers on the Positive Electrode for Lithium Ion Batteries." Nano 13, no. 11 (2018): 1830007. http://dx.doi.org/10.1142/s1793292018300074.
Full textMulyana, Elih, Maman Somantri, Neris P. Ardiansyah, and Chafidz D. Yusri. "Use of Plat-Bar Electrode Media to Detect Partial Discharge in Epoxy Resin Materials on PCB Surfaces." Journal of Physics: Conference Series 2622, no. 1 (2023): 012022. http://dx.doi.org/10.1088/1742-6596/2622/1/012022.
Full textXayyavong, Mingkhouan, Kittipong Tonmitr, Norrawit Tonmitr, and Eiji Kaneko. "The Scrutiny of the Insulation Breakdown Strength for the Nanocomposite Oxide Doped Epoxy Resin Insulator with Different Electrodes by Using Positive Impulse Voltage." Key Engineering Materials 705 (August 2016): 63–67. http://dx.doi.org/10.4028/www.scientific.net/kem.705.63.
Full textPalacin, M. "(Invited) Blended Positive Electrode Materials for Li-Ion Batteries: Electrode Dynamics and Operando XRD." ECS Meeting Abstracts MA2024-02, no. 7 (2024): 1003. https://doi.org/10.1149/ma2024-0271003mtgabs.
Full textTanaka, Tamotsu. "Progress of Materials for Positive Electrode of Small-Sized Rechargeable Battery." Materia Japan 38, no. 6 (1999): 484–87. http://dx.doi.org/10.2320/materia.38.484.
Full textYerdauletov, M., M. V. Avdeev, A. A. Tomchuk, F. S. Napolskiy, D. M. Djanseitov, and V. A. Krivchenko. "Nanoscale Structure of Positive Electrodes for Lithium-Ion Batteries with Graphene-Based Additives according to Small-Angle Neutron Scattering." Поверхность. Рентгеновские, синхротронные и нейтронные исследования, no. 4 (April 1, 2023): 61–66. http://dx.doi.org/10.31857/s1028096023040052.
Full textYoshikawa, Masaaki, Hiroyuki Fujimoto, Zempachi Ogumi, and Takeshi Abe. "Porous Carbons for Positive Electrode of Zn-Carbon Rechargeable Battery." ECS Meeting Abstracts MA2024-02, no. 9 (2024): 1325. https://doi.org/10.1149/ma2024-0291325mtgabs.
Full textZhang, Pengcheng. "Selection of Cathode Materials for Lithium-Ion Batteries at Different Temperatures." Highlights in Science, Engineering and Technology 90 (April 8, 2024): 63–68. http://dx.doi.org/10.54097/ekm8gv44.
Full textRamkumar, Ramya, Sanjeevamuthu Suganthi, Ahamed Milton, et al. "MnO/Mn2O3 Aerogels as Effective Materials for Supercapacitor Applications." Energies 17, no. 10 (2024): 2258. http://dx.doi.org/10.3390/en17102258.
Full textPrabhakar Vattikuti, Surya V., Nguyen To Hoai, Jie Zeng, et al. "Pouch-Type Asymmetric Supercapacitor Based on Nickel–Cobalt Metal–Organic Framework." Materials 16, no. 6 (2023): 2423. http://dx.doi.org/10.3390/ma16062423.
Full textChen, J., D. H. Bradhurst, S. X. Dou, and H. K. Liu. "The effect of Zn(OH)2 addition on the electrode properties of nickel hydroxide electrodes." Journal of Materials Research 14, no. 5 (1999): 1916–21. http://dx.doi.org/10.1557/jmr.1999.0257.
Full text