Contents
Academic literature on the topic 'Mathematica Mathematisches Modell. Biologie'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mathematica Mathematisches Modell. Biologie.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Mathematica Mathematisches Modell. Biologie"
Weber, Tom. "Optimal timing of phase resolved cell cycle progression." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2015. http://dx.doi.org/10.18452/17253.
Full textSelf-reproduction is one of the distinguishing marks of living organisms. The cell cycle is the underlying process by which self-reproduction is accomplished in single-celled organisms. In multi-cellular organisms, the cell cycle is in addition indispensable for other vital processes, including immune reactions. In this thesis a method is developed that allows to estimate the time it takes for a dividing cells to complete the CC phases. Knowledge of the CC phase durations allows to predict, for example, how fast a population of proliferating cells will grow in size, or how many new cells are born per hour in a given tissue. In Chapter 1 of this thesis, a cell cycle model with delays and variability in the completion times of each phase is developed. Analytical solutions are derived to describe a common experimental technique used for cell cycle analysis, namely pulse labeling with bromodeoxyuridine (BrdU). Comparison with data shows that the model reproduces closely measured cell cycle kinetics, however also reveals that some of the parameter values cannot be identified. This problem is addressed in Chapter 2. In a first approach, the framework of D-optimal experimental designs is employed, in order to choose optimal sampling schemes. In a second approach, the prevailing protocol with a single nucleoside is modified by adding a second nucleoside analog pulse. Both methods are tested and the results suggest that experimental design can significantly improve parameter estimation. In Chapter 3, the model is applied to the germinal center reaction. A substantial influx of cells into the dark zone of germinal centers is predicted. Moreover the wide-held view of rapid proliferation in germinal centers, appears, under this model, as an artifact of cell migration.
Lopes, Tiago Jose da Silva. "Systems biology analysis of iron metabolism." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16417.
Full textEvery cell of the mammalian organism needs iron as trace element in numerous oxido-reductive processes as well as for transport and storage of oxygen. The mammalian organism maintains therefore a complex regulatory network of iron uptake, excretion and intra-body distribution. Here a mathematical model of iron metabolism of the adult mouse is presented. It formulates the iron flux balance of the most important cell types of the organism in the form of transmembraneous and intracellular kinetic equations and integrates these cell models with the central exchange compartment (blood plasma) of the body. The iron status is represented as content of labile iron and of ferritin-bound iron in every cell type, and the metabolism is formulated as a network of flux dynamics. The experimental input into the model stems from different sources. Radioactive tracer data measured in the intact animal (mouse strain C57BL6 - the most intensively studied animal model) under various physiological conditions provided the experimental background from which clearance parameters could be obtained by numerical parameter fitting. Future research should render more precise the quantitative representation of genetic reconstructions (global and cell-type-addressed knock-out and constitutive expression of relevant genes of the model mouse strain).
Bernard, Branka. "Huntington's disease." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2009. http://dx.doi.org/10.18452/15900.
Full textHuntington''s disease (HD) is a fatal neurodegenerative disorder characterized by a progressive neuronal loss in the striatum of HD patients. HD is caused by a CAG repeat expansion which translates into a polyglutamine stretch at the N-terminus of the huntingtin protein (htt). The polyQ stretch induces misfolding, cleavage and aggregation of htt. To test the hypothesis that the sequestration of transcription factors into the htt aggregates causes transcriptional changes observed in HD models, I compiled lists of genes controlled by the transcription factors associated with HD. These genes were spotted on cDNA microarrays that were later hybridized with RNA extracted from cells expressing a mutant htt fragment. In this study, no systematic changes related to a specific transcription factors were observed. Formation and the accumulation of htt aggregates causes neurotoxicity in different HD model systems. To investigate the consequences of therapeutic strategies targeting aggregation, I derived several mathematical models describing htt aggregation and cell death. The results showed that transient dynamics and the non-monotonic response of cell survival to a change of parameter might lead to the non-intuitive outcome of a treatment that targets htt aggregation. Also, the numerical simulations show that if aggregates are toxic, the onset of aggregation, marked by the overshoot in the concentration of aggregates, is the event most likely to kill the cell. This phenomenon was termed a one-shot model. The principal cause of the variability of the age at onset (AO) is the length of the CAG repeat. Still, there is a great variance in the AO even for the same CAG repeat length. To study the variability of the AO, I developed a stochastic model for clustered neuronal death in the HD striatum. The model showed that a significant part of the unexplained variance can be attributed to the intrinsic stochastic dynamics of neurodegeneration.
Brümmer, Anneke. "Mathematical modelling of DNA replication." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2010. http://dx.doi.org/10.18452/16212.
Full textBefore a cell divides it has to duplicate its entire genetic material. Eukaryotic genomes are replicated from multiple replication origins across the genome. This work is focused on the quantitative analysis of the underlying molecular mechanism that allows these origins to initiate DNA replication almost simultaneously and exactly once per cell cycle. Based on a vast amount of experimental findings, a molecular regulatory network is constructed that describes the assembly of the molecules at the replication origins that finally form complete replication complexes. Using mass–action kinetics, the molecular reactions are translated into a system of differential equations. To parameterize the mathematical model, the initial protein concentrations are taken from experimental data, while kinetic parameter sets are determined using an optimization approach, in particular a minimization of the duration, in which a minimum number of replication complexes has formed. The model identifies a conflict between the rapid initiation of replication origins and the efficient inhibition of DNA rereplication. Analyses of the model suggest that a time delay before the initiation of DNA replication provided by the multiple phosphorylations of the proteins Sic1 and Sld2 by cyclin-dependent kinases in G1 and S phase, G1-Cdk and S-Cdk, respectively, may be essential to solve this conflict. In particular, multisite phosphorylation of Sld2 by S-Cdk creates a time delay that is robust to changes in the S-Cdk activation kinetics and additionally allows the near-simultaneous activation of multiple replication origins. The calculated distribution of the assembly times of replication complexes, that is also the distribution of origin activation times, is then used to simulate the consequences of certain mutations in the assembly process on the copying of the genetic material in S phase of the cell cycle.
Pett, Jan Patrick. "Systems level generation of mammalian circadian rhythms and its connection to liver metabolism." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/19960.
Full textCircadian clocks are endogenous oscillators that generate 24-hour rhythms. They allow many organisms to synchronize their physiology and behaviour with daily changes of the environment. In mammals such clocks are based on transcriptional-translational feedback loops, however, it is not fully understood which feedback loops contribute to rhythm generation. Within an organism different clocks are distinguished by their localization in different organs. One of the key physiological functions of circadian clocks in various organs seems to be the temporal alignment of metabolic processes. In the first project we introduced and applied a method to systematically test regulations in a data-driven mathematical model of the core clock. Surprisingly, we discovered a feedback loop that has previously not been considered in the context of the mammalian circadian clock. This repressilator is consistent with knockout studies and further perturbation experiments. It could constitute an explanation for different phases observed between Cryptochromes, which are part of the core clock. In the second project we repeatedly fitted the same mathematical model to tissue-specific data sets and identified essential feedback loops in all model versions. Interestingly, for all tissue-specific data sets we found synergies of loops generating rhythms together. Further, we found that the synergies differ depending on the tissue. In the third project we examined the circadian aspects of metabolism. We identified rhythmic data in different omics studies, integrated and mapped them to a metabolic network. Our analysis confirmed that many metabolic pathways may follow circadian rhythms. Interestingly, we also found that the average peak times of rhythmic components between various pathways differ. Such differences might reflect a temporal alignment of metabolic functions to the time when they are required.
Zi, Zhike. "Mathematical modeling and kinetic analysis of cellular signaling pathways." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2008. http://dx.doi.org/10.18452/15838.
Full textWith growing interests in systems biology, mathematical models, paired with experiments, have been widely used for the studies on metabolic networks, gene regulatory networks and cellular signaling pathways. This dissertation employs the mathematical modeling and kinetic analysis method to study cellular signaling pathways, in particular, the receptor trafficking network and TGF-beta signaling pathway. On the other hand, a systems biology markup language (SBML) based parameter estimation tool (SBML-PET), was developed for facilitating the modeling process. A quantitative mathematical model is employed to investigate signal responses in different receptor trafficking networks by simultaneous perturbations of the ligand concentration and cell density. The computational analysis of the model revealed that receptor trafficking networks have potentially sigmoid responses to the ratio between ligand number and surface receptor number per cell, which is a key factor to control the signaling responses in receptor trafficking networks. Using the SBML-PET software package, we proposed a constraint-based modeling method to build a comprehensive mathematical model for the Smad dependent TGF-beta signaling pathway by fitting the experimental data and incorporating the qualitative constraints from the experimental analysis. Kinetic analysis results indicate that the signal response to TGF-beta is regulated by the balance between clathrin dependent endocytosis and non-clathrin mediated endocytosis.
Shi, Dan. "Computational analysis of transcriptional responses to the Activin signal." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21891.
Full textTransforming growth factor-β (TGF-β) signaling pathways play a crucial role in cell proliferation, migration, and apoptosis through the activation of Smad proteins. Research has shown that the biological effects of TGF-β signaling pathway are highly cellular-context-dependent. In this thesis work, I aimed at understanding how TGF-β signaling can regulate target genes differently, how different dynamics of gene expressions are induced by TGF-β signal, and what is the role of Smad proteins in differing the profiles of target gene expression. In this study, I focused on the transcriptional responses to the Nodal/Activin ligand, which is a member of the TGF-β superfamily and a key regulator of early embryonic development. Kinetic models were developed and calibrated with the time course data of RNA polymerase II (Pol II) and Smad2 chromatin binding profiles for the target genes. Using the Akaike information criterion (AIC) to evaluate different kinetic models, we discovered that Nodal/Activin signaling regulates target genes via different mechanisms. In the Nodal/Activin-Smad2 signaling pathway, Smad2 plays different regulatory roles on different target genes. We show how Smad2 participates in regulating the transcription or degradation rate of each target gene separately. Moreover, a series of features that can predict the transcription dynamics of target genes are selected by logistic regression. The approach we present here provides quantitative relationships between transcription factor dynamics and transcriptional responses. This work also provides a general computational framework for studying the transcription regulations of other signaling pathways.
Mente, Carsten. "Tracking of individual cell trajectories in LGCA models of migrating cell populations." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-166582.
Full textHahn, Jens. "From Parts to the Whole." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21522.
Full textIn systems biology experiments and mathematical modeling are going hand in hand to gain and increase understanding of cellular processes like metabolism, gene expression, or signaling pathways. While molecular biology investigates single isolated parts and molecular mechanisms of cellular processes, systems biology aims at unraveling the whole process and ultimately whole organisms. Today the availability of comprehensive high-throughput data and computational power paved the way to increase the size of analyzed systems to reach the cellular level. This thesis presents the first whole-cell model (WCM) of a eukaryotic cell, the yeast Saccharomyces cerevisiae. This established model organism is the perfect candidate for the implementation of a holistic model based on the available experimental data and the accumulated biological knowledge. The project is split into three parts: i) The creation of a modular functional-complete whole-cell model, combining the processes cell cycle, gene expression, metabolism, transport, and growth. ii) The implementation of a specialized simulation environment and a database to support module creation, simulation, and parameterization. iii) The elicitation of experimental data by conducting an experiment to achieve a comprehensive data set for parameterization, combining growth, metabolic, proteomic, and transcriptomic data. The presented work provides not only a simple mathematical model but also addresses challenges occurring during the development of whole-cell models and names possible solutions and new methodologies required for the creation of WCMs.
Li, Yuchao. "SPATIOTEMPORAL CONTROL OF TGFβ SIGNALING WITH LIGHT." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20264.
Full textCells employ signaling pathways to make decisions in response to changes in their immediate environment. Transforming Growth Factor β (TGFβ) signaling pathway plays pivotal roles in regulating many cellular processes, including cell proliferation, differentiation and migrations. Although the principal components of TGFβ signaling have been identified and explored in recent decades, understanding its dynamic behavior is limited by the lack of tools that allow the control of TGFβ signaling at high spatiotemporal resolution. In this thesis, we developed an optogenetic system (the optoTGFβ system), in which light is used to control TGFβ signaling precisely in time and space. First, we validated the functionality of the optoTGFβ system by comparing it with the endogenous TGFβ signaling system. Second, by simultaneously monitoring the subcellular translocation of the receptors and Smad proteins using live cell imaging, we showed that TGFβ signaling can be specifically activated in single cells through modulating the light stimulations. Third, in combination with mathematical modeling, we quantitatively characterized the dynamics of TGFβ signaling in the optoTGFβ system. The spatial and temporal precision of optical control makes the optoTGFβ system a novel and powerful tool for quantitative analyses and manipulation of TGFβ signaling at the single cell level.
Books on the topic "Mathematica Mathematisches Modell. Biologie"
Beltrami, Edward J. Mathematical models in the social and biological sciences. Boston: Jones and Bartlett Publishers, 1993.
Find full textMathematical methods and models in the biological sciences. Englewood Cliffs, N.J: Prentice Hall, 1988.
Find full textAn introduction to mathematical physiology and biology. 2nd ed. Cambridge: Cambridge University Press, 1999.
Find full textAn introduction to mathematical physiology and biology. Cambridge [England]: Cambridge Univ. Press, 1989.
Find full textSpain) International Conference on Boundary Value Problems (2008 Santiago de Compostela. Mathematical models in engineering, biology and medicine: Proceedings of the International Conference on Boundary Value Problems, Santiago de Campostela, Spain, 16-19 September 2008. Edited by Cabada Alberto, Liz Eduardo, and Nieto Juan J. Melville, N.Y: American Institute of Physics, 2009.
Find full textMathematical and computer modeling of physiological systems. Englewood Cliffs, N.J: Prentice Hall, 1991.
Find full text1960-, Rhodes John A., ed. Mathematical models in biology: An introduction. Cambridge, UK: Cambridge University Press, 2004.
Find full text