Dissertations / Theses on the topic 'Mathematical argumentation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Mathematical argumentation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Macmillan, Emily. "Argumentation and Proof : Investigating the Effect of Teaching Mathematical Proof on Students' Argumentation Skills." Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.517230.
Full textBrinkerhoff, Jennifer Alder. "Applying Toulmin's Argumentation Framework to Explanations in a Reform Oriented Mathematics Class." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1960.pdf.
Full textVincent, Jill. "Mechanical linkages, dynamic geometry software, and argumentation : supporting a classroom culture of mathematical proof /." Connect to thesis, 2002. http://eprints.unimelb.edu.au/archive/00001399.
Full textStoyle, Keri L. "SUPPORTING MATHEMATICAL EXPLANATION, JUSTIFICATION, AND ARGUMENTATION, THROUGH MULTIMEDIA: A QUANTITATIVE STUDY OF STUDENT PERFORMANCE." Kent State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=kent1460722361.
Full textKellen, Matthew. "Observing and evaluating creative mathematical reasoning through selected VITALmaths video clips and collaborative argumentation." Thesis, Rhodes University, 2017. http://hdl.handle.net/10962/6107.
Full textNordin, Anna-Karin. "Matematiska argument i helklassdiskussioner : En studie av elevers och lärares multimodala kommunikation i matematik i åk 3-5." Licentiate thesis, Stockholms universitet, Institutionen för matematikämnets och naturvetenskapsämnenas didaktik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-136495.
Full textPugalee, David K. "Plenary Address: Language and Mathematics, A Model for Mathematics in the 21st Century." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-79258.
Full textSommerhoff, Daniel [Verfasser], and Stefan [Akademischer Betreuer] Ufer. "The individual cognitive resources underlying students' mathematical argumentation and proof skills : from theory to intervention / Daniel Sommerhoff ; Betreuer: Stefan Ufer." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2017. http://d-nb.info/1163949361/34.
Full textNnanyereugo, Iwuanyanwu Paul. "An analysis of pre-service teachers' ability to use a dialogical argumentation instructional model to solve mathematical problems in physics." University of the Western Cape, 2017. http://hdl.handle.net/11394/6252.
Full textThis study chronicles a teacher training education programme. The findings emerged from the observation of argumentation skills employed by students in a physical science education classroom for pre-service high school teachers. Their task was to use the nature of arguments to solve mathematical problems of mechanics in a physics classroom. Forty first-year students were examined on how they used a dialogical argumentation instructional model (DAIM) based on Toulmin's (1958/2003) Argument Pattern (TAP), Downing's (2007) Analytical Model (DAM) and Ogunniyi's (2007a & b) Contiguity Argumentation Theory (CAT) to solve mathematical problems in physics. Thus efforts to judge the pre-service teachers' capability to solve mathematical problems in physics with respect to mechanics were compounded by the demand for the inclusion of a self-efficacy framework. According to Bandura (2006) self-efficacy is the judgment of capability. Selfefficacy plays a key role in human functioning in that it affects not only people's behaviour but other issues such as goals and aspirations, outcome expectations, affective proclivities and perception of impediments and opportunities in the social environment (Bandura, 1995, 1997 & 2006).
Sommerhoff, Daniel Verfasser], and Stefan [Akademischer Betreuer] [Ufer. "The individual cognitive resources underlying students' mathematical argumentation and proof skills : from theory to intervention / Daniel Sommerhoff ; Betreuer: Stefan Ufer." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2017. http://nbn-resolving.de/urn:nbn:de:bvb:19-226879.
Full textGoodman, Lynn. "Effects of a dialogical argumentation instructional model on science teachers’ understanding of capacitors in selected Western Cape schools." University of the Western Cape, 2015. http://hdl.handle.net/11394/5062.
Full textThis study investigated 1) the conceptions on capacitors held by a group teachers in the Western Cape; 2) the effect of a dialogical argumentation instructional model on the teachers’ conceptions on the capacitor; and 3) the teachers’ perceptions on the implementation of this instructional model. The theoretical framework of the study was based on Toulmin’s Argumentation Pattern (TAP) and Ogunniyi’s Contiguity Argumentation Theory (CAT). The objective was to retrain science teachers in their awareness and understanding of the Nature of Science and Indigenous Knowledge Systems thereby enhancing their ability and efficacy in integrating science and Indigenous Knowledge Systems. The study involved workshop activities that included the teachers’ Reflective Diary, interview sessions, and video-taped lesson observations. The study adopted a Case Study approach and the data was analysed both quantitatively and qualitatively. The findings of the study showed that: 1) the teachers held varying conceptions of the capacitor; 2) the teachers’ conceptions of the capacitor improved after being exposed to the Dialogical Argumentation Instructional Model and 3) the teachers were dominantly in favour of the Dialogical Argumentation Instruction Model as a teaching method to be introduced at schools. The implications of the findings for school science and pedagogy were highlighted for closer observation.
Larsson, Maria. "Orchestrating mathematical whole-class discussions in the problem-solving classroom : Theorizing challenges and support for teachers." Doctoral thesis, Mälardalens högskola, Utbildningsvetenskap och Matematik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-29409.
Full textPease, Alison. "A computational model of Lakatos-style reasoning." Thesis, University of Edinburgh, 2007. http://hdl.handle.net/1842/2113.
Full textZulatto, Rúbia Barcelos Amaral. "A natureza da aprendizagem matemática em um ambiente online de formação continuada de professores /." Rio Claro : [s.n.], 2007. http://hdl.handle.net/11449/102133.
Full textBanca: João Pedro Mendes da Ponte
Banca: Marcelo de Carvalho Borba
Banca: Maria Elizabeth Bianconcini Trindade Morato Pinto de Almeida
Banca: Vani Moreira Kenski
Resumo: A presente pesquisa analisa a natureza da aprendizagem matemática em um curso online de formação continuada de professores, denominado Geometria com Geometricks. Nele, alunos-professores de uma mesma rede de escolas, situadas em diferentes localidades do país, desenvolveram atividades de Geometria utilizando-se do software Geometricks, e se encontravam para discuti-las. Esses encontros aconteceram a distância, em tempo real, por chat ou videoconferência. Nessa proposta pedagógica, a telepresença condicionou a comunicação e oportunizou o estar-junto-virtual-com-mídias. De modo singular, os recursos da videoconferência permitiram que construções geométricas fossem compartilhadas visualmente e realizadas por todos os envolvidos, fomentando a interação e a participação ativa, constituindo, por meio do diálogo, uma comunidade virtual de aprendizagem. Os resultados levam a inferir que, nesse contexto, a aprendizagem matemática teve natureza colaborativa, na virtualidade das discussões, tecidas a partir das contribuições de todos os participantes; coletiva, na medida em que a produção matemática era condicionada pelo coletivo pensante de seres-humanos-com-mídias; e argumentativa, uma vez que conjecturas e justificativas matemáticas se desenvolveram intensamente do decorrer do processo, contando para isso com as tecnologias presentes na interação ocorrida de forma constante e colaborativa.
Abstract: This study was conducted to analyze the nature of mathematical learning in an online continuing education course for teachers entitled Geometry with Geometricks. Teachers employed in a nation-wide network of privately-supported schools developed geometry activities using the software Geometricks and discussed them in virtual meetings, in real time, via chat or video-conference. In this pedagogical proposal, tele-presence conditioned the communication and provided the opportunity for virtual-togetherness-with-media. In a unique way, the resources of the videoconference made it possible for everyone to participate in and visually share geometrical constructions, encouraging interaction and active participation and constituting a virtual learning community through dialogue. The results indicate that, in this context, mathematical learning nature was characterized by: collaboration, in the virtual discussions that were woven from the contributions of all the participants; collectivity, to the degree to which mathematical production was conditioned by the humans-with-media thinking collective; and argumentation, as the development of mathematical conjectures and justifications was intense throughout the process, aided by the technologies that were present in the constant, collaborative interaction.
Doutor
Zulatto, Rúbia Barcelos Amaral [UNESP]. "A natureza da aprendizagem matemática em um ambiente online de formação continuada de professores." Universidade Estadual Paulista (UNESP), 2007. http://hdl.handle.net/11449/102133.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A presente pesquisa analisa a natureza da aprendizagem matemática em um curso online de formação continuada de professores, denominado Geometria com Geometricks. Nele, alunos-professores de uma mesma rede de escolas, situadas em diferentes localidades do país, desenvolveram atividades de Geometria utilizando-se do software Geometricks, e se encontravam para discuti-las. Esses encontros aconteceram a distância, em tempo real, por chat ou videoconferência. Nessa proposta pedagógica, a telepresença condicionou a comunicação e oportunizou o estar-junto-virtual-com-mídias. De modo singular, os recursos da videoconferência permitiram que construções geométricas fossem compartilhadas visualmente e realizadas por todos os envolvidos, fomentando a interação e a participação ativa, constituindo, por meio do diálogo, uma comunidade virtual de aprendizagem. Os resultados levam a inferir que, nesse contexto, a aprendizagem matemática teve natureza colaborativa, na virtualidade das discussões, tecidas a partir das contribuições de todos os participantes; coletiva, na medida em que a produção matemática era condicionada pelo coletivo pensante de seres-humanos-com-mídias; e argumentativa, uma vez que conjecturas e justificativas matemáticas se desenvolveram intensamente do decorrer do processo, contando para isso com as tecnologias presentes na interação ocorrida de forma constante e colaborativa.
This study was conducted to analyze the nature of mathematical learning in an online continuing education course for teachers entitled Geometry with Geometricks. Teachers employed in a nation-wide network of privately-supported schools developed geometry activities using the software Geometricks and discussed them in virtual meetings, in real time, via chat or video-conference. In this pedagogical proposal, tele-presence conditioned the communication and provided the opportunity for virtual-togetherness-with-media. In a unique way, the resources of the videoconference made it possible for everyone to participate in and visually share geometrical constructions, encouraging interaction and active participation and constituting a virtual learning community through dialogue. The results indicate that, in this context, mathematical learning nature was characterized by: collaboration, in the virtual discussions that were woven from the contributions of all the participants; collectivity, to the degree to which mathematical production was conditioned by the humans-with-media thinking collective; and argumentation, as the development of mathematical conjectures and justifications was intense throughout the process, aided by the technologies that were present in the constant, collaborative interaction.
Boudjani, Nadira. "Aide à la construction et l'évaluation des preuves mathématiques déductives par les systèmes d'argumentation." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS060/document.
Full textLearning deductive proofs is fundamental for mathematics education. Yet, many students have difficulties to understand and write deductive mathematical proofs which has severe consequences for problem solving as highlighted by several studies. According to the recent study of TIMSS (Trends in International Mathematics and Science Study), the level of students in mathematics is falling. students have difficulties to understand mathematics and more precisely to build and structure mathematical proofs.To tackle this problem, several approaches in mathematical didactics have used a social approach in classrooms where students are engaged in a debate and use argumentation in order to build proofs.The term "argumentation" in this context refers to the use of informal discussions in classrooms to allow students to publicly express claims and justify them to build proofs for a given problem. The underlying hypotheses are that argumentation: (i) enhances critical thinking and meta-cognitive skills such as self monitoring and self assessment; (ii) increases student's motivation by social interactions; and (iii) allows learning among students. From instructors' point of view, some difficulties arise with these approaches for assessment. In fact, the evaluation of outcomes -- that includes not only the final proof but also all intermediary steps and aborted attempts -- introduces an important work overhead.In this thesis, we propose a system for constructing and evaluating deductive mathematical proofs. The system has a twofold objective: (i) allow students to build deductive mathematical proofs using structured argumentative debate; (ii) help the instructors to evaluate these proofs and assess all intermediary steps in order to identify misconceptions and provide a constructive feedback to students. The system provides students with a structured framework to debate during construction of proofs using the proposed argumentation frameworks in artificial intelligence. These argumentation frameworks are also used in the analysis of the debate which will be used to represent the result in different forms in order to facilitate the evaluation to the instructors. The system has been implemented and evaluated experimentally by students in the construction of deductive proofs and instructors in the evaluation of these proofs
Manrique, Ortega Ana María. "Trabajo en pareja y construcción de conocimiento matemático en un aula de matemáticas de sexto de primaria." Doctoral thesis, Universitat Autònoma de Barcelona, 2015. http://hdl.handle.net/10803/285461.
Full textThe doctoral work Pair work and construction of mathematical knowledge in the grade 6 mathematics classroom constitutes a progress in mathematics education research under the tradition of socio-cognitive approaches about the construction of mathematical knowledge. For the analysis of processes of shared construction of mathematical knowledge in a primary school classroom, we consider the uses of fractions, the structures of arguments and the discussions in pairs. The research question is: How does the resolution in pairs of contextualized problems influence on the construction of the fraction concept in a primary school class? To answer this question we take three consecutive goals aimed at characterizing: 1) the initial individual written productions of the students’ solutions to the problems; 2) the follow-up oral and written interactions among students; and 3) the revised individual written productions. We desing a scientific situation with 11-and-12-year-old students in a class of Barcelona province. The theoretical framework is organized around three axes. First, the conceptual axis deals with is the concept of fraction from the perspective of its uses. Second, the structural axis deals with argumentation in the mathematics classroom as an essential component of communication and as a tool of the process of organizing reasoning. Finally, the interactional axis deals with the interaction processes that take place in school settings of teaching and learning mathematics. According to the question, the goals and theoretical axes, we propose the experimental design and methods of analysis. We create a sequence of arithmetic problems on distribution excluding the meanings of measurement and operator for fraction, planned to be orquestrated in a problem-solving environment with pair work. For the implementation, we consider a lesson dynamics with individual work followed by pair discussion and subsequent individual reconstructions. Our data set is written and oral, in relation to the moments for individual and pair resolution. We create four analytical tools for the combined study of the different axes. For each axis, we define codes that lead to reduce oral and written relevant data. The analytical tools are themselves an original contribution of the research. Through the application of the tools we characterize the initial and revised individual written productions of the students and their oral productions in pairs. The coordination of the conceptual, structural and interactional axes is key to this stage of the study. It can be inferred from the analysis that student-student interaction facilitates the construction of the concept of fraction during the resolution of arithmetic problems of distribution. The implementation of the sequence of problems has been proved to generate progress in the students’ mathematical knowledge. We establish a connection between the mathematical argumentation and the interaction processes. Also, we detect situations without either improvement or regression in the shared construction of knowledge and the development of collective argumentation. There are progresses in the construction of mathematical knowledge when the students solve situations involving identification of the fraction as part-whole in a continuous context, the identification of the fraction as part-whole in a discrete context, and the identification of the fraction as quotient. Nevertheless, there is no progress detected in the construction of mathematical knowledge when the students solve situations involving the identification of the fraction as part-whole in a discrete context, as quotient when all available units are not distributed, and as ratio. Under these meanings of the fraction, the reconstructions do not improve and may reflect changes in responses that point to mathematical and argumentative misunderstandings. As for the argumentative activity, students progress in the reconstruction of their arguments when rejecting mismatches to provide guarantees or endorsements, or when extending explanations or justifications, while improving the use of language and connections. These improvements may be due to the influence of the context in the resolution, the domain of the meaning of the fraction, or the role of the student in pair work during the resolution and the elaboration of responses. Finally, we conclude on the relevance of interactions by paying attention to the roles of the students. Sometimes satisfying interactions are reached in terms of collective reasoning and mathematical knowledge construction, where one of the students imposes without discussion her/his arguments. Thus, the development of clarification, enforcement, revision and expansion emerge from these actions, causing or not, mathematical advances. We have detected many pair work interactions oriented toward collective argumentation and meaning consensus. Various interventions and exchanges show that in pair work resolutions agreements, extensions and synthesis are dominant. We further note that students involved in a discussion, tend to produce disagreements that have the effect to facilitate joint progress in mathematical contents or in argumentations.
Willard, Catherine. "Effects of Collaborative Reasoning on Students' Mathematics Performance and Numerical Reasoning Abilities." Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/328799.
Full textPh.D.
Current reform efforts, which aim to improve the mathematics abilities of American citizens, call for mathematics instruction that emphasizes sense making, reasoning and argumentation. This study was conducted to understand the outcomes of Collaborative Reasoning, a reform-oriented instructional strategy, in seventh and eighth grade mathematics classrooms. An embedded, quasi-experimental, mixed-methods design was used to investigate: the effects of Collaborative Reasoning on students' mathematics performance, and the ways in which students' reasoning abilities change as a result of participating in Collaborative Reasoning. The quantitative results revealed statistically significant changes in mathematics performance from pre-test to post-test. Post-test analysis showed a statistically significant difference in assessment scores, with the treatment group out-performing their comparison group peers. The qualitative results of the study show that as a result of participating in Collaborative Reasoning sessions, students were choosing reasoning strategies that were more appropriate, were using appropriate reasoning strategies more consistently, and were better able to verbally explain their reasoning. Finally, it was found that as students participate in Collaborative Reasoning their discourse becomes less calculational and more conceptual in nature, and more students become active participants within small group discussions.
Temple University--Theses
Santos, Jonas Borsetti Silva. "Argumantação e prova: análise de argumentos algébricos de alunos da educação básica." Pontifícia Universidade Católica de São Paulo, 2007. https://tede2.pucsp.br/handle/handle/11491.
Full textMade available in DSpace on 2016-08-25T17:25:39Z (GMT). No. of bitstreams: 2 Jonas Borsetti Silva Santos.pdf.jpg: 1943 bytes, checksum: cc73c4c239a4c332d642ba1e7c7a9fb2 (MD5) Jonas Borsetti Silva Santos.pdf: 3405570 bytes, checksum: 782a71ca49056f8eb3f7770f4741087c (MD5) Previous issue date: 2007-06-01
Secretaria da Educação do Estado de São Paulo
The present work focuses questions presented in the questionnaire of Algebra of the AProvaME project (Argumentation and Proof in the School Mathematics), of the PUC-SP. One of the goals of the project is to raise a map on the conceptions of argument and proof of the Brazilian pupils, more necessarily of the pupils of the State of São Paulo. Two questionnaires, one of Algebra and one of Geometry, had been elaborated for this survey, applied for a composed sample of 1998 pupils in the band of 14 the 16 years, registered in 8th series of Basic School and 1° year of Average School. After descriptive analysis of the collected data, we could verify that the creation of argumentation and proof for the pupils is defective, since many of them had never seen any type of argumentation or proof in its school life. Made the descriptive analysis, we carry through a multidimensional analysis, with the aid of the software C.H.I.C. that also assisted us in the choice of the pupils who would be interviewed. Still, for one better analysis, we carry through interviews with some teachers, concerning the questions that are object of our study, as also on the use of argumentations and proofs in classroom. The same ones are little used in their classes. In general, our analyses, in such a way quantitative how much qualitative, they suggest that the processes of argumentation and proofs are not being contemplated with these pupils. The pupils who had answered to the questions had presented, in the majority of the times, empirical arguments. The ones that had tried to evidence some property or some structure for the argumentations and proofs had used many times the narrative form. Moreover, the use of the algebraic language is little spread out in the schools, fact evidenced for the arguments presented for the pupils
O presente trabalho trata de questões apresentadas no questionário de álgebra do projeto AprovaME (Argumentação e Prova na Matemática Escolar), da PUC-SP. Uma das metas do projeto é levantar um mapa sobre as concepções de argumentação e prova dos alunos brasileiros, mais precisamente dos alunos do Estado de São Paulo. Foram elaborados dois questionários, um de Álgebra e um de Geometria para esse levantamento, aplicados para uma amostra composta de 1998 alunos na faixa de 14 a 16 anos, matriculados na 8ª série do Ensino Fundamental e 1º ano do Ensino Médio. Após a análise descritiva dos dados coletados, pudemos verificar que a criação de argumentação e prova pelos alunos é falho, visto que muitos deles sequer viram qualquer tipo de argumentação ou prova em sua vida estudantil. Feita a análise descritiva, realizamos uma análise multidimensional, com o auxílio do software C.H.I.C. que também nos auxiliou na escolha dos alunos que seriam entrevistados. Ainda, para uma melhor análise, realizamos entrevistas com alguns professores acerca das questões que são objeto de nosso estudo, como também sobre o uso de argumentações e provas em sala de aula. Os mesmos valem-se muito pouco desse recurso. Em geral, nossas análises, tanto quantitativas quanto qualitativas, sugerem que os processos de argumentação e provas não estão sendo contemplados com esses alunos. Os alunos que responderam às questões apresentaram, na maioria das vezes, argumentos empíricos. Os que tentaram evidenciar alguma propriedade ou alguma estrutura para a argumentação e prova valeram-se muitas vezes da língua materna. Além disso, o uso da linguagem algébrica é pouco difundida nas escolas, fato evidenciado pelas argumentações apresentadas pelos alunos
Persson, Helén. "Matematikdidaktiska val En argumentationsanalys av det lustfyllda lärandet Mathematics education choice An argumentation analysis of a zestful learning." Thesis, Malmö högskola, Fakulteten för lärande och samhälle (LS), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-35502.
Full textMoran, Renee Rice. "Applying Argumentation in the Middle School and High School ELA Classroom." Digital Commons @ East Tennessee State University, 2016. https://dc.etsu.edu/etsu-works/3624.
Full textEduardo, Antonio Carlos. "Contextos para argumentar: uma abordagem para iniciacao a prova no EM utilizando P.A." Pontifícia Universidade Católica de São Paulo, 2007. https://tede2.pucsp.br/handle/handle/11253.
Full textSecretaria da Educação do Estado de São Paulo
This research invests in the conception of learning environments aimed to contribute to the creation of a culture of argumentation, proving and proof in mathematics classrooms. It developed within the context of the project AProvaME as part of the exploration of how to initiate students into aspects of the proving process in relation to the topic of Arithmetic Progressions. In designing this learning environment, we sought contributions from the studies of Bordenave from the areas of the Communication Science and in the field of Mathematics Education, from research relatied to argumentation and in particular the work of Bolite Frant and Castro and of Maher. These contributions enabled the elaboration of an interactive environment for the mediation of mathematical ideas. One of the roles of mediation within the study focuses, in the light of Communication, on the action of the teacher during the negotiation of the mathematics presented in the classroom. Aspects related to socialisation, interaction and mediation were inspired by the constructionist proposal of Papert and other constructionist thinkers. On the basis of these studies, an approach was adopted to the use of technology involving the conception of visual objects embedded within activities aiming to support the development of certain habits of mathematical thinking delineated by Goldenberg. This qualitative study made use of didactic resources such as as the dynamic of games and the use of the computer to promote interaction and the emergence of scenarios for medication. The instruments used in the collection of data Blogs and video recordings valorised the interpretation of the dialogs which occurred within these scenarios. The use of Blogs, still not well documented in research in Mathematics Education, served to show the evolution of mathematical fluency in the arguments produced by the students and also acted as a parameter on the practice of the educator. Editing of the videos collected, permitted the formatting of fragments of registers from the dialogs in the form of cartoon strips, which came to represent a product with a wide range of possible uses both in the interpretation of dialogs and in reflections about the role of the teacher. The results obtained in this study led to recommendations for the creation of new contexts for argumentation
Esta pesquisa investe na proposição de ambiente de aprendizagem como possibilidade de criar uma cultura na sala de aula que promova / favoreça a argumentação. No transcorrer do projeto APROVAME1 surgiu a opção em explorar tópicos do conceito Progressão Aritmética para auxiliar no desenvolvimento de processos de iniciação à prova. Na implementação deste ambiente de aprendizagem buscamos contribuições advindas dos estudos de Ciência da Comunicação através de Bordenave, da Educação Matemática pelos estudos de alguns pesquisadores voltados à argumentação, dentre os quais: Bolite Frant e Castro, e estudos sobre desenvolvimento de provas de Maher. Estas contribuições possibilitaram a elaboração de um ambiente interativo e propício à prática da mediação. Um dos papéis de mediação exercido durante este estudo é apresentado à luz da Comunicação, focando na ação do professor durante a negociação matemática que se apresenta em sala de aula. Corroboram para estes aspectos socializáveis do ambiente, interação e mediação, a proposta construcionista de Papert, valorizada pela contribuição de outros estudiosos do construcionismo. Através desses estudos, um dos usos da tecnologia nesta pesquisa volta-se à elaboração de objetos visuais e possibilita o design das atividades sob a ótica do desenvolvimento de alguns hábitos de pensamento matemáticos, segundo Goldenberg. Este estudo qualitativo, emprega recursos didáticos como a dinâmica do jogo e o uso do computador, para promover a interação e o surgimento de cenários de mediação. Os instrumentos de coleta de dados vídeo e blog valorizam a interpretação dos diálogos surgidos nesses cenários. O uso do blog, ainda pouco difundido entre pesquisas da Educação Matemática, serve para mostrar a evolução da fluência matemática na argumentação dos alunos, e também atua como parâmetro da prática do educador. A edição do vídeo permitiu a formatação dos registros de fragmentos dos diálogos na forma de quadrinhos, o que veio a se constituir num produto com amplas possibilidades de uso, tanto no tocante à interpretação dos diálogos, quanto na reflexão sobre a postura do educador. Os resultados obtidos por este estudo recomendam a criação de novos Contextos para Argumentar
Chen, Ying-Chih. "Examining the integration of talk and writing for student knowledge construction through argumentation." Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/1129.
Full textWessels, Helena. "Using a modelling task to Elicit Reasoning about data." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-83189.
Full textTaneja, Anju. "Argumentation in Science Class| Its Planning, Practice, and Effect on Student Motivation." Thesis, Walden University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10133198.
Full textStudies have shown an association between argumentative discourse in science class, better understanding of science concepts, and improved academic performance. However, there is lack of research on how argumentation can increase student motivation. This mixed methods concurrent nested study uses Bandura’s construct of motivation and concepts of argumentation and formative feedback to understand how teachers orchestrate argumentation in science class and how it affects motivation. Qualitative data was collected through interviews of 4 grade-9 science teachers and through observing teacher-directed classroom discourse. Classroom observations allowed the researcher to record the rhythm of discourse by characterizing teacher and student speech as teacher presentation (TP), teacher guided authoritative discussion (AD), teacher guided dialogic discussion (DD), and student initiation (SI). The Student Motivation Towards Science Learning survey was administered to 67 students before and after a class in which argumentation was used. Analysis of interviews showed teachers collaborated to plan argumentation. Analysis of discourse identified the characteristics of argumentation and provided evidence of students’ engagement in argumentation in a range of contexts. Student motivation scores were tested using Wilcoxon signed rank tests and Mann-Whitney U-tests, which showed no significant change. However, one construct of motivation—active learning strategy—significantly increased. Quantitative findings also indicate that teachers’ use of multiple methods in teaching science can affect various constructs of students’ motivation. This study promotes social change by providing teachers with insight about how to engage all students in argumentation.
Ohman, Jonny. "Ett annorlunda matematikprov : – med fokus på textförklaring, stilpoäng samt grupparbete." Thesis, Växjö University, School of Mathematics and Systems Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-615.
Full textMatematikundervisning kan se ut på en mängd olika sätt. Strävandemålen i Läroplanerna beskriver att läraren skall sträva efter att eleverna både skriftligt och muntligt bör redovisa och argumentera för sina lösningar samt lära sig hantera olika matematiska hjälpmedel. Tanken är att läraren skall planera för en undervisningsform som innehåller dessa strävandemål.
Utifrån ovanstående har jag gjort en kvalitativ studie med hjälp av ett laborativt grupprov. Studien bygger på att undersöka om man med hjälp av prov kan stärka elevernas motivation där de tränar sig i att få en bra lösningsstrategi genom att ge dem poäng för detta. Provet bygger på att eleverna arbetar två och två där de i text ska redovisa och argumentera för sina uträkningar.
Min samlade bild av elevernas förmåga att strukturera uppgifterna på ett bra och tydligt sätt samt i text förklara hur de löst uppgifterna blev inte riktigt vad jag väntat mig. Över lag tror jag att eleverna har för lite rutin kring detta. Dock fick jag en del positiva reaktioner från eleverna kring detta arbetssätt och att det är något de vill ha mer av.
Pedemonte, Bettina. "Etude didactique et cognitive des rapports de l'argumentation et de la démonstration dans l'apprentissage des mathématiques." Université Joseph Fourier (Grenoble), 2002. http://tel.archives-ouvertes.fr/tel-00004579.
Full textThe purpose of this research is to analyze some aspects of the relationships between argumentation and proof. Our assumption is that a didactical research on the learning of proof needs to understand the nature and the complexity of the notions of argumentation and proof in the referential of the student rational activity: how he decides, he chooses and he proves. At the beginning, we characterize argumentation and proof in mathematics. On the base of the contemporary linguistics theory, we put forward the hypothesis that proof is a particular mathematical argumentation and we propose Toulmin's model as a methodological tool to compare them. Argumentation and proof can be compared from two points of view: structure and referential system. First, besides clear cases of continuity, our structural analysis highlights the distance distances between the argumentation supporting the conjecture and its proof (from an abductive argumentation to a deductive proof, from a inductive argumentation to a deductive proof and so on). Then it is possible, by means of Toulmin's model, to compare the statements mobilized by student during the argumentation with the theorems used in the proof. This comparison constitutes the basis of the analysis concerning the continuity or the distance between conceptions and theory in the referential system. An experimental design was carried out. We proposed three geometric problems requiring the production of conjectures and the related proofs. The students' productions were analysed according to Toulmin's model in order to highlight and to understand the cognitive relation between argumentation and proof. Our results show the potentialities of our cognitive analysis in order to interpret and foresee students' difficulties related to the passage from argumentation to proof
Diaz, Juan Francisco Jr. "Examining student-generated questions in an elementary science classroom." Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/946.
Full textPinzino, Dean William. "Socioscientific Issues: A Path Towards Advanced ScientificLiteracy and Improved Conceptual Understanding of Socially Controversial Scientific Theories." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4387.
Full textYarker, Morgan Brown. "Teacher Challenges, Perceptions, and Use of Science Models in Middle School Classrooms about Climate, Weather, and Energy Concepts." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/4929.
Full textCarmo, Alex Bellucco do. "Argumentação matemática em aulas investigativas de física." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/48/48134/tde-12052015-135710/.
Full textIn the following work we seek to understand the role of mathematics in the construction of the arguments of students in inquiry teaching activities. For forwarding this research, we conducted a review about argumentation and mathematical argumentation with the purpose to provide elements for the construction of an analytical tool for teaching and learning situations. From this study also emerged the need for consideration of the different languages used for communication and observe the quality of the argumentative process in terms of its form and content. With the structuration of this theoretical framework, we developed an Inquiry-Based Teaching Sequence (IBTS) about momentum, its conservation and Newton\'s laws, which brings together the features found, such as abduction, i.e. the use of a rule or law as hypothesis that helps to explain a new fact. To achieve our goals, we analyze the video recording of the application of this sequence in a first year high school class in a public school in the state of Santa Catarina, with the help of Videograph software that makes easy to observe the occurrence of the categories proposed in a temporal graph. We verified the intense frequency of the argument properties highlighted, with a large movement of the different languages in the construction of the meanings, especially the algebraic one on the estimation process. On the other hand, was explicit the disconnection between phenomena and their representations, as students distanced themselves from the experimental problem of the beginning of IBTS and became involved in the problem-solving process - that demand the planning of specific activities to stimulate reflection about these situations.
Benus, Matthew J. "The teacher's role in the establishment of whole-class dialogue in a fifth grade science classroom using argument-based inquiry." Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/2673.
Full textKarlström, Gustaf. "Förstaklasselevers kollektiva algebraiska resonemang om funktioner." Thesis, Stockholms universitet, Institutionen för matematikämnets och naturvetenskapsämnenas didaktik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-194469.
Full textCampos, Rodrigo Ruiz. "Argumentação e demonstração dos alunos do Ensino Médio: uma proposta de investigação matemática sobre crescimento e decrescimento de funções afins." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/45/45135/tde-13062018-213641/.
Full textThis present work aims to study if mathematical research activities can help to develop mathematical argumentation and demonstration capacity in high school students, addressing the theme of growth and decrease of linear functions. For this, it proposes a reflection about the role of argumentation and demonstration in the integral formation of the high school student. It focuses on the transition between basic and higher education, studying some of its difficulties. The study explores the difference between these levels of education, whereas, while the basic school treats mathematics based on arithmetic and algebraic procedures from a practical point of view - such as arithmetic, measurements, equations, data analysis -, higher education demands from the student a greater abstraction level, where argumentation, logical reasoning (deductive and inductive) and demonstrations are necessary conditions to knowledge construction. In the end, we will propose a mathematical activity through an investigative approach, reflecting on how the demonstration, addressed in this way, can contribute to the integral formation of the student and create approximations between the way mathematics is treated in elementary school and in higher education.
Miyakawa, Takeshi. "Une étude du rapport entre connaissance et preuve : le cas de la notion de symétrie orthogonale." Phd thesis, Université Joseph Fourier (Grenoble), 2005. http://tel.archives-ouvertes.fr/tel-00076565.
Full textDes outils d'analyse (conception, règle, support, etc.) sont adoptés et développés à partir du modèle de connaissance (modèle cK¢) de Balacheff et d'autres modèles de raisonnement et d'argumentation (modèle de Toulmin, etc.), afin d'établir la relation comparative entre le problème de preuve et les autres problèmes (construction géométrique, reconnaissance de figures) en termes de connaissance engagée.
Pour tenter d'identifier les connaissances effectives mobilisées par les élèves dans une situation de construction de preuve, une expérimentation est réalisée au collège en classe de 3e en France. Cette expérimentation vient à la suite d'une analyse théorique de certains types de problèmes permettant de mettre en évidence les différents fonctionnements de composants de conception au sens de Balacheff. Les problèmes de construction et de preuve y sont proposés. L'analyse des données met en évidence un écart sur l'état de connaissance des élèves. En effet, ces derniers réussissent bien le problème de construction des figures symétriques, cependant, ils échouent sur un problème analogue (exigeant la même règle), où la preuve est exigée. L'absence d'un « contrôle » organisé dans la construction qui est exigé dans la preuve est identifié.
Goizueta, Manuel. "Aspectos epistemológicos de la argumentación en el aula de matemáticas." Doctoral thesis, Universitat Autònoma de Barcelona, 2015. http://hdl.handle.net/10803/299192.
Full textThis doctoral thesis “Epistemological aspects of argumentation in the mathematics classroom” is inscribed in the area of study of argumentation in the mathematics classroom. It tackles the research question: ¿How is the validity of mathematical production constructed while solving problems in mathematics classrooms? To approach this question three objectives are proposed: First objective: To characterize validity construction processes of mathematical production in students’ group work. Second objective: To characterize validity construction processes of mathematical production in the interaction between groups of students and the teacher. Third objective: To characterize the management of validity construction processes of mathematical production by two teachers in the mathematics classroom. Mathematical knowledge is understood as a cultural and historical product, whose justification implies human action, so it cannot be reduced to objective conditions. Argumentation is presented as an epistemic unit of mathematical knowledge and is framed within human rational behavior. We describe argumentation as a practice aimed at justifying, reflecting and persuading, that occurs in interaction situations and depends on the context. One or more participants may be involved, offering reasons to justify or criticize their own or others positions in order to modify, positively or negatively, the epistemic value of such positions. It is argued that mathematics classroom epistemology is researchable based on the analysis of interactions between participants in the teaching and learning process and, particularly, by considering argumentative practices in class. Research methods come from the grounded theory research paradigm. Data analysis is structured around the constant comparative method and interpretive-inductive analysis is organized around comparison of similar episodes. To that purpose, iterative codification cycles are performed until reaching theoretical saturation. Descriptive and explicative categories are generated on the basis of this analysis, which account for the data and, by a process of synthesis, for the research objectives. Results are presented as narrative themes that account in an articulated way for the most relevant aspects of the analysis. Classroom data were gathered from a mathematical modeling, problem solving task, devised to introduce basic notions of probability theory in two middle-school, fourth grade classrooms with two teachers. Two semi-structured, video based interviews were held with two groups of students. Classroom and interview data constitute the corpus of data of the study. The complex relationship between mathematics classroom epistemology and social aspects of the didactical contract is highlighted. The social roots of validity construction of mathematical production in the classroom and the teacher’s role relevance in the management of such processes are pointed out. Results indicate that students lack meta-mathematical knowledge necessary to produce and assess arguments according to disciplinary principles aimed at this level and that these activities are not central to classroom mathematical work. The necessity to propitiate that epistemologically relevant aspects of the mathematical production are made visible in the interactions with the teacher is concluded. This should allow the teacher to assess students’ mathematical production as well as the emergence of meta-mathematical knowledge as a learning object in the classroom.
Carvalho, Moacir Benvindo de. "Concepções de alunos sobre provas e argumentos matemáticos: análise de questionário no contexto do Projeto AProvaME." Pontifícia Universidade Católica de São Paulo, 2007. https://tede2.pucsp.br/handle/handle/11506.
Full textMade available in DSpace on 2016-08-25T17:25:36Z (GMT). No. of bitstreams: 2 Moacir Benvindo de Carvalho.pdf.jpg: 3808 bytes, checksum: d8187edfbf0dce23033fdab0e679da99 (MD5) Moacir Benvindo de Carvalho.pdf: 6002177 bytes, checksum: d3fa0dfec344341c4e176d7b914e6ccb (MD5) Previous issue date: 2007-05-25
This work is inserted in the context of teaching and learning proofs and mathematical arguments in school mathematics and was developed as part of the project AProvaME (Argumentation and Proof in School Mathematics). The main aim of the study relates to the construction of a panorama of students´ conceptions about proof on the basis of the results of a questionnaire applied to nearly 2000 students aged between 14 and 15 years. More specifically, the study centres on the analysis of two questions related to Algebra (A1 and A2), which solicited the selection of arguments by the students and the assessment of these arguments in terms of their validity and generality. The questions from the questionnaire, as well as the discussions of students responses are informed principally by the research studies of Balacheff (1988) and Healy & Hoyles (2000), both of which consider empirical and formal arguments and the complex passage from the production of pragmatic to conceptual proofs. The results show that half of the 1998 subjects who completed the questionnaire had a preference for empirical arguments (verification through some cases) and a quarter chose narrative arguments. With respect to the analysis of the generality of proofs, students responses were generally somewhat inconsistent, with, for example, those who considered the same arguments to be both always true and valid only for some cases . In the group of students under our responsibility, made up of three 8th grade classes (70 students), the same results were observed. Some of the reasons motivating these choices were illuminated in the interviews. In the vision of the students, empirical evidence counts as proof and arguments in natural language are judged as clearer, with a greater explanatory power
Nosso trabalho insere-se no contexto do ensino e aprendizagem de provas e argumentos matemáticos por alunos da Escola Básica e foi desenvolvido no âmbito do Projeto Argumentação e Prova na Matemática Escolar (AProvaME). O principal objetivo de nosso estudo refere-se ao mapeamento das concepções de alunos sobre prova, a partir dos resultados de um questionário aplicado a cerca de 2.000 alunos de 14-15 anos. Mais especificamente, nosso trabalho centrou-se na análise de duas questões de Álgebra (A1 e A2), as quais solicitavam escolhas de argumentos por parte dos alunos e avaliação destes em termos de sua validade e generalidade. A elaboração e discussão das respostas são baseadas principalmente nas pesquisas de Balacheff (1988) e Healy & Hoyles (2000), sobre argumentos empíricos e formais e sobre a complexa passagem da produção de provas pragmáticas para as conceituais. Os resultados mostram que a metade dos sujeitos analisados na amostra total (de 1.998 alunos) tem preferência por argumentos empíricos (verificações para alguns casos) e um quarto escolhe argumentos narrativos. Quanto à avaliação da generalidade de uma prova, verificamos inconsistência nas respostas dos alunos, que consideram um mesmo argumento sempre verdadeiro e, simultaneamente, válido somente para alguns casos . No grupo sob nossa responsabilidade, constituído por três turmas de 8ª série (70 alunos), esses resultados se mantêm. Algumas razões dessas escolhas foram esclarecidas nas entrevistas. Na visão dos alunos, evidências empíricas são provas e os argumentos em língua natural são considerados mais claros, com maior poder de explicação
Ferreira, Filho José Leôncio. "Um estudo sobre argumentação e prova envolvendo o teorema de Pitágoras." Pontifícia Universidade Católica de São Paulo, 2007. https://tede2.pucsp.br/handle/handle/11279.
Full textSecretaria da Educação do Estado de São Paulo
The National Curriculum Parameters (Brazil, 1998), acknowledge and recommend that the Mathematics syllabus should necessarily cover activities and experiences which enable learners to develop and effectively communicate with valid mathematical argumentation. However, there is consensus among Mathematics Education researchers, in several countries, as to the inherent difficulties of teaching and learning proof. This research is inserted in the AprovaME project, in the Mathematics Education area at PUC-SP, which has as one of its goals to foster debate over the teaching and learning of proof in Mathematics. The objective of the present study was to investigate the involvement of first-year students at high school in processes of conjecture and proof construction, aiming to answer the following research question: what difficulties do students present when faced with argumentation and proof situations involving the Pythagorean Theorem? In order to answer the research question, we adopted some elements from the didactic engineering as the research methodology. A teaching sequence was then elaborated with questions on argumentation and proof involving the Pythagorean Theorem and applied to students from a private school in a countryside city in the State of Sao Paulo. The work by Robert (1998) and Duval (2002) contributed to the conception of activities, and the ones by Balacheff (1988), to the analysis of the types of proof from the students. The production from the students, at the end of the activities, show that the teaching sequence conceived to produce argumentation and proof advantaged the passing of a step where validations are predominantly empirical into another step, in which validation takes on a deductive character. Other studies approaching different mathematics topics and which treat teaching and learning of proof have become more and more needed for understanding the complexity surrounding this process
Os Parâmetros Curriculares Nacionais (Brasil, 1998) reconhecem e orientam, que o currículo de Matemática deve necessariamente contemplar atividades e experiências que possibilitem aos aprendizes o desenvolvimento e a comunicação efetiva de argumentos matematicamente válidos. Mas há consenso entre os pesquisadores da Educação Matemática, em diversos países, quanto às dificuldades inerentes ao ensino e à aprendizagem de prova. Esta pesquisa está inserida no projeto AprovaME na área da Educação Matemática da PUC-SP, que tem entre seus objetivos, o de contribuir para o debate sobre o ensino e aprendizagem de prova em Matemática. O objetivo do presente trabalho foi investigar o envolvimento de alunos da 1ª.série do Ensino Médio em processos de construção de conjeturas e provas, a fim de responder à seguinte questão de pesquisa: que dificuldades apresentam os alunos diante de situações de argumentação e prova envolvendo o teorema de Pitágoras? Para responder à questão de pesquisa, adotamos como metodologia de pesquisa alguns elementos da engenharia didática. Uma seqüência de ensino foi elaborada com questões sobre argumentação e prova, envolvendo o teorema de Pitágoras e aplicada a alunos de uma escola particular do interior do Estado de São Paulo. Os trabalhos de Robert (1998) e Duval (2002) contribuíram para a concepção das atividades e os de Balacheff (1988) para a análise dos tipos de provas dos alunos. As produções dos alunos ao final das atividades mostram que uma seqüência de ensino concebida para produzir argumentações e provas favoreceu a passagem de uma etapa onde as validações são predominantemente empíricas para uma outra etapa onde as validações são dedutivas. Outros trabalhos abordando diferentes tópicos de matemática e que tratem do ensino e aprendizagem da prova tornam-se cada vez mais necessários para compreender a complexidade desse processo
Mendes, Lourival Junior. "Uma análise da abordagem sobre argumentações e provas numa coleção do ensino médio." Pontifícia Universidade Católica de São Paulo, 2007. https://tede2.pucsp.br/handle/handle/11492.
Full textMade available in DSpace on 2016-08-25T17:25:39Z (GMT). No. of bitstreams: 2 Lourival Junior Mendes.pdf.jpg: 1943 bytes, checksum: cc73c4c239a4c332d642ba1e7c7a9fb2 (MD5) Lourival Junior Mendes.pdf: 1319059 bytes, checksum: 89ff5051fcdcdf1d57f534923356de6a (MD5) Previous issue date: 2007-04-13
Secretaria da Educação do Estado de São Paulo
The purpose of this study was to investigate the role of proofs and demonstration on textbooks of high school. This work contributes with APROVA ME, a project that aims to investigate, analyze and propose activities for the learning of proofs and demonstration in school mathematics. The text books from Manoel Paiva was analyzed; three volumes constituted his collection and it was approved by the National Program that evaluate high school text books. It was distributed among public schools in the state of Sao Paulo, including the one I teach. Since text books are, in general, the solely source for classroom teachers, and many studies point out the impact of text books on teacher s way of teaching and consequently impact on students learning, to investigate how it deals with proofs and demonstration may help to show new ways of teaching proofs in schools. Our investigation focused on the topics: Number sets; functions; arithmetic and geometric progressions; parallelism and perpendiculars. After analyzing the three volumes, based on Balacheff, Villiers and IREM group, it was possible to classify the proofs that were privileged by the author. I discuss and present suggestions to enhance the teaching of proofs related to the analyzed topics
O objetivo deste trabalho foi investigar o papel que assume as provas e demonstrações no livro didático de matemática do Ensino Médio. O trabalho contribui com o projeto AProvaME1 cujo objetivo é investigar, analisar e propor atividades para a aprendizagem de provas e demonstrações na matemática escolar. Minha investigação se pautou na coleção de Manoel Paiva aprovada pelo PNLEM/20052 e distribuída para as escolas públicas de Ensino Médio do estado de São Paulo que optaram por adotá-la, entre elas a que leciono. Uma vez que o livro didático é uma fonte quase que única para o apoio do professor, vários estudos apontam a influência do mesmo no ensino do professor e consequentemente influencia a aprendizagem dos alunos, investigar se existe e de que modo trata provas e demonstrações em sua coleção contribui para apontar novos caminhos para tal ensino. Os temas investigados foram: Conjuntos Numéricos, Funções, Progressões Aritméticas e Geométricas, Paralelismo e Perpendicularismo. Analisando os três volumes, relativos às três séries do Ensino Médio, segundo Balacheff, Villiers e do grupo IREM, foi possível classificar os tipos de provas que são privilegiados na coleção. Discuto e apresento algumas sugestões para complementar o ensino de provas relativas aos tópicos analisados
Signorelli, Shirley Ferreira. "Um ambiente virtual para o ensino semipresencial de funções de uma variável real: design e análise." Pontifícia Universidade Católica de São Paulo, 2007. https://tede2.pucsp.br/handle/handle/11284.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The purpose of this investigation was the elaboration and implementation of a virtual environment for a part time distance course for students of the Computer Science and Systems of Information. The students failed in a former discipline that approaches topics of elementary Mathematics. It happened in a particular university in the city of São Paulo. Our focus was on analyzing this environment, the tools and interactions that happened on distance mode, about the content of real function of one variable. The methodology used, design-based research, favored proposing and analyzing the activities about this topic, as well as their reorganization and, the re design of the environment. The Blackboard platform and the used tools were analyzed based on Chaves (2000) criteria, and it seemed efficient as a virtual environment for the learning in our course. However, we leaved some critical and suggestions for future works, mainly about the role of the tools for communication within part time distance courses. The analysis of the students and teacher speeches' was based on the Model of Argumentative Strategy (CASTRO et al, 2004) and allowed to raise some aspects on the understanding of Real Functions of one variable, as they were privileged in the different interactive spaces such as forum, chat, email and daily log. Aspects like the meaning production in Mathematics can be produced due to the authority of a teacher or of another student who is considered good by the classroom peers, or based on everyday language usage or on cultural characteristics. Moreover, we found that besides the students lack of prerequisite elementary mathematics, there is a lack of a culture for on-line courses
Nesta pesquisa objetivamos a elaboração e implementação de um ambiente virtual para um curso semipresencial, para estudantes dos cursos de Bacharelado em Ciência da Computação e Sistemas de Informação de uma instituição particular na cidade de São Paulo, dependentes na disciplina que aborda tópicos de pré-calculo. Nosso foco recaiu na análise do ambiente, da viabilidade das ferramentas e das interações que ocorreram a distância, no que tange o conteúdo de Funções de uma Variável Real. A metodologia utilizada, design research, permitiu propor e analisar as atividades sobre este tópico, incluindo a reestruturação e complementação deste ambiente. A plataforma Blackboard e as ferramentas foram analisadas segundo critérios definidos por Chaves (2000) e se mostraram eficazes como ambiente virtual de aprendizagem atendendo, para nosso curso, os critérios necessários. Entretanto, deixamos algumas críticas e sugestões para trabalhos futuros, principalmente quanto o papel do uso de ferramentas de comunicação em cursos semipresenciais. A análise dos discursos dos alunos e docente baseados no Modelo de Estratégia Argumentativa (CASTRO et al, 2004) permitiu levantar alguns aspectos sobre a compreensão de Funções de uma Variável Real que foram privilegiados nos diferentes espaços interativos como fórum, chat, e-mail e diário de rotina, tais como o fato de que a produção de significados em Matemática pode estar apoiada na autoridade do professor ou alunos bem vistos pela classe, na linguagem cotidiana e no aspecto cultural. Observamos ainda que além da falta de pré-requisitos de matemática básica, ainda há falta de cultura de trabalhos on-line
Nunes, José Messildo Viana. "A prática da argumentação como método de ensino: o caso dos conceitos de área e perímetro de figuras planas." Pontifícia Universidade Católica de São Paulo, 2011. https://tede2.pucsp.br/handle/handle/10891.
Full textThis research treats the practice of the argumentation as teaching method, focusing the concepts of area perimeter of plane figures. Studies in national and international levels have already broached the subject, many times using the practice of the argumentation as method, not proposing, however, ways that demonstrate the functionality of that method. So this work answers the following question: in what measure the practice of the argumentation can present itself as method that contributes to the comprehension of concepts in mathematics taking as reference the case of the area and the perimeter of plane figures? To answer our question, we propose a didactic sequence modeled and analyzed with basis in the phases that compose the argumentative process, according to Toulmin (1996). The methodology of the study have been supported in Didactic Engineering purposes, the intervention have been effectuated with pupils at the fifth grade in Ensino Fundamental (students aged 10-11), using two argumentative institutions: the classroom and the informatics laboratory where we used the Geogebra software. The theoretical foundation have been based in speculative reflections by Toulmin (1996), in argumentative classification by Pedemonte (2002) and Cabassut (2005) and in the idea of argumentative convergence by Perelman and Olbrechts-Tyteca (2005). The analysis of the activities have evidenced that the practice of the argumentation contribute to the comprehension of the concepts of area and perimeter of plane figures, habilitating this practice as teaching method. The argumentative competences acquired by the pupils through the interactions with their classmates and the researchers about the subject allowed them have more autonomy to communicate and defend their ideas, respecting the opinion of the other classmates during the discussions, pay attention to the functionality and the possible validity of their argument, besides to learn specific symbols and language of mathematics
Esta pesquisa trata da prática da argumentação como método de ensino, focalizando os conceitos de área e perímetro de figuras planas. Estudos em níveis nacionais e internacionais já abordaram o assunto, muitas das vezes utilizando a prática da argumentação como método, sem, no entanto, propor caminhos que demonstrassem a funcionalidade dessa abordagem. Assim, este trabalho responde à seguinte questão: em que medida a prática da argumentação pode se apresentar como método que favoreça a compreensão de conceitos em matemática, tomando como referência o caso da área e perímetro de figuras planas? Como resposta, propomos uma sequência didática modelada e analisada com base nas fases que compõem o processo argumentativo segundo Toulmin (1996). A metodologia do estudo apoiou-se em pressupostos da Engenharia Didática e a intervenção foi efetivada com alunos do quinto ano do Ensino Fundamental (alunos de 10 a 11 anos), utilizando duas instituições argumentativas: a sala de aula e o laboratório de informática, no qual usamos o software Geogebra. A fundamentação teórica baseou-se nas reflexões teóricas de Toulmin (1996), na classificação de argumentos de Pedemonte (2002) e Cabassut (2005) e na idéia de convergência argumentativa de Perelman e Olbrechts-Tyteca (2005). As análises das atividades evidenciaram que a prática da argumentação favoreceu a compreensão dos conceitos de área e perímetro de figuras planas, habilitando essa prática como método de ensino. As competências argumentativas adquiridas pelos discentes, a partir das interações com colegas e pesquisador sobre o assunto em questão, possibilitaram- lhes ter mais autonomia para comunicar e defender suas ideias, respeitando a opinião do colega no decorrer das discussões, ficar atentos à funcionalidade e à validade ou não de seu argumento, além de apreender símbolos e linguagem específicos da matemática
Leandro, Ednaldo José. "Um panorma de argumentação de alunos da educação básica: O caso do fatorial." Pontifícia Universidade Católica de São Paulo, 2006. https://tede2.pucsp.br/handle/handle/11082.
Full textThis work focuses on the mathematical object factorial. It is part of the project Argumentation and Proof in School Mathematics (AprovaME), which involves a survey of the conceptions of Brazilian students. For this survey, two questionnaires were developed, one related to the domain of algebra and the other geometry and administered to a sample composed of 2012 students aged between 14 and 16 years, studying in the 8th grade or the 1st year of High School of schools located in the state of São Paulo. The questions analyzed for this study were included in the algebra questionnaire. Following a descriptive analysis of the data collected, which indicated that the students had considerable difficulties in constructing valid mathematical arguments, the data set was subjected to a multidimensional analysis using the software CHIC. The results obtained from this analysis evidenced three distinct groups of students within the sample: those who were unable to respond to questions involving the notion of factorial; students who privileged the use of numeric calculations in their responses; and students who focused on the properties of the factorial in constructing their justifications. It was also possible to identify those students whose response profiles most contributed to the formation of these groups. In a second phase of analysis, some of these students were interviews in order to obtain additional data related to factors motivating their responses. In this phase the questionnaire was also administered to mathematics teachers in schools that made up the sample. In general, the results, both quantitative and qualitative, suggest that the question of argumentation and proof, at least in relation to multiplication and division, is not being contemplated with these students. Calculations were the principle tools used by those who managed to respond to the questions and few students were able to justify their responses using mathematical properties, such as, for example, referring to the inverse relationship between multiplication and division
Este trabalho trata do objeto matemático fatorial. Ele visa contribuir com o projeto Argumentação e Prova na Matemática Escolar (AProvaME), que tem como uma das metas elaborar um levantamento das concepções sobre argumentação e provas de estudantes brasileiros. Para este levantamento, foram elaborados dois questionários, um de Álgebra e outro de Geometria, aplicados a uma amostra composta por 2012 alunos na faixa etária entre 14 e 16 anos, matriculados na 8ª série do Ensino Fundamental ou 1ª série do Ensino Médio em escolas no Estado de São Paulo. As questões que analisamos estão inseridas no questionário de álgebra. Depois de uma análise descritiva dos dados coletados, que indicou consideráveis dificuldades dos alunos em construir argumentos válidos, uma análise multidimensional foi efetuada, utilizando o software CHIC. Com os resultados dessa análise foi possível identificar principalmente três grupos distintos de alunos os que não conseguiram resolver as questões com a noção do fatorial; os alunos que privilegiaram o uso de cálculos numéricos nas suas respostas e os alunos que enfocaram propriedades do fatorial na construção de suas justificativas. Também foi possível identificar aqueles alunos cujos perfis de respostas mais contribuíram para a formação de tais grupos. Numa segunda fase, alguns desses alunos foram entrevistados para a obtenção de mais informação em relação às motivações de suas respostas. Nessa fase, o questionário também foi aplicado aos professores de escolas participantes da amostra. Em geral, nossas análises, tanto quantitativas quanto qualitativas, sugerem que a questão de argumentação e provas, pelo menos em relação à multiplicação e divisão, não estão sendo contempladas com esses alunos. Os que conseguiram responder às questões privilegiaram o cálculo como a principal ferramenta e poucos foram os que justificaram suas respostas com o uso de propriedades, por exemplo, citando a inversa relação entre multiplicar e dividir
Cabassut, Richard. "DEMONSTRATION , RAISONNEMENT ET VALIDATION DANS L'ENSEIGNEMENT SECONDAIRE DES MATHEMATIQUES EN FRANCE ET EN ALLEMAGNE." Phd thesis, Université Paris-Diderot - Paris VII, 2005. http://tel.archives-ouvertes.fr/tel-00009716.
Full textPasini, Mirtes Fátima. "Argumentação e prova: explorações a partir da análise de uma coleção didática." Pontifícia Universidade Católica de São Paulo, 2007. https://tede2.pucsp.br/handle/handle/11282.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
This work is inserted the research project Argumentation and Proof in School Mathematics (AProvaME), which aims to study the teaching and learning of mathematical proofs during compulsory schooling. The main research question of this contribution to the project relates to how proof is treated in particular geometry topics in one collection of mathematics textbooks for secondary school students. More specifically, the study aims to identify how the passage from empiricism to deduction is contemplated in the textbook activities as well as to document the interventions and strategies necessary on the part of the mathematics teacher in order to manage this transition. The types of proofs in the classification of Balacheff (1988) and the functions of proof identified by de Villiers (2001) serve as the principle theoretical tools for these analyses. Following a survey of the activities related to proof and proving in topics related to the theorem of Pythagoras and properties of straight lines and triangles, teaching sequences based on these activities were developed with students from the 8th Grade of a secondary school within the public school system of the municipal of Jacupiranga in the State of São Paulo. The main findings of the study indicate that the teacher has at his or her disposal material that permit a broad approach to proof and proving, although the passage from exercises involving reliance on empirical manipulations for validation to the construction of proofs based on mathematical properties is not very explicitly addressed, with the result that intense teacher intervention is necessary at this point. A particular difficulty faced by the teacher is knowing how to intervene without assuming responsibility for the resolution of the task in question. Finally, a dynamic geometry activity is presented, as an attempt to provide a learning situation which might enable students to engage more spontaneously in the transition from evidence-based arguments to valid mathematical proofs
Nosso trabalho está inserido no Projeto Argumentação e Prova na Matemática Escolar (AProvaME), que tem como objetivo estudar o ensino e aprendizagem de provas matemáticas na Educação Básica. A questão principal da pesquisa consiste em analisar o tratamento deste tema em determinados conteúdos geométricos de uma coleção de livros didáticos do Ensino Fundamental. Mais especificamente, o estudo busca identificar como a passagem do empirismo à dedução é contemplada nas atividades dos livros e quais as intervenções e estratégias necessárias por parte do professor para gerenciar essa passagem. Os tipos de prova na classificação de Balacheff (1988) e as funções de prova identificadas por De Villiers (2001) foram as principais ferramentas teóricas utilizadas para estas análises. Após um levantamento das atividades relacionadas à prova nos conteúdos Teorema de Pitágoras, Retas Paralelas e as propriedades dos Triângulos, seqüências baseadas nessas atividades foram desenvolvidas com alunos de 8.ª Série do Ensino Fundamental de uma escola pública no Município de Jacupiranga, do Estado da São Paulo. Concluímos que o professor tem à sua disposição material consistente para trabalhar com seus alunos, embora exista o problema na passagem brusca de exercícios empíricos em diversos níveis de verificação para as demonstrações formais, sendo necessária intervenção do professor por meio de revisões pertinentes, proporcionando ao aluno esclarecimentos para desenvolver uma atividade. A principal dificuldade para o professor foi interferir sem assumir a responsabilidade de resolver a situação em questão. Por fim, apresenta-se uma atividade no ambiente de geometria dinâmica, visando proporcionar uma transição mais espontânea entre argumentos baseados em evidência e argumentos baseados em propriedades matemáticas
Vieira, Wellington Zarur Viana. "Argumentação e prova: uma experiência em geometria espacial no ensino médio." Pontifícia Universidade Católica de São Paulo, 2007. https://tede2.pucsp.br/handle/handle/11286.
Full textThis work is inserted in Project AProvaME Argumentation and proof in School Mathematics - it has the objective of to do a map of conceptions about students and adolescent s argumentation and proof in schools at State of São Paulo, how this the preparation, application and valuation of the learning situations. To that we expose one sequence of activities that broach Spatial Geometry Concepts, how parallelism and perpendicularity. This sequence of activities was applied to six students age between 14 and 16 years in a State Public School, with the objective of to contribute to the development these students when they are inserted in a argumentation and proof s context on Mathematics. How assistance in this process, we used the software Cabri-Géomètre, with the hypothesis that this could to give a support to visualization of the object in study. The analysis presents that, though the students hadn t searched a level of intellectual proof. There was an important advance on search proprieties and pertinent elements of the figure to justify their answers. The situations woke-up a visible interest on the students, permitting to discuss some aspects that have to be considered in the elaboration of a Geometry proof, related principally the interference of the spatial elements of figural representation
Este trabalho está inserido no Projeto AProvaME Argumentação e Prova na Matemática Escolar que têm o objetivo de fazer um mapeamento das concepções sobre argumentação e prova de alunos adolescentes em escolas do Estado de São Paulo, bem como a elaboração, aplicação e avaliação de situações de aprendizagem sobre prova. Para isto, apresentamos uma seqüência de atividades que abordam conceitos da Geometria Espacial, em particular envolvendo paralelismo e perpendicularismo. Esta seqüência foi elaborada e aplicada a seis alunos (14-16 anos) de uma Escola Pública Estadual, com o objetivo de contribuir para o desenvolvimento desses alunos quando inseridos num contexto de argumentação e prova em Matemática. Como auxilio neste processo, usamos o software Cabri-Géomètre, com a hipótese de que este poderia dar suporte à visualização dos objetos em estudo. As análises mostram que, embora os alunos não tenham atingido um nível de prova intelectual, houve um avanço significativo na identificação de propriedades e elementos pertinentes das figuras para justificar suas respostas. As situações despertaram um visível interesse nos alunos, permitindo discutir alguns aspectos que devem ser considerados na elaboração de uma prova em Geometria, relacionados principalmente à interferência de elementos espaciais das representações figurais
Socolowski, Regina Célia Alem Jorge. "Análise das interações tutor/participantes: um ponto de partida para avaliação de cursos de desenvolvimento profissional à distância." Pontifícia Universidade Católica de São Paulo, 2004. https://tede2.pucsp.br/handle/handle/11150.
Full textThis work analyzes the interactions among participants over a Mathematics Course at Distance, aiming the professional development of Mathematics Teachers, approaching Geometry s contents. In order to achieve a better understanding of arguments included in the involved subjects speeches, the analysis main theme of this work, the Model of Argumentative Strategies MAS (Frant and Castro, 2001) has been used, based on Olbrechts and Perelman Treaty of Argumentation (1992). The methodology used in this work analysis, demanded the events organization, so that the dialogs would be obvious and the explicit and implicit participants intentions would be re-taken in their interactions, allowing confrontation with their speeches. The analysis focus on arguments included in one of the participants speeches and the Tutor, analyzing other participants speeches, only when interacting with him. This analysis privileges two views: the mathematical content and the pedagogical practice, and related to the pedagogical practice, three focus: Tutor s pedagogical practice, Anita s pedagogical practice, and the environment where the interaction was held. This essay, structured in six chapters contextualizes and presents the problem, giving an explanation referring to the national and international historical aspects and the Brazilian Legislation which approaches the Distance Education, and concludes the interactions of Argumentative Strategies of the analysis importance among the participants and the Tutor as a starting point to the Evaluation of a Professional Development Course at Distance
Este trabalho analisa as interações entre os participantes de um Curso de Matemática, à Distância, voltado para o desenvolvimento profissional de Professores de Matemática, abordando o conteúdo de Geometria. Com o propósito de melhor compreender argumentos contidos nos discursos dos sujeitos envolvidos, tema principal deste trabalho, usamos para a análise o Modelo da Estratégia Argumentativa MEA (Frant e Castro, 2001), baseado no Tratado da Argumentação de Perelman e Olbrechts (1992). A metodologia usada para a análise deste trabalho, exigiu a organização dos eventos, de modo que evidenciassem os diálogos e resgatassem as intenções explícitas e implícitas dos participantes, em suas interações, permitindo confrontá-las com seus discursos. A análise foca as argumentações contidas nos discursos de um dos participantes e do Tutor, analisando os discursos de outros participantes apenas quando interagem com ele. Essa análise privilegiou dois olhares, o do conteúdo matemático e o da prática pedagógica e, com relação à prática pedagógica três focos: a prática pedagógica do Tutor; a prática pedagógica de Anita e o ambiente onde se deram as interações. Estruturada em seis capítulos, esta dissertação contextualiza e apresenta o problema, faz uma explanação referente aos aspectos históricos nacionais e internacionais e da Legislação Brasileira que aborda a Educação à Distância, e conclui sobre a importância da análise da Estratégia Argumentativa das interações entre os participantes e o Tutor como um ponto de partida para a Avaliação de um Curso de Desenvolvimento Profissional a Distância
Salomão, Paulo Rogério. "Argumentação e prova na matemática do ensino médio: progressões aritméticas e o uso de tecnologia." Pontifícia Universidade Católica de São Paulo, 2007. https://tede2.pucsp.br/handle/handle/11266.
Full textIn the first term of 2005, I joined the Professional Master s degree on Mathematics Teaching at PUC/SP. In this same year, the research project AProvaME, whose goals are: investigating concepts about argumentation and proofs of teenager students at schools from São Paulo state; structuring groups composed by teachers and researchers in order to elaborate activities involving students in the building process of knowledge, arguments and proofs in Mathematics, the use of technology and the investigating the teacher s role as the mediator of this process. As a part of this project, I will structure my dissertation in order to investigate two situations. The first one to verify to what extent, by the teacher s mediation and by the activities proposed, it is possible to engage students in argument, justification and proof of conjectures about Arithmetical Progressions. On the second one, investigating if the use of technology can favor the building of arguments, justification and proofs in Arithmetical Progressions by the students. Oriented by these questions, I tried to raise some observations of how the teacher s mediation should be done, using activities related to Arithmetical Progressions to engage the students in argument, justifying and proof situations, as well as which type and how to use the technologies available: first of all, I realized the need for the teacher s mediation after each ending of a group of activities, making a closure, or else, proposing to the students that they needed to confront and discuss, giving arguments, justifying their answers, so that everyone could proceed to the following activities without compromising their conjectures; subsequently; I verified that the use of technology is an incentive to the performing of activities in any area of knowledge, because the students feel motivated to build geometrical figures in the computer to solve the Mathematics exercises, concluding, with relation to the use of technology, I noticed that in the activities of this essay the usage of one more computational tool for the validation of students answers, as the Excel software, could complement the results obtained. This essay was based, mainly on the nine types of tasks extracted from Balacheff et al. text (2001). The methodology used was the teaching experiment, always looking for an improvement, not only in the activity, but also in the teacher-studenttechnology interaction. The research involved 10th graders from the evening shift of a State public network school
No primeiro semestre de 2005, ingressei no curso de Mestrado Profissional em Ensino de Matemática na PUC/SP. Neste mesmo ano, iniciava-se o projeto de pesquisa AProvaME, cujos objetivos são: investigar concepções sobre argumentação e prova de alunos adolescentes em escolas do Estado de São Paulo; formar grupos compostos por professores e pesquisadores para elaboração de atividades envolvendo alunos em processos de construção de conhecimento, argumentos e provas em Matemática e o uso de tecnologia e investigar o papel do professor como mediador neste processo. Por fazer parte deste projeto, estruturarei minha dissertação para investigar duas situações. A primeira para verificar em que medida, por meio da mediação do professor e das atividades propostas, é possível engajar os alunos em situações de argumentar, justificar e provar conjecturas sobre Progressões Aritméticas. Na segunda, investigar se o uso de tecnologia pode favorecer a construção de argumentos, justificativas e provas em Progressões Aritméticas pelos alunos. Orientado por essas questões, procurei levantar algumas observações de como deve ser feita a mediação do professor, utilizando atividades de Progressões Aritméticas para engajar os alunos em situações de argumentações, justificativas e provas, bem como qual tipo e como usar as tecnologias disponíveis: em primeiro lugar, percebi a necessidade da mediação do professor a cada término de atividade ou a cada final de um grupo de atividades, fazendo um fechamento, ou seja, propondo que os alunos confrontassem e discutissem, argumentando e justificando suas respostas, para que todos pudessem prosseguir com as atividades seguintes sem comprometimento de suas conjecturas; em seguida, verifiquei que o uso de tecnologia é um incentivo para a realização de atividades em qualquer área do conhecimento, pois os alunos sentem-se motivados por construir figuras geométricas no computador para a resolução de exercícios de Matemática; ao finalizar, com relação ao uso da tecnologia, constatei que nas atividades deste trabalho a utilização de mais uma ferramenta computacional para validação das respostas dos alunos, como o software Excel, poderia complementar os resultados obtidos. Este trabalho fundamentou-se, sobretudo nos nove tipos de tarefas extraídos do texto de Balacheff et al. (2001). A metodologia utilizada foi o experimento de ensino, objetivando sempre um aperfeiçoamento, tanto das atividades, como da interação professor aluno tecnologia. A pesquisa envolveu oito alunos da 1ª série do Ensino Médio do período noturno de uma escola da rede pública estadual
Almeida, Julio Cesar Porfirio de. "Argumentação e prova na matemática escolar do ensino básico: a soma das medidas dos ângulos internos de um triângulo." Pontifícia Universidade Católica de São Paulo, 2007. https://tede2.pucsp.br/handle/handle/11502.
Full textMade available in DSpace on 2016-08-25T17:25:36Z (GMT). No. of bitstreams: 2 Julio Cesar Porfirio de Almeida.pdf.jpg: 1943 bytes, checksum: cc73c4c239a4c332d642ba1e7c7a9fb2 (MD5) Julio Cesar Porfirio de Almeida.pdf: 1456447 bytes, checksum: 58dfec1164eb0113da8d0d62e33bc115 (MD5) Previous issue date: 2007-05-08
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
This study is about the demonstration of amount of measure the internal angles of triangles made by 8th grade from Fundamental School and the First year of High School, from of resolution of two specified questions. This work intends to contribute with the Argumentation and Proof in School Mathematics project (AprovaME), that has as one of objectives the mapping of conceptions about teenager s argumentation and proofs in public and private schools of São Paulo (state) For this was made a questionnaire in two books, five questions of Algebra and with five questions of Geometry. They were given to 1998 pupils aged between 14 and 16 years. The two analyzed questions are in the Geometry notebook. After checking the given information, took out 50 pupils as sample, that answers were classified in four progressive levels according their form of argument used in evolution of the Pragmatic proof (first principles methods of verification) to the Intellectual proof (elaborations of reasoning from logical-deduction nature and the production of explanation characterized as mathematics demonstration). In the following phase these pupils were put in groups according with the types of answers presented, to do the individual interviews aiming explanations about their choose. Finish the work a conclusive survey based in the results of the analysis, where are suggested forms of approach of subject Proofs and Demonstrations in the classroom, contemplating the execution of dynamic activities that give privilege the construction of mathematically consistent argument based in the expression of generalized reasoning
Este estudo trata da demonstração da soma da medida dos ângulos internos de um triângulo por alunos da oitava série do Ensino Fundamental e da primeira série do Ensino Médio, a partir da resolução de duas questões específicas. Procura contribuir com o Projeto Argumentação e Prova na Matemática Escolar (AprovaME), que tem como um de seus objetivos o mapeamento das concepções sobre argumentação e prova de alunos adolescentes em escolas públicas e particulares do Estado de São Paulo. Para esse levantamento foi elaborado um questionário contendo, em dois cadernos, cinco questões de Álgebra e cinco de Geometria, aplicados a 1998 alunos na faixa etária entre 14 e 16 anos. As duas questões analisadas estão inseridas no caderno de Geometria. Após a tabulação das informações coletadas, extraiu-se dessa população uma amostra de 50 alunos, cujas respostas foram classificadas em quatro níveis progressivos quanto às formas de validação dos argumentos empregados numa evolução da categoria Prova Pragmática (métodos rudimentares de verificação) à Prova Intelectual (elaboração de raciocínios de natureza lógico-dedutiva e produção de explicações caracterizadas como demonstrações matemáticas). Na etapa seguinte, esses alunos foram agrupados de acordo com os tipos de resposta apresentados para a realização de entrevistas individuais visando à obtenção de esclarecimentos adicionais sobre suas escolhas. Encerra o trabalho um panorama conclusivo baseado no resultado da análise em que são sugeridas formas de abordagem do tema Provas e Demonstrações em sala de aula, contemplando a realização de atividades dinâmicas que privilegiem a construção de argumentos matematicamente consistentes, fundamentados na expressão de raciocínios generalizadores
Cruz, Flávio Pereira da. "Argumentação e prova no ensino fundamental: análise de uma coleção didática de matemática." Pontifícia Universidade Católica de São Paulo, 2008. https://tede2.pucsp.br/handle/handle/11291.
Full textSecretaria da Educação do Estado de São Paulo
This dissertation aims to analyze how the collection Mathematics and Reality approaches argumentation and proof when it refers to the Fundamental Theorem of Arithmetic and the Theorem of Pythagoras. It s inserted in the Project AProvaME (Argumentation and Proof in School Mathematics) that proposes the investigation of conceptions of argumentation and proof in the teaching of mathematics in schools in the state of São Paulo and to form a group of researchers to elaborate situations of learning involving arguments and proof to be investigated in the classroom. The analysis of the collection, in our research, is based on the work done by BALACHEFF et. al. (2001) which presents possible activities that may involve argumentation and proof classifying them into various types and levels. We have used this classification, when it refers to the Fundamental Theorem of Arithmetic and the Theorem of Pythagoras, to consider the theoretical text and the respective exercises presented in the collection that are related to argumentation and proof. We have noticed that the proposed activities may basically be classified as "tasks of initiation to proof." We conclude, in our analysis, that the collection is not designed to work with argumentation and proof to develop such skills in students when presenting the Fundamental Theorem of Arithmetic and the Theorem of Pythagoras, and also when proposing its activities. We propose, at the end of our work, dynamic activities that may complement those that are present in the collection, aiming to help in the development of new approaches on argumentation and proof in the classroom
Este trabalho tem o objetivo de analisar como a coleção Matemática e Realidade aborda argumentação e prova quando trata do Teorema Fundamental da Aritmética e do Teorema de Pitágoras. Ele está inserido no projeto AProvaME - (Argumentação e Prova na Matemática Escolar) que propõe a investigação de concepções de argumentação e prova no ensino de matemática em escolas do estado de São Paulo e formar grupo de pesquisadores para elaborar situações de aprendizagem envolvendo argumentação e prova para serem investigadas em sala de aula. A análise da coleção, em nossa pesquisa, tem como fundamento o trabalho desenvolvido por BALACHEFF et. al. (2001) que apresenta possíveis atividades que possam envolver argumentação e prova classificando-as em vários tipos e níveis. Utilizamos esta classificação para analisar, quando trata do Teorema Fundamental da Aritmética e do Teorema de Pitágoras, o texto teórico e os respectivos exercícios apresentados na coleção e que estejam relacionados com argumentação e prova. Constatamos que são propostas basicamente atividades que podem ser classificadas como de tarefas de iniciação a prova . Concluímos, em nossa análise, que a coleção não visa o trabalho com argumentação e prova para desenvolver tais competências nos alunos quando apresenta os temas Teorema Fundamental da Aritmética e Teorema de Pitágoras e também quando propõe as respectivas atividades. Propomos ao final de nosso trabalho, atividades dinâmicas que podem complementar as que estão presentes na coleção, com o propósito de contribuir na elaboração de novas abordagens sobre argumentação e prova em sala de aula
Kim, Hee-Joon. "An exploratory study of teachers’ use of mathematical knowledge for teaching to support mathematical argumentation in middle-grades classrooms." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-12-4696.
Full texttext