Dissertations / Theses on the topic 'Mathematical biology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Mathematical biology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Mazzag, Barbara Cathrine. "Mathematical models in biology /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2002. http://uclibs.org/PID/11984.
Full textLewis, Matthew. "Laboratory Experiences in Mathematical Biology for Post-Secondary Mathematics Students." DigitalCommons@USU, 2016. https://digitalcommons.usu.edu/etd/5219.
Full textLi, Yifei. "Nonlinear diffusion in mathematical biology." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/234381/1/Yifei_Li_Thesis.pdf.
Full textMurphy, Ryan John. "Mechanochemical and experimental models in mathematical biology." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/228428/1/Ryan%20John_Murphy_Thesis.pdf.
Full textBozic, Ivana. "Mathematical Models of Cancer." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10220.
Full textMathematics
Ferrara, Joseph. "A Study of Nonlinear Dynamics in Mathematical Biology." UNF Digital Commons, 2013. http://digitalcommons.unf.edu/etd/448.
Full textHunt, Gordon S. "Mathematical modelling of pattern formation in developmental biology." Thesis, Heriot-Watt University, 2013. http://hdl.handle.net/10399/2706.
Full textYang, Xige. "MATHEMATICAL MODELS OF PATTERN FORMATION IN CELL BIOLOGY." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1542236214346341.
Full textXu, Yiyang. "Topics in population genetics and mathematical evolutionary biology." Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.682366.
Full textBuckalew, Richard L. "Mathematical Models in Cell Cycle Biology and Pulmonary Immunity." Ohio University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1395242276.
Full textWarne, David James. "Computational inference in mathematical biology: Methodological developments and applications." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/202835/1/David_Warne_Thesis.pdf.
Full textCole, D. J. "Stochastic branching processes in biology." Thesis, University of Kent, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270684.
Full textJones, Jennifer Grace. "A mathematical model of emphysema." Thesis, University of Bristol, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269229.
Full textDurney, Clinton H. "A Two-Component Model For Bacterial Chemotaxis." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366312981.
Full textAnderson, Kerri-Ann. "A Mathematical Model of Cytokinetic Morphogenesis." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429607984.
Full textTurner, Katherine Mary Elizabeth. "Mathematical models of gonorrhoea and chlamydia : biology, behaviour and interactions." Thesis, Imperial College London, 2008. http://hdl.handle.net/10044/1/1303.
Full textCamacho, Diogo Mayo. "In silico cell biology and biochemistry: a systems biology approach." Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/27960.
Full textPh. D.
Campanelli, Mark Benjamin. "Multicellular mathematical models of somitogenesis." Thesis, Montana State University, 2009. http://etd.lib.montana.edu/etd/2009/campanelli/CampanelliM0809.pdf.
Full textRiposo, Julien. "Computational and Mathematical Methods for Data Analysis in Biology and Finance." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066177/document.
Full textMathematics are understood as a set of abstract ideas, in the measure of the real world – or reality – has no way to intervene. However, some observable mathematical facts in experimental or simulated data can be counter-intuitive. The PhD is divided into two parts: first, we mathematically study the matrices of the same type of the ones in biology and finance. In particular, we show the following counter-intuitive fact: for these matrices, the eigenvector associated with the highest eigenvalue is close to the sum of each row, column by column. We also discuss some applications to graph theory with many numerical simulations and data analysis.On the other hand, we will face the genetic contact problem: from a contact map, a real current challenge is to find the DNA 3D-structure. We propose several matrix analysis methods, which one show disjoinct areas in the nucleus where the DNA interactions are different. These areas are nuclear compartments. With other biological features, we characterize the biological function of each of the compartments. The analysis tools are the ones already used in finance to analyze the autocorrelation matrices, or even time series
Urquiza, García José María Uriel. "Mathematical model in absolute units for the Arabidopsis circadian oscillator." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31132.
Full textNurtay, Anel. "Mathematical modelling of pathogen specialisation." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667178.
Full textLa aparición de nuevos virus causantes de enfermedades está estrechamente ligada a la especialización de las subpoblaciones virales hacia nuevos tipos de anfitriones. La modelizaci ón matemática proporciona un marco cuantitativo que puede ayudar a la predicción de procesos a largo plazo como la especialización. Debido a la naturaleza compleja que presentan las interacciones intra e interespecíficas en los procesos evolutivos, aplicar herramientas matemáticas complejas, tales como el análisis de bifurcación, al estudiar dinámicas de población. Esta tesis desarrolla una jerarquía de modelos de población para poder comprender la aparición y las dinámicas de especialización, y su dependencia de los parámetros del sistema. Utilizando un modelo para un virus de tipo salvaje y un virus mutado que compiten por el mismo anfitrión, se determinan las condiciones para la supervivencia únicamente de la subpoblación mutante, junto con su coexistencia con la cepa de tipo salvaje. Los diagramas de estabilidad que representan regiones de dinámicas diferenciadas se construyen en términos de tasa de infección, virulencia y tasa de mutación; los diagramas se explican en base a las características biológicas de las subpoblaciones. Para parámetros variables, se observa y se describe el fenómeno de intersección e intercambio de estabilidad entre diferentes soluciones sistemáticas y periódicas en el ámbito de las cepas de tipo salvaje y las cepas mutantes en competencia directa. En el caso de que varios tipos de anfitriones estén disponibles para ser disputados por cepas especializadas y generalistas existen regiones de biestabilidad, y las probabilidades de observar cada estado se calculan como funciones de las tasas de infección. Se ha encontrado un raro atractor caótico y se ha analizado con el uso de exponentes de Lyapunov. Esto, combinado con los diagramas de estabilidad, muestra que la supervivencia de la cepa generalista en un entorno estable es un hecho improbable. Además, se estudia el caso de los varias cepas N>> 1 que compiten por diferentes tipos de células anfitrionas. En este caso se ha descubierto una dependencia no monotónica, contraria a lo que se preveía, del tiempo de especialización sobre el tamaño inicial y la tasa de mutación, como consecuencia de la realización de un análisis de regresión sobre datos obtenidos numéricamente. En general, este trabajo hace contribuciones amplias a la modelización matemática y el análisis de la dinámica de los patógenos y los procesos evolutivos.
The occurrence of new disease-causing viruses is tightly linked to the specialisation of viral sub-populations towards new host types. Mathematical modelling provides a quantitative framework that can aid with the prediction of long-term processes such as specialisation. Due to the complex nature of intra- and interspecific interactions present in evolutionary processes, elaborate mathematical tools such as bifurcation analysis must be employed while studying population dynamics. In this thesis, a hierarchy of population models is developed to understand the onset and dynamics of specialisation and their dependence on the parameters of the system. Using a model for a wild-type and mutant virus that compete for the same host, conditions for the survival of only the mutant subpopulation, along with its coexistence with the wild-type strain, are determined. Stability diagrams that depict regions of distinct dynamics are constructed in terms of infection rates, virulence and the mutation rate; the diagrams are explained in terms of the biological characteristics of the sub-populations. For varying parameters, the phenomenon of intersection and exchange of stability between different periodic solutions of the system is observed and described in the scope of the competing wild-type and mutant strains. In the case of several types of hosts being available for competing specialist and generalist strains, regions of bistability exist, and the probabilities of observing each state are calculated as functions of the infection rates. A strange chaotic attractor is discovered and analysed with the use of Lyapunov exponents. This, combined with the stability diagrams, shows that the survival of the generalist in a stable environment is an unlikely event. Furthermore, the case of N=1 different strains competing for different types of host cells is studied. For this case, a counterintuitive and non-monotonic dependence of the specialisation time on the burst size and mutation rate is discovered as a result of carrying out a regression analysis on numerically obtained data. Overall, this work makes broad contributions to mathematical modelling and analysis of pathogen dynamics and evolutionary processes.
Vorwerk, Michael Conrad. "A mathematical study of mimicry and opportunism." Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/28944.
Full textApostu, Raluca. "Mathematical model of GAL regulon dynamics in «Saccharomyces cerevisiae»." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=107676.
Full textLes signaux génétiques binaires sont répandues dans la nature, et fournissent aux cellules une stratégie pour s'adapter à des environnements variables. Cette thése cherche a comprendre un example intéressant qui n'est pas compris complètement: le commutateur GAL. Le commutateur GAL en est un exemple fascinant qui n'est pas pas compris dans tous ses détails. Le commutateur GAL permet aux organismes de métaboliser du galactose, et contrôle si les mécanismes responsables du métabolisme du galactose sont en marche ou non. Actuellement, on ne connaît pas exactement comment le signal galactose est senti par les mécanismes de transcription. En fait, il y a deux hypothèses qui s'opposent à propos du mécanisme régulatoire au site du promoteur de GAL dans les cellules qui étaient induites avec galactose: le modèle de dissociation et le modèle de non-dissociation. Ce travail utilise des outils quantitatifs pour comprendre la réponse de la cellule S. cerevisiae au stimuli de galactose et pour analyser les mécanismes moléculaires possibles à la base de son fonctionnement. Cette thèse propose un modèle dynamique à l'échelle de population de cellules basé sur l'interaction des protéines régulatrices clées Gal4p, Gal80p et Gal3p. À notre connaissance, le modèle présenté ici est le premier à reproduire qualitativement le comportement bistable du réseau observé expérimentalement. Étant donné la compréhension actuelle du circuit d'induction GAL (Wightman et al., 2008; Jiang et al., 2009), ce travail propose que le mécanisme in vivo le plus probable menant à l'activation de la transcription des gènes GAL soit l'interaction physique entre la protéine galactose-activé Gal3p et la protéine Gal80p, avec le complexe Gal3p-Gal80p attaché aux promoteurs des gènes GAL. Notre modèle mathématique est en accord avec les profils de cytométrie en flux des souches sauvages, des souches mutées gal3∆ et gal80∆ d'Acar et al. (2005), et implique une fraction de cellules qui transcrit activement avec les mêmes caractéristiques qualitatives que dans le jeu de données rassemblées par Acar et al. (2010). En outre, les simulations informatiques du modèle fournissent une explication des résultats contradictoires obtenus par des laboratoires indépendants qui abordent expérimentalement la question de la réponse binaire ou graduelle à l'induction de galactose.
Kumbhari, Adarsh. "Mathematical models of cellular dysfunction." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23711.
Full textDyson, Louise. "Mathematical models of cranial neural crest cell migration." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:66955fb9-691f-4d27-ad26-39bb2b089c64.
Full textMorin, Benjamin R. "The Effect of Static and Dynamic Spatially Structured Disturbances on a Locally Dispersing Population Model." Fogler Library, University of Maine, 2006. http://www.library.umaine.edu/theses/pdf/MorinBR2006.pdf.
Full textCong, Yang, and 丛阳. "Optimization models and computational methods for systems biology." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B47752841.
Full textpublished_or_final_version
Mathematics
Doctoral
Doctor of Philosophy
Vaskan, Pavel. "Development of advanced mathematical programming methods for sustainable engineering and system biology." Doctoral thesis, Universitat Rovira i Virgili, 2014. http://hdl.handle.net/10803/145250.
Full textEl objetivo principal de esta tesis es el desarrollo de herramientas de programación matemática para abordar el diseño y planificación de procesos industriales sostenibles y la optimización en el área de la biología de sistemas. Primeramente se establece un nuevo marco para el uso simultáneo de Sistemas de Información Geográfica (GIS), Programación Lineal Entera Mixta (MILP) y algoritmos de descomposición para modelo basados en MILP-GIS. Nuestros enfoques combinan herramientas de optimización, herramientas espaciales para la toma de decisiones y análisis económicos y medioambientales. En segundo lugar, se propone el marco general para el diseño de sistemas de energía sostenibles, como las redes de intercambio de calor y plantas de servicio para la industria del proceso. Nuestro método se basa en el uso combinado de herramientas de optimización multiobjetivo, metodología de Análisis de Ciclo de Vida (LCA) y un riguroso método de reducción de dimensionalidad que permite la identificación de indicadores ambientales clave. Finalmente introducimos un método basado en Programación Multiobjetivo Mixta Entera no Lineal (MINLP) aplicado a la identificación rigurosa y sistemática de las funciones objetivo biológicas más probables que explican el funcionamiento de las redes metabólicas
Rosado, Linares Jesús. "Analysis of some diffusive and kinetic models in mathematical biology and physics." Doctoral thesis, Universitat Autònoma de Barcelona, 2010. http://hdl.handle.net/10803/3113.
Full textWearing, Helen Jane. "Mathematical modelling of cell-cell signalling in developmental biology and wound healing." Thesis, Heriot-Watt University, 2001. http://hdl.handle.net/10399/1184.
Full textCobbold, Christina Anne. "Mathematical modelling of problems in human biology : dermal wound healing and atherosclerosis." Thesis, Heriot-Watt University, 2001. http://hdl.handle.net/10399/471.
Full textDonaghy, Josephine. "Researchers' assumptions and mathematical models : a philosophical study of metabolic systems biology." Thesis, University of Exeter, 2014. http://hdl.handle.net/10871/16001.
Full textJin, Wang. "Investigating the reproducibility of in vitro cell biology assays using mathematical models." Thesis, Queensland University of Technology, 2017. https://eprints.qut.edu.au/109790/1/Wang_Jin_Thesis.pdf.
Full textMatsiaka, Oleksii. "New mathematical models for cell biology assays incorporating realistic cell size dynamics." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/198192/1/Oleksii_Matsiaka_Thesis.pdf.
Full textMisselbeck, Karla. "Computational Systems Biology Applied To Human Metabolism. Mathematical Modelling and Network Analysis." Doctoral thesis, Università degli studi di Trento, 2019. https://hdl.handle.net/11572/369023.
Full textMisselbeck, Karla. "Computational Systems Biology Applied To Human Metabolism. Mathematical Modelling and Network Analysis." Doctoral thesis, University of Trento, 2019. http://eprints-phd.biblio.unitn.it/3546/1/Thesis_Misselbeck_20190314.pdf.
Full textEl, Moustaid Fadoua. "MATHEMATICAL MODELING OF CYANOBACTERIAL DYNAMICS IN A CHEMOSTAT." Master's thesis, Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/335727.
Full textM.S.
We present a mathematical model that describes how cyanobacterial communities use natural light as a source of energy and water as a source of electrons to perform photosynthesis and therefore, grow and co-survive together with other bacterial species. We apply our model to a phototrophic population of bacteria, namely, cyanobacteria. Our model involves the use of light as a source of energy and inorganic carbon as a source of nutrients. First, we study a single species model involving only cyanobacteria, then we include heterotrophs in the two species model. The model consists of ordinary differential equations describing bacteria and chemicals evolution in time. Stability analysis results show that adding heterotrophs to a population of cyanobacteria increases the level of inorganic carbon in the medium, which in turns allows cyanobacteria to perform more photosynthesis. This increase of cyanobacterial biomass agrees with experimental data obtained by collaborators at the Center for Biofilm Engineering at Montana State University.
Temple University--Theses
趙崇諾 and Sung-nok Chiu. "Stochastic models of molecular mechanisms in biology." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1992. http://hub.hku.hk/bib/B31210752.
Full textRata, Scott. "Mathematical modelling of mitotic controls." Thesis, University of Oxford, 2018. https://ora.ox.ac.uk/objects/uuid:7bef862c-2025-4494-a2bb-4fe93584d92a.
Full textNguyen, An. "Mathematical model of competence regulation circuit." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/374173/.
Full textChapman, Lloyd A. C. "Mathematical modelling of cell growth in tissue engineering bioreactors." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:7c9ee131-7d9b-4e5d-8534-04a059fbd039.
Full textBaxley, Dana Ali. "A MATHEMATICAL STUDY OF TWO RETROVIRUSES, HIV AND HTLV-I." Master's thesis, University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2369.
Full textM.S.
Department of Mathematics
Sciences
Mathematical Science MS
Catt, Christopher Joseph. "Mathematical modelling of tissue metabolism and growth." Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/176447/.
Full textModhara, Sunny. "Mathematical modelling of vascular development in zebrafish." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/29125/.
Full textBakshi, Suruchi D. "Mathematical modelling of Centrosomin incorporation in Drosophila centrosomes." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:baefde65-bc38-4a11-bd92-e2e4cccad784.
Full textLumpkin, Robert. "Parameter Classification and Analysis of Neuronal Systems with Astrocytic Modulation of Behaviour." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1563206513875333.
Full textMeyer, Gigi. "A SYSTEMS BIOLOGY APPROACH FOR UNDERSTANDING INFLAMMATION IN THE GASTROINTESTINAL TRACT OF A CROHN’S PATIENT." VCU Scholars Compass, 2013. http://scholarscompass.vcu.edu/etd/3153.
Full textGonzález, Flo Eva 1993. "Engineering living biomedical devices : Mathematical and experimental tools for the rational design of cellular devices." Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2020. http://hdl.handle.net/10803/670358.
Full textL’aplicació de principis d’enginyeria en biologia permet somniar en l’ús de dispositius biològics per abordar problemes de la societat. Concretament, en aquesta tesi doctoral, s’ha abordat el disseny de dispositius biològics per aplicacions biomèdiques mitjançant la combinació d’eines experimentals i computacionals. La creació d’aquests dispositius demana d’un disseny racional que ofereixi respostes robustes i fiables. L’estudi de la creació de dispositius biològics s’ha fet seguint una aproximació modular, on s’ha analitzat com es poden re-enginyeritzar components cel·lulars per obtenir una resposta que s’adeqüi a l’aplicació requerida. Hem demostrat com podem modular el rang de detecció de la capa sensora a través de la modulació de l’element receptor de sensors bastats en dos components. Hem analitzat com integrar informació de diferents fonts de manera sistemàtica i robusta introduint com a nou element de computació l’espai i la divisió de tasques; tot desenvolupant un marc teòric i validant experimentalment per un seguit de funcions lògiques. Finalment, hem desenvolupat dispositius biològics que responen a molècules fisiològiques. Concretament, hem abordat el disseny de dispositius biològics pel tractament de la Diabetes Mellitus. Una primera validació experimental ens ha permès establir l’ús d’aquests dispositius in vitro. Seguidament, hem aprofundit en l’estudi de la seva aplicació mitjançant l’ús d’un simulador de pacient diabètic que ens ha permès el seu tractament virtual i l’anàlisi de les característiques del dispositiu per la regulació de la glicèmia. Finalment, hem explorat com la combinació dels dispositius cel·lulars amb la regulació del patró d’ingestes introdueix millores en els nivells de glucosa en sang. Posant de manifest el potencial que ofereix la creació d’una plataforma hibrida pel disseny de dispositius cel·lulars per una determinada aplicació.
Taylor, David G. "A mathematical model of interstitial transport and microvascular exchange." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/31031.
Full textApplied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
Erwin, Samantha H. "Mathematical Models of Immune Responses to Infectious Diseases." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77026.
Full textPh. D.