Academic literature on the topic 'Mathematical modelling - Epidemiology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mathematical modelling - Epidemiology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mathematical modelling - Epidemiology"
Michael, E. "Mathematical modelling of disease epidemiology." Parasitology Today 9, no. 11 (November 1993): 397–99. http://dx.doi.org/10.1016/0169-4758(93)90042-e.
Full textGubernov, Vladimir, Sergey Minaev, Hong G. Im, Nam Il Kim, and Kaoru Maruta. "Modelling in Ecology, Epidemiology and Evolution." Mathematical Modelling of Natural Phenomena 13, no. 6 (2018): E2. http://dx.doi.org/10.1051/mmnp/2018066.
Full textYanchevskaya, E. Ya, and O. A. Mesnyankina. "Mathematical Modelling and Prediction in Infectious Disease Epidemiology." RUDN Journal of Medicine 23, no. 3 (December 15, 2019): 328–34. http://dx.doi.org/10.22363/2313-0245-2019-23-3-328-334.
Full textHuppert, A., and G. Katriel. "Mathematical modelling and prediction in infectious disease epidemiology." Clinical Microbiology and Infection 19, no. 11 (November 2013): 999–1005. http://dx.doi.org/10.1111/1469-0691.12308.
Full textMindell, J. "Mathematical modelling of health impacts." Journal of Epidemiology & Community Health 59, no. 8 (August 1, 2005): 617–18. http://dx.doi.org/10.1136/jech.2005.034355.
Full textde Jong, Mart C. M. "Mathematical modelling in veterinary epidemiology: why model building is important." Preventive Veterinary Medicine 25, no. 2 (December 1995): 183–93. http://dx.doi.org/10.1016/0167-5877(95)00538-2.
Full textMorozov, A. "Preface." Mathematical Modelling of Natural Phenomena 13, no. 3 (2018): E1. http://dx.doi.org/10.1051/mmnp/2018041.
Full textVYNNYCKY, EMILIA. "13. The application of reproduction number concepts to tuberculosis Vynnycky E, Fine PEM. Epidemiol Infect 1998; 121: 309–324." Epidemiology and Infection 133, S1 (October 2005): S45—S47. http://dx.doi.org/10.1017/s0950268805004334.
Full textGroner, Maya L., Luke A. Rogers, Andrew W. Bateman, Brendan M. Connors, L. Neil Frazer, Sean C. Godwin, Martin Krkošek, et al. "Lessons from sea louse and salmon epidemiology." Philosophical Transactions of the Royal Society B: Biological Sciences 371, no. 1689 (March 5, 2016): 20150203. http://dx.doi.org/10.1098/rstb.2015.0203.
Full textBlance, Andrew, Yu-Kang Tu, and Mark S. Gilthorpe. "A multilevel modelling solution to mathematical coupling." Statistical Methods in Medical Research 14, no. 6 (December 2005): 553–65. http://dx.doi.org/10.1191/0962280205sm418oa.
Full textDissertations / Theses on the topic "Mathematical modelling - Epidemiology"
Pask, Melanie Juanita. "The epidemiology and mathematical modelling of malaria transmission." Thesis, Imperial College London, 1989. http://hdl.handle.net/10044/1/47611.
Full textNeilson, Stuart D. "Mathematical modelling of inherent susceptibility to fatal diseases." Thesis, Brunel University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262570.
Full textTurner, Elizabeth L. "Marginal modelling of capture-recapture data." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103302.
Full textWe demonstrate that MLLMs serve to extend the universe of dependence structures of capture-recapture data that can be modelled and easily interpreted. Furthermore, the CIDs and CSDs enable us to meaningfully interpret the parameters of joint log-linear models previously excluded from the analysis of capture-recapture data for reasons of non-interpretability of model parameters.
In order to explore the challenges and features of MLLMs, we show how to produce inference from them under both a maximum likelihood and a Bayesian paradigm. The proposed modelling approach performs well and provides new insight into the fundamental nature of epidemiological capture-recapture data.
Bentil, Daniel Ekow. "Aspects of dynamic pattern generation in embryology and epidemiology." Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.276528.
Full textAgaba, Grace Omeche. "Mathematical modelling of epidemics with account for population awareness." Thesis, University of Sussex, 2016. http://sro.sussex.ac.uk/id/eprint/65367/.
Full textMelegaro, Alessia. "Epidemiology, mathematical modelling and economics of Streptococcus pneumoniae : assessing the potential impact of vaccination." Thesis, University of Warwick, 2005. http://wrap.warwick.ac.uk/61760/.
Full textEsra, Rachel. "Mathematical modelling of the population impact of screening for Chlamydia Trachomatis and Neisseria gonorrhoeae in South Africa." Master's thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29629.
Full textKajunguri, Damian. "Modelling the impact of TB superinfection on the dynamics of HIV-TB coinfection." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/4070.
Full textENGLISH ABSTRACT: In this thesis, a mathematical model describing the interaction between HIV and TB in the presence of TB superinfection is presented. The model takes into account two strains of Mycobacterium tuberculosis (MTB), where one strain is drug-sensitive and the other is resistant to at least one of the first-line anti-tuberculosis drugs. The impact of TB superinfection on the incidence and prevalence of TB in HIV-negative and HIVTB coinfected individuals is evaluated. Various control measures such as condom use, antiretroviral therapy, isoniazid preventive therapy and increased TB detection are studied using this model. Numerical results show that TB superinfection increases the prevalence and incidence of TB and its impact is more in HIV-negative than HIV-TB coinfected individuals. The results also show that TB superinfection promotes strain coexistence and increases the associated HIV mortality. Increased condom use was found to have a high positive impact towards the control of the two epidemics. Antiretroviral therapy decreases the TB notification rate and its impact on HIV prevalence increases with the coverage and efficacy. Isoniazid preventive therapy has a clear effect on the TB prevalence. Finally, increased TB detection was found to have a less impact on the TB incidence in HIV-TB coinfected individuals
AFRIKAANSE OPSOMMING: In hierdie verhandeling word ´n wiskundige model vir die interaksie tussen MIV en TB, in ´n situasie met TB superinfeksie voorgelˆe. Die model neem twee variante van TB in ag. Een van die variante is sensitief vir MTB behandeling, terwyl die ander weerstandig is vir ten minste een van die eerste-linie TB behandenings. Die impak van TB superinfeksie op die insidensie and prevalensie van TB in MIV negatiewe en MIV-TB ko-ge˜ınfekteerde individu word ondersoek. Veskeie beheer maatreels soos kondoom gebruik, anti-retrovirale behandeling (vir MIV) en isonazid voorkomende behandeling en verhoodge TB deteksie (vir TB) word ondersoek. Numeriese resultate wys TB superinfeksie verhoog die prevalense en insidensie van TB en dat dit ´n groter bydrae maak by MIV negatief as by MIV-TB ko-geinfekteerde individu. Die resultate wys veder TB superinfeksie promofeer variant kohabitasie en verhoog MIV verwante mortalitieit. Verhoogde kondoom gebruik is gevind om ´n positiewe bydrae te maak tot die beheer van beide epidemies. Anti-retrovirale terapie verlaag die TB aanmeldings koers en die impak van ART verhoog saam met ´n verhoging in die dekking en effektiwiteit daarvan. Voorkomende behandeling het ´n beduidende impak op TB prevalensie. Ons vind dat TB deteksie ´n beperkte impak maak op TB insidensie by MIV-TB ko-geinfekteerde individu
Gao, Zhanhai School of Mathematics UNSW. "Modelling Human Immunodeficiency Virus and Hepatitis C Virus Epidemics in Australia." Awarded by:University of New South Wales. School of Mathematics, 2001. http://handle.unsw.edu.au/1959.4/18187.
Full textMcBryde, Emma Sue. "Mathematical and statistical modelling of infectious diseases in hospitals." Queensland University of Technology, 2006. http://eprints.qut.edu.au/16330/.
Full textBooks on the topic "Mathematical modelling - Epidemiology"
Daley, Daryl J. Epidemic modelling: An introduction. Cambridge: Cambridge University Press, 1999.
Find full textShaw, M. W. Mathematical modelling of aspects of black leaf streak (Mycosphaerella fijiensis) epidemiology. Final report. Jan 1990. Chatham Maritime: Natural Resources Institute, 1993.
Find full textDorrington, Rob. The demographic impact of HIV/AIDS in Botswana: Modelling the impact of HIV/AIDS in Botswana. Gaborone: NACA, 2006.
Find full textDorrington, Rob. The demographic impact of HIV/AIDS in Botswana: Modelling the impact of HIV/AIDS in Botswana. Gaborone: NACA, 2006.
Find full text1947-, Arino Ovide, Axelrod David E. 1940-, Kimmel Marek 1959-, and Capasso V. 1945-, eds. Advances in mathematical population dynamics--molecules, cells, and man: Proceedings of the 4th International Conference on Mathematical Population Dynamics, 23-27 May 1995. Singapore: World Scientific, 1997.
Find full textJürgen, Kranz, ed. Epidemics of plant diseases: Mathematical analysis and modelling. 2nd ed. Berlin: Springer-Verlag, 1990.
Find full textAn Introduction To Infectious Disease Modelling. Oxford University Press, USA, 2010.
Find full textC, Jager J., and Ruitenberg E. J, eds. Statistical analysis and mathematical modelling of AIDS. Oxford: Oxford University Press, 1988.
Find full textC, Jager J., Ruitenberg E. Joost, and Commission of the European Communities. Working Party on AIDS., eds. Statistical analysis and mathematical modelling of AIDS. Oxford: Oxford University Press, 1988.
Find full textD, McLean George, Garrett Ronald G, and Ruesink William G, eds. Plant virus epidemics: Monitoring, modelling, and predicting outbreaks. Sydney: Academic Press, 1986.
Find full textBook chapters on the topic "Mathematical modelling - Epidemiology"
Earn, David J. D. "A Light Introduction to Modelling Recurrent Epidemics." In Mathematical Epidemiology, 3–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78911-6_1.
Full textYan, Ping. "Distribution Theory, Stochastic Processes and Infectious Disease Modelling." In Mathematical Epidemiology, 229–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78911-6_10.
Full textMüller, Johannes, and Christina Kuttler. "Epidemiology." In Lecture Notes on Mathematical Modelling in the Life Sciences, 415–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27251-6_4.
Full textWhite, Peter J., and Geoff P. Garnett. "Mathematical Modelling of the Epidemiology of Tuberculosis." In Advances in Experimental Medicine and Biology, 127–40. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6064-1_9.
Full textFriedman, Avner, and Chiu-Yen Kao. "Epidemiology of Infectious Diseases." In Lecture Notes on Mathematical Modelling in the Life Sciences, 33–47. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08314-8_4.
Full textDavies, Toby P., Hannah M. Fry, Alan G. Wilson, and Steven R. Bishop. "The London Riots &;#x02013; 1: Epidemiology, Spatial Interaction and Probability of Arrest." In Approaches to Geo&;#x02010;mathematical Modelling, 153–69. Chichester, UK: John Wiley &;#38; Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118937426.ch9.
Full textDodd, P. J., C. Pretorius, and B. G. Williams. "Modelling the HIV-Associated TB Epidemic and the Impact of Interventions Aimed at Epidemic Control." In HIV and Tuberculosis, 25–55. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29108-2_3.
Full textLee, Lloyd W. F., and Mohd Hafiz Mohd. "Agent Based Modelling Using GAMA 1.8 with Applications to Biological System in Epidemiology." In Springer Proceedings in Mathematics & Statistics, 109–29. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2629-6_6.
Full text"Mathematical modelling." In Veterinary Epidemiology, 520–39. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781118280249.ch23.
Full text"MATHEMATICAL MODELLING IN EPIDEMIOLOGY." In An Introduction to Mathematical Physiology and Biology, 109–17. Cambridge University Press, 1999. http://dx.doi.org/10.1017/cbo9781139173278.008.
Full textConference papers on the topic "Mathematical modelling - Epidemiology"
Ghosh, Uttam, Sourav Chowdhury, and Dilip Kumar Khan. "Mathematical Modelling of Epidemiology in Presence of Vaccination and Delay." In National Conference on Advancement of Computing in Engineering Research. Academy & Industry Research Collaboration Center (AIRCC), 2013. http://dx.doi.org/10.5121/csit.2013.3209.
Full text