Academic literature on the topic 'Mathematical pattern'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mathematical pattern.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mathematical pattern"
SATO, Atsushi. "Mathematical Methods for Pattern Recognition." IEICE ESS FUNDAMENTALS REVIEW 5, no. 4 (2012): 302–11. http://dx.doi.org/10.1587/essfr.5.302.
Full textWashburn, Dorothy. "Mathematical Symmetries for Pattern Analysis." Anthropology News 40, no. 3 (March 1999): 26–27. http://dx.doi.org/10.1111/an.1999.40.3.26.3.
Full textSanchez, A., A. del Rio, J. L. Valenzuela, and L. Romero. "Mathematical pattern of diagnosis: Muskmelon." Communications in Soil Science and Plant Analysis 23, no. 17-20 (November 1992): 2763–70. http://dx.doi.org/10.1080/00103629209368771.
Full textKodituwakku, Saluka R. "Mathematical structures in pattern organizations." Journal of Science of the University of Kelaniya Sri Lanka 4 (January 17, 2011): 46. http://dx.doi.org/10.4038/josuk.v4i0.2697.
Full textMilton, Graeme W., and Ornella Mattei. "Field patterns: a new mathematical object." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, no. 2198 (February 2017): 20160819. http://dx.doi.org/10.1098/rspa.2016.0819.
Full textTrautmann, Laura, and Attila Piros. "A New Mathematical Method for Pattern Development." Periodica Polytechnica Mechanical Engineering 63, no. 1 (November 21, 2018): 44–51. http://dx.doi.org/10.3311/ppme.12648.
Full textChichilnisky, Eduardo J. "A mathematical model of pattern formation." Journal of Theoretical Biology 123, no. 1 (November 1986): 81–101. http://dx.doi.org/10.1016/s0022-5193(86)80237-5.
Full textRodrigues, Fátima, and Pedro J. Freitas. "TILES AND IDENTITY BY PATTERN CLASSIFICATION." ARTis ON, no. 8 (December 30, 2018): 69–80. http://dx.doi.org/10.37935/aion.v0i8.218.
Full textPuspasari, Ratih, Setyo Hartanto, Mohamad Gufron, Pradnyo Wijayanti, and Mega Teguh Budiarto. "Frieze Pattern on Shibori Fabric." Journal of Medives : Journal of Mathematics Education IKIP Veteran Semarang 6, no. 1 (January 21, 2022): 67. http://dx.doi.org/10.31331/medivesveteran.v6i1.1904.
Full textSmith, Margaret S., Amy F. Hillen, and Christy L. Catania. "Using Pattern Tasks to Develop Mathematical Understandings and Set Classroom Norms." Mathematics Teaching in the Middle School 13, no. 1 (August 2007): 38–44. http://dx.doi.org/10.5951/mtms.13.1.0038.
Full textDissertations / Theses on the topic "Mathematical pattern"
Yang, Xige. "MATHEMATICAL MODELS OF PATTERN FORMATION IN CELL BIOLOGY." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1542236214346341.
Full textHunt, Gordon S. "Mathematical modelling of pattern formation in developmental biology." Thesis, Heriot-Watt University, 2013. http://hdl.handle.net/10399/2706.
Full textVemulapalli, Smita. "Audio-video based handwritten mathematical content recognition." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45958.
Full textZhu, Jia Jun. "A language for financial chart patterns and template-based pattern classification." Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3950603.
Full textRen, Xiaojing, and 任晓晶. "Modeling pattern formation of swimming E.coli." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B43704001.
Full textSangster, Margaret. "An exploration of pattern in primary school mathematics." Thesis, University of Surrey, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326524.
Full textTITONELI, LUANA MIRANDA BALTAZAR. "THE PATTERN OBSERVATION: MATHEMATICAL MODELING THROUGH NUMERICAL SEQUENCES AND GEOMETRIC OBJECTS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33077@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL
Este trabalho é uma análise de padrões que são modelados matematicamente através de conceitos que envolvem as sequências numéricas bem como aspectos geométricos. São consideradas algumas aplicações práticas de conteúdos trabalhados na educação básica, muitas vezes estudados de forma mecânica através de fórmulas que tornam a Matemática enfadonha e até sem sentido para os discentes. O objetivo é mostrar que a Matemática transpõe os limites das salas de aula e que sua beleza pode ser vista em áreas diversas. As ideias e conceitos que envolvem as Progressões Aritméticas e Geométricas, por exemplo, são úteis na resolução de várias situações. A arte musical que está envolta em conhecimentos matemáticos desde os primórdios de seu desenvolvimento. Os estudos desenvolvidos com a sequência de Fibonacci e como está relacionada com a razão áurea e com fenômenos naturais que aparentemente nada teriam em comum. Além disso, a presença tão marcante na natureza das características dos fractais que traçam um padrão de formação para certos elementos naturais. É possível fazer com que o processo ensino- aprendizagem de Matemática torne-se efetivo através da abordagem dos conteúdos de forma prática, o que desperta no aluno o desejo de compreender o que é proposto. Este trabalho é inspirado na frase de Pitágoras: A Matemática é o alfabeto com o qual Deus escreveu o Universo e o que pretende-se é mostrar que esta ciência de fato está em toda a parte e que seu aprendizado pode ser significativo e interessante.
This work is an analysis of patterns that are modeled mathematically through concepts involving numerical sequences as well as geometric aspects. Some practical applications of content worked in basic education are considered, often mechanically studied through formulas that make Mathematics boring and even meaningless to students. The goal is to show that Mathematics transposes the boundaries of classrooms and that its beauty can be seen in several areas. The ideas and concepts that involve Arithmetic and Geometric Progressions, for example, are useful in solving various situations. The musical art that is shrouded in mathematical knowledge from the beginnings of its development. The studies developed with the Fibonacci sequence and how it is related to the golden ratio and with natural phenomena that apparently would have nothing in common. In addition, the presence so striking in the nature of the characteristics of the fractals that lay out a pattern of formation for certain natural elements. It is possible to make the teaching-learning process of Mathematics become effective by approaching the contents in a practical way, which awakens in the student the desire to understand what is proposed. This work is inspired by the phrase of Pythagoras: Mathematics is the alphabet with which God wrote the Universe and what is intended is to show that this science is indeed everywhere and that its learning can be meaningful and interesting.
Lewis, Mark A. "Analysis of dynamic and stationary biological pattern formation." Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.276976.
Full textCrawford, David Michael. "Analysis of biological pattern formation models." Thesis, University of Oxford, 1989. http://ora.ox.ac.uk/objects/uuid:aaa19d3b-c930-4cfa-adc6-8ea498fa5695.
Full textDabbah, Mohammad A. "Non-reversible mathematical transforms for secure biometric face recognition." Thesis, University of Newcastle upon Tyne, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.548002.
Full textBooks on the topic "Mathematical pattern"
1932-, Dutta Majumder D., ed. Fuzzy mathematical approach to pattern recognition. New York: Wiley, 1986.
Find full textMaini, Philip K., and Hans G. Othmer, eds. Mathematical Models for Biological Pattern Formation. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0133-2.
Full textGeneral pattern theory: A mathematical study of regular structures. Oxford: Clarendon, 1993.
Find full textLewis, Robert Michael. Why pattern search works. Hampton, Va: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.
Find full textBowen, Lynda. Pattern block activities. Barrie, Ontario: Exclusive Educational Products, 1989.
Find full textLatorre Carmona, Pedro, J. Salvador Sánchez, and Ana L. N. Fred, eds. Mathematical Methodologies in Pattern Recognition and Machine Learning. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5076-4.
Full textWei, Juncheng, and Matthias Winter. Mathematical Aspects of Pattern Formation in Biological Systems. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-5526-3.
Full textMisha, Gromov, Harel-Bellan Annick, Morozova Nadya, Pritchard Linda Louise, and SpringerLink (Online service), eds. Pattern Formation in Morphogenesis: Problems and Mathematical Issues. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textBook chapters on the topic "Mathematical pattern"
Herman, Gabor T. "Mathematical Background." In Advances in Pattern Recognition, 259–76. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84628-723-7_15.
Full textLi, Stan Z. "Mathematical MRF Models." In Advances in Pattern Recognition, 1–28. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84800-279-1_2.
Full textSilversides, Katherine L. "Pattern Classification." In Encyclopedia of Mathematical Geosciences, 1–3. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-26050-7_242-1.
Full textThakur, Sanchari, LakshmiKanthan Muralikrishnan, Bijal Chudasama, and Alok Porwal. "Pattern Analysis." In Encyclopedia of Mathematical Geosciences, 1–4. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-26050-7_241-1.
Full textNegri, Rogério G. "Pattern Recognition." In Encyclopedia of Mathematical Geosciences, 1–3. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-26050-7_244-1.
Full textPach, János, and Micha Sharir. "Extremal combinatorics: Repeated patterns and pattern recognition." In Mathematical Surveys and Monographs, 133–46. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/surv/152/06.
Full textMurray, James D. "Neural Models of Pattern Formation." In Mathematical Biology, 481–524. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-08539-4_16.
Full textMurray, James D. "Neural Models of Pattern Formation." In Mathematical Biology, 481–524. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-08542-4_16.
Full textStoyan, Dietrich. "Point Pattern Statistics." In Encyclopedia of Mathematical Geosciences, 1–7. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-26050-7_404-1.
Full textFink, Gernot A. "Foundations of Mathematical Statistics." In Markov Models for Pattern Recognition, 35–49. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6308-4_3.
Full textConference papers on the topic "Mathematical pattern"
Mohamed, Marina, Nazihah Ismail, Syafiza Saila Samsudin, and Noor Azimah Ibrahim. "Mathematical nature’s pattern in Zinnia Peruviana." In PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): Mathematical Sciences as the Core of Intellectual Excellence. Author(s), 2018. http://dx.doi.org/10.1063/1.5041579.
Full textBuslaev, Alexander, Marina Yashina, Ruslan Abushov, and Igor Kotovich. "Mathematical Problems of Pattern Recognition for Traffic." In 2010 Seventh International Conference on Information Technology: New Generations. IEEE, 2010. http://dx.doi.org/10.1109/itng.2010.245.
Full textTakagi, Noboru. "A pattern recognition method of mathematical graphs." In 2010 IEEE International Conference on Systems, Man and Cybernetics - SMC. IEEE, 2010. http://dx.doi.org/10.1109/icsmc.2010.5642470.
Full textGokeri, A. M. "A Mathematical Model For Representing Patterns And Pattern Classes Using Semantic Nets." In 1984 Cambridge Symposium, edited by David P. Casasent and Ernest L. Hall. SPIE, 1985. http://dx.doi.org/10.1117/12.946181.
Full textBouchoffra, D., and F. Ykhlef. "Mathematical models for machine learning and pattern recognition." In 2013 8th InternationalWorkshop on Systems, Signal Processing and their Applications (WoSSPA). IEEE, 2013. http://dx.doi.org/10.1109/wosspa.2013.6602331.
Full textJia, Qi, Xitong Yang, Weidong Xu, Xuliang Lv, and Jianghua Hu. "Design of Camouflage Pattern Based on Mathematical Morphology." In 2017 International Conference on Applied Mathematics, Modelling and Statistics Application (AMMSA 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/ammsa-17.2017.35.
Full textDas, Monidipa, and Soumya K. Ghosh. "Modeling Spatio-temporal Change Pattern using Mathematical Morphology." In CODS '16: IKDD Conference on Data Science, 2016. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2888451.2888458.
Full textCotogni, Marco, Claudio Cusano, and Antonino Nocera. "Recursive Recognition of Offline Handwritten Mathematical Expressions." In 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021. http://dx.doi.org/10.1109/icpr48806.2021.9413076.
Full textMansor, Mohd Asyraf, Saratha Sathasivam, and Mohd Shareduwan Mohd Kasihmuddin. "Enhanced metaheuristic approach in pattern satisfiability problem." In PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): Mathematical Sciences as the Core of Intellectual Excellence. Author(s), 2018. http://dx.doi.org/10.1063/1.5041557.
Full textHALL, B. D. "THE GUM TREE DESIGN PATTERN FOR UNCERTAINTY SOFTWARE." In Advanced Mathematical and Computational Tools in Metrology. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702647_0017.
Full textReports on the topic "Mathematical pattern"
Bilous, Vladyslav V., Volodymyr V. Proshkin, and Oksana S. Lytvyn. Development of AR-applications as a promising area of research for students. [б. в.], November 2020. http://dx.doi.org/10.31812/123456789/4409.
Full textMarkova, Oksana, Serhiy Semerikov, and Maiia Popel. СoCalc as a Learning Tool for Neural Network Simulation in the Special Course “Foundations of Mathematic Informatics”. Sun SITE Central Europe, May 2018. http://dx.doi.org/10.31812/0564/2250.
Full textBednar, Amy. Topological data analysis : an overview. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/40943.
Full textDuch, Michael. Performing Hanne Darboven's Opus 17a and long duration minimalist music. Norges Musikkhøgskole, August 2018. http://dx.doi.org/10.22501/nmh-ar.481276.
Full textNelson, Gena, Angela Crawford, and Jessica Hunt. A Systematic Review of Research Syntheses for Students with Mathematics Learning Disabilities and Difficulties. Boise State University, Albertsons Library, January 2022. http://dx.doi.org/10.18122/sped.143.boisestate.
Full textWallach, Rony, Tammo Steenhuis, Ellen R. Graber, David DiCarlo, and Yves Parlange. Unstable Flow in Repellent and Sub-critically Repellent Soils: Theory and Management Implications. United States Department of Agriculture, November 2012. http://dx.doi.org/10.32747/2012.7592643.bard.
Full textPatel, Reena. Complex network analysis for early detection of failure mechanisms in resilient bio-structures. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/41042.
Full text