Academic literature on the topic 'Mathematical Proof and Demonstration'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mathematical Proof and Demonstration.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mathematical Proof and Demonstration"
Hirschhorn, Daniel B., and Denisse R. Thompson. "Technology and Reasoning in Algebra and Geometry." Mathematics Teacher 89, no. 2 (February 1996): 138–42. http://dx.doi.org/10.5951/mt.89.2.0138.
Full textKarunakaran, Shiv, Ben Freeburn, Nursen Konuk, and Fran Arbaugh. "Improving Preservice Secondary Mathematics Teachers' Capability With Generic Example Proofs." Mathematics Teacher Educator 2, no. 2 (March 2014): 158–70. http://dx.doi.org/10.5951/mathteaceduc.2.2.0158.
Full textMeo, Santolo, and Luisa Toscano. "On the Existence and Uniqueness of the ODE Solution and Its Approximation Using the Means Averaging Approach for the Class of Power Electronic Converters." Mathematics 9, no. 10 (May 19, 2021): 1146. http://dx.doi.org/10.3390/math9101146.
Full textHodds, Mark, Lara Alcock, and Matthew Inglis. "Self-Explanation Training Improves Proof Comprehension." Journal for Research in Mathematics Education 45, no. 1 (January 2014): 62–101. http://dx.doi.org/10.5951/jresematheduc.45.1.0062.
Full textBarbero, M., T. Fritzsch, L. Gonella, F. Hügging, H. Krüger, M. Rothermund, and N. Wermes. "A via last TSV process applied to ATLAS pixel detector modules: proof of principle demonstration." Journal of Instrumentation 7, no. 08 (August 10, 2012): P08008. http://dx.doi.org/10.1088/1748-0221/7/08/p08008.
Full textArpaia, P., M. Buzio, M. Kazazi, and S. Russenschuck. "Proof-of-principle demonstration of a translating coils-based method for measuring the magnetic field of axially-symmetric magnets." Journal of Instrumentation 10, no. 02 (February 10, 2015): P02004. http://dx.doi.org/10.1088/1748-0221/10/02/p02004.
Full textAnellis, Irving. "Charles Peirce and Bertrand Russell on Euclid." Revista Brasileira de História da Matemática 19, no. 37 (October 16, 2020): 79–94. http://dx.doi.org/10.47976/rbhm2019v19n3779-94.
Full textIvliev, Y. "DIAGNOSTICS OF MATHEMATICAL PROOF OF THE BEAL CONJECTURE IN MEDICAL PSYCHOLOGY (REMAKE OF PREVIOUS AUTHOR’S ARTICLES CONCERNING FERMAT’S LAST THEOREM)." East European Scientific Journal 1, no. 5(69) (June 15, 2021): 28–33. http://dx.doi.org/10.31618/essa.2782-1994.2021.1.69.48.
Full textCasesnoves, Francisco. "Inverse methods and integral-differential model demonstration for optimal mechanical operation of power plants – numerical graphical optimization for second generation of tribology models." Electrical, Control and Communication Engineering 14, no. 1 (July 1, 2018): 39–50. http://dx.doi.org/10.2478/ecce-2018-0005.
Full textDi Liscia, Daniel. "The conclusio pulchra, mirabilis et bona: an ingenious demonstration attributable to Nicole Oresme." Mediaevalia Textos e estudos 37 (2018): 139–68. http://dx.doi.org/10.21747/21836884/med37a7.
Full textDissertations / Theses on the topic "Mathematical Proof and Demonstration"
Lima, Marcella Luanna da Silva. "Sobre pensamento geomátrico, provas e demonstrações matemáticas de alunos do 2º ano do Ensino Médio nos ambientes Lápis e Papel e Geogebra." Universidade Estadual da Paraíba, 2015. http://tede.bc.uepb.edu.br/tede/jspui/handle/tede/2336.
Full textApproved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-07-21T20:47:00Z (GMT) No. of bitstreams: 1 PDF - Marcella Luanna da Silva Lima.pdf: 5051111 bytes, checksum: 2d6c0143b6e358e6f301609c3154d1f0 (MD5)
Approved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-07-21T20:47:11Z (GMT) No. of bitstreams: 1 PDF - Marcella Luanna da Silva Lima.pdf: 5051111 bytes, checksum: 2d6c0143b6e358e6f301609c3154d1f0 (MD5)
Made available in DSpace on 2016-07-21T20:47:11Z (GMT). No. of bitstreams: 1 PDF - Marcella Luanna da Silva Lima.pdf: 5051111 bytes, checksum: 2d6c0143b6e358e6f301609c3154d1f0 (MD5) Previous issue date: 2015-12-21
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Our research work aimed to investigate what type of proof, mathematical demonstration and level of geometrical thinking can occur from a didactic proposal within pencil, paper and GeoGebra environments. As qualitative research and study case, we used as instruments essays with Mathematical Proof and Demonstration themes, a didactic proposal developed by a team of five people who inserted worked collaboratively in the CAPES/OBEDUC/UFMS/UEPB/UFAL Project, field notes, participant observation, audios and photos. We elaborated a didactic proposal with eighteen activities, divided into four parts, which encouraged the students to reflect, justify, prove and demonstrate. The proposal application was carried out in July 2015 with High School 2nd year students of a public school in the town of Areia, Paraíba. For such, the students organized themselves in couples and one trio and the data collection happened in three moments. In the first moment we applied the essay, revised angles, triangles and theorems with the students and worked GeoGebra application with them. In the second moment we applied Parts I and II of the proposal with eight activities on Pythagoras Theorem and three activities on Sum of the Internal Angles of a Triangle Theorem, respectively. In the third moment we applied Part III, with two questions on External Angle Theorem and Part IV, with five question to be worked with the GeoGebra application on Pythagoras Theorem and Sum of the Internal Angles of a Triangle Theorem. In our research work we analyzed the work developed by the trio of students, once they were great in responding all the questions/activities. We analyzed Activity 8 of Part I, Activity 1 and 2 of Part II and all Activities of Part IV, totalizing in eight questions. We used the triangulation method for our study case and, firstly, we traced the profiles of the trio in relation to Mathematical Proof and Demonstration. Then we investigated the geometric thinking and the mathematical proof and demonstration used by the trio of students in the pencil and paper and GeoGebra environments. For such, we used discussions around the level of geometrical thinking proposed by Parzysz (2006) and the type of proofs proposed by Balacheff (2000) and Nasser and Tinoco (2003). From our research results we could conclude that the trio of students could not develop the justifications or proofs, once they did not understand what are mathematical proof and demonstration are, in their essays they understand mathematical proofs as bimestrial evaluations applied by the mathematics teacher. Moreover, the mathematical proofs performed by these students were in accordance with naive empiricism, pragmatic proof (Balacheff, 2000) and graphic justification (Nassar and Tinoco, 2003). In this way, when we observed the students geometrical thinking (Parzysz, 2006) we noted that it fits into two levels of the non-axiomatic Geometry: the Concrete Geomety (G0) and the Spatio-Graphique Geometry (G1), once these students used drawings to justify their affirmations, as the validation of the affirmation was done by the trio. We believe that if in Mathematic classes the teachers contemplate mathematical proof and demonstration, respecting the level of education, the degree of knowledge and maturity of the students, they could strongly contribute to the process of teaching and learning Mathematics and geometrical thinking, once the students would be led to reflect, justify, prove and demonstrate their ideas.
Nossa pesquisa investigou que tipo de provas, demonstrações matemáticas e nível de pensamento geométrico de alunos do 2º Ano do Ensino Médio podem ocorrer a partir de uma proposta didática nos ambientes lápis e papel e GeoGebra. Como pesquisa qualitativa, e estudo de caso, utilizamos como instrumentos redação com o tema Provas e Demonstrações Matemáticas, proposta didática desenvolvida por uma equipe de cinco pessoas que trabalhou de forma colaborativa inserida no Projeto CAPES/OBEDUC/UFMS/UEPB/UFAL Edital 2012, notas de campo, observação participante, gravações em áudio e fotos. Elaboramos uma proposta didática com 18 atividades, dividida em quatro partes, que incentivam alunos a refletirem, justificarem, provarem e demonstrarem. A aplicação dessa proposta se deu em julho de 2015 aos alunos do 2º Ano do Ensino Médio de uma escola pública na cidade de Areia, Paraíba. Para isso, os alunos se agruparam em duplas e um trio e a coleta dos dados se deu em três momentos. No primeiro momento, aplicamos a redação, revisamos com os alunos ângulos, triângulos e teoremas e trabalhamos com eles o aplicativo GeoGebra. No segundo momento, aplicamos as Partes I e II da proposta com 8 atividades sobre Teorema de Pitágoras e 3 atividades sobre Teorema da Soma dos Ângulos Internos de um Triângulo, respectivamente. No terceiro momento, aplicamos a Parte III, com 2 questões sobre o Teorema do Ângulo Externo e a Parte IV, com 5 questões à serem trabalhadas no aplicativo GeoGebra sobre o Teorema de Pitágoras e Teorema da Soma dos Ângulos Internos de um Triângulo. Em nossa pesquisa analisamos o trabalho desenvolvido pelo trio de alunos, uma vez que foram ricos na tentativa de r esponder a todas as perguntas/atividades. Analisamos a Atividade 8 da Parte I, as Atividades 1 e 2 da Parte II e todas as Atividades da Parte IV, totalizando em 8 questões. Utilizamos o método de triangulação de dados para nosso estudo de caso e, primeiramente, traçamos o perfil do trio de alunos com relação às Provas e Demonstrações Matemáticas. Em seguida, investigamos o pensamento geométrico e as provas e demonstrações matemáticas utilizadas pelo trio de alunos nos ambientes lápis e papel e GeoGebra. Para isso, utilizamos as discussões sobre os níveis do pensamento geométrico propostos por Parzysz (2006) e tipos de provas propostos por Balacheff (2000) e Nasser e Tinoco (2003). A partir de nossos resultados pudemos concluir que o trio de alunos não conseguiu desenvolver suas justificativas nem provas, uma vez que não entendem o que vem a ser provas e demonstrações matemáticas, e em suas redações percebemos que estes alunos tratam provas matemáticas como as avaliações aplicadas bimestralmente pelo professor de Matemática. Além disso, as provas matemáticas realizadas por estes alunos se enquadram no empirismo ingênuo, prova pragmática (Balacheff, 2000) e justificativa gráfica (Nasser e Tinoco, 2003). Dessa forma, quando observamos o pensamento geométrico (Parzysz, 2006) destes alunos, notamos que se enquadra nos dois níveis da Geometria não axiomática: a Geometria Concreta (G0) e a Geometria Spatio-Graphique (G1), uma vez que estes alunos se utilizam de desenhos para justificar suas afirmações, como também a validação das afirmações foi feita pela percepção do trio. Acreditamos que se nas aulas de Matemática os professores contemplassem provas e demonstrações matemáticas, respeitando o nível de escolaridade, o grau de conhecimento e a maturidade dos alunos, contribuiriam fortemente para o processo de ensino e aprendizagem da Matemática e do pensamento geométrico, uma vez que os alunos seriam levados a refletir, justificar, provar e demonstrar suas ideias.
Swanzy, Michael John. "Analysis and demonstration: a proof-of-concept compass star tracker." Texas A&M University, 2005. http://hdl.handle.net/1969.1/4853.
Full textPasini, Mirtes Fátima. "Argumentação e prova: explorações a partir da análise de uma coleção didática." Pontifícia Universidade Católica de São Paulo, 2007. https://tede2.pucsp.br/handle/handle/11282.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
This work is inserted the research project Argumentation and Proof in School Mathematics (AProvaME), which aims to study the teaching and learning of mathematical proofs during compulsory schooling. The main research question of this contribution to the project relates to how proof is treated in particular geometry topics in one collection of mathematics textbooks for secondary school students. More specifically, the study aims to identify how the passage from empiricism to deduction is contemplated in the textbook activities as well as to document the interventions and strategies necessary on the part of the mathematics teacher in order to manage this transition. The types of proofs in the classification of Balacheff (1988) and the functions of proof identified by de Villiers (2001) serve as the principle theoretical tools for these analyses. Following a survey of the activities related to proof and proving in topics related to the theorem of Pythagoras and properties of straight lines and triangles, teaching sequences based on these activities were developed with students from the 8th Grade of a secondary school within the public school system of the municipal of Jacupiranga in the State of São Paulo. The main findings of the study indicate that the teacher has at his or her disposal material that permit a broad approach to proof and proving, although the passage from exercises involving reliance on empirical manipulations for validation to the construction of proofs based on mathematical properties is not very explicitly addressed, with the result that intense teacher intervention is necessary at this point. A particular difficulty faced by the teacher is knowing how to intervene without assuming responsibility for the resolution of the task in question. Finally, a dynamic geometry activity is presented, as an attempt to provide a learning situation which might enable students to engage more spontaneously in the transition from evidence-based arguments to valid mathematical proofs
Nosso trabalho está inserido no Projeto Argumentação e Prova na Matemática Escolar (AProvaME), que tem como objetivo estudar o ensino e aprendizagem de provas matemáticas na Educação Básica. A questão principal da pesquisa consiste em analisar o tratamento deste tema em determinados conteúdos geométricos de uma coleção de livros didáticos do Ensino Fundamental. Mais especificamente, o estudo busca identificar como a passagem do empirismo à dedução é contemplada nas atividades dos livros e quais as intervenções e estratégias necessárias por parte do professor para gerenciar essa passagem. Os tipos de prova na classificação de Balacheff (1988) e as funções de prova identificadas por De Villiers (2001) foram as principais ferramentas teóricas utilizadas para estas análises. Após um levantamento das atividades relacionadas à prova nos conteúdos Teorema de Pitágoras, Retas Paralelas e as propriedades dos Triângulos, seqüências baseadas nessas atividades foram desenvolvidas com alunos de 8.ª Série do Ensino Fundamental de uma escola pública no Município de Jacupiranga, do Estado da São Paulo. Concluímos que o professor tem à sua disposição material consistente para trabalhar com seus alunos, embora exista o problema na passagem brusca de exercícios empíricos em diversos níveis de verificação para as demonstrações formais, sendo necessária intervenção do professor por meio de revisões pertinentes, proporcionando ao aluno esclarecimentos para desenvolver uma atividade. A principal dificuldade para o professor foi interferir sem assumir a responsabilidade de resolver a situação em questão. Por fim, apresenta-se uma atividade no ambiente de geometria dinâmica, visando proporcionar uma transição mais espontânea entre argumentos baseados em evidência e argumentos baseados em propriedades matemáticas
Macmillan, Emily. "Argumentation and Proof : Investigating the Effect of Teaching Mathematical Proof on Students' Argumentation Skills." Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.517230.
Full textHemmi, Kirsti. "Approaching Proof in a Community of Mathematical Practice." Doctoral thesis, Stockholm : Department of Mathematics, Stockholm University, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-1217.
Full textOwen, Stephen G. "Finding and using analogies to guide mathematical proof." Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/27156.
Full textAlmeida, Julio Cesar Porfirio de. "Argumentação e prova na matemática escolar do ensino básico: a soma das medidas dos ângulos internos de um triângulo." Pontifícia Universidade Católica de São Paulo, 2007. https://tede2.pucsp.br/handle/handle/11502.
Full textMade available in DSpace on 2016-08-25T17:25:36Z (GMT). No. of bitstreams: 2 Julio Cesar Porfirio de Almeida.pdf.jpg: 1943 bytes, checksum: cc73c4c239a4c332d642ba1e7c7a9fb2 (MD5) Julio Cesar Porfirio de Almeida.pdf: 1456447 bytes, checksum: 58dfec1164eb0113da8d0d62e33bc115 (MD5) Previous issue date: 2007-05-08
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
This study is about the demonstration of amount of measure the internal angles of triangles made by 8th grade from Fundamental School and the First year of High School, from of resolution of two specified questions. This work intends to contribute with the Argumentation and Proof in School Mathematics project (AprovaME), that has as one of objectives the mapping of conceptions about teenager s argumentation and proofs in public and private schools of São Paulo (state) For this was made a questionnaire in two books, five questions of Algebra and with five questions of Geometry. They were given to 1998 pupils aged between 14 and 16 years. The two analyzed questions are in the Geometry notebook. After checking the given information, took out 50 pupils as sample, that answers were classified in four progressive levels according their form of argument used in evolution of the Pragmatic proof (first principles methods of verification) to the Intellectual proof (elaborations of reasoning from logical-deduction nature and the production of explanation characterized as mathematics demonstration). In the following phase these pupils were put in groups according with the types of answers presented, to do the individual interviews aiming explanations about their choose. Finish the work a conclusive survey based in the results of the analysis, where are suggested forms of approach of subject Proofs and Demonstrations in the classroom, contemplating the execution of dynamic activities that give privilege the construction of mathematically consistent argument based in the expression of generalized reasoning
Este estudo trata da demonstração da soma da medida dos ângulos internos de um triângulo por alunos da oitava série do Ensino Fundamental e da primeira série do Ensino Médio, a partir da resolução de duas questões específicas. Procura contribuir com o Projeto Argumentação e Prova na Matemática Escolar (AprovaME), que tem como um de seus objetivos o mapeamento das concepções sobre argumentação e prova de alunos adolescentes em escolas públicas e particulares do Estado de São Paulo. Para esse levantamento foi elaborado um questionário contendo, em dois cadernos, cinco questões de Álgebra e cinco de Geometria, aplicados a 1998 alunos na faixa etária entre 14 e 16 anos. As duas questões analisadas estão inseridas no caderno de Geometria. Após a tabulação das informações coletadas, extraiu-se dessa população uma amostra de 50 alunos, cujas respostas foram classificadas em quatro níveis progressivos quanto às formas de validação dos argumentos empregados numa evolução da categoria Prova Pragmática (métodos rudimentares de verificação) à Prova Intelectual (elaboração de raciocínios de natureza lógico-dedutiva e produção de explicações caracterizadas como demonstrações matemáticas). Na etapa seguinte, esses alunos foram agrupados de acordo com os tipos de resposta apresentados para a realização de entrevistas individuais visando à obtenção de esclarecimentos adicionais sobre suas escolhas. Encerra o trabalho um panorama conclusivo baseado no resultado da análise em que são sugeridas formas de abordagem do tema Provas e Demonstrações em sala de aula, contemplando a realização de atividades dinâmicas que privilegiem a construção de argumentos matematicamente consistentes, fundamentados na expressão de raciocínios generalizadores
Van, de Merwe Chelsey Lynn. "Student Use of Mathematical Content Knowledge During Proof Production." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8474.
Full textCramer, Marcos [Verfasser]. "Proof-checking mathematical texts in controlled natural language / Marcos Cramer." Bonn : Universitäts- und Landesbibliothek Bonn, 2013. http://d-nb.info/1045276626/34.
Full textTanswell, Fenner Stanley. "Proof, rigour and informality : a virtue account of mathematical knowledge." Thesis, University of St Andrews, 2017. http://hdl.handle.net/10023/10249.
Full textBooks on the topic "Mathematical Proof and Demonstration"
G, Dhombres Jean, ed. Une histoire de l'imaginaire mathématique: Vers le théorème fondamental de l'algèbre et sa demonstration par Laplace en 1795. Paris: Hermann, 2011.
Find full textRowan, Garnier, ed. Understanding mathematical proof. Boca Raton: Taylor & Francis, 2014.
Find full textStirling, David S. G. Mathematical analysis and proof. 2nd ed. Chichester, UK: Horwood Pub., 2009.
Find full textStirling, David S. G. Mathematical analysis and proof. 2nd ed. Chichester, UK: Horwood Pub., 2009.
Find full textMathematical reasoning: Writing and proof. 2nd ed. Upper Saddle River, N.J: Pearson Prentice Hall, 2007.
Find full textMathematical reasoning: Writing and proof. Upper Saddle River, N.J: Prentice Hall, 2003.
Find full textDragalin, Alʹbert Grigorʹevich. Mathematical intuitionism: Introduction to proof theory. Providence, R.I: American Mathematical Society, 1988.
Find full textHavil, Julian. Nonplussed!: Mathematical proof of implausible ideas. Princeton, N.J: Princeton University Press, 2011.
Find full textBook chapters on the topic "Mathematical Proof and Demonstration"
Hebborn, J. E., and C. Plumpton. "Mathematical proof." In Methods of Algebra, 42–53. London: Macmillan Education UK, 1985. http://dx.doi.org/10.1007/978-1-349-07670-3_4.
Full textSchroeder, Severin. "Mathematical Proof." In Wittgenstein on Mathematics, 141–88. New York, NY : Routledge, 2021. | Series: Wittgenstein’s thought and legacy: Routledge, 2020. http://dx.doi.org/10.4324/9781003056904-12.
Full textHanna, Gila. "Mathematical Proof." In Advanced Mathematical Thinking, 54–61. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-47203-1_4.
Full textInglis, Matthew, and Andrew Aberdein. "Diversity in Proof Appraisal." In Mathematical Cultures, 163–79. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28582-5_10.
Full textNicholson, Neil R. "Mathematical Induction." In A Transition to Proof, 171–220. Boca Raton : CRC Press, Taylor & Francis Group, 2018.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429259838-4.
Full textLopez-Escobar, E. G. K. "Proof functional connectives." In Methods in Mathematical Logic, 208–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0075313.
Full textGorenstein, Daniel, Richard Lyons, and Ronald Solomon. "Outline of proof." In Mathematical Surveys and Monographs, 79–139. Providence, Rhode Island: American Mathematical Society, 1994. http://dx.doi.org/10.1090/surv/040.1/02.
Full textMason, John, and Gila Hanna. "Values in Caring for Proof." In Mathematical Cultures, 235–57. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28582-5_14.
Full textAlibert, Daniel, and Michael Thomas. "Research on Mathematical Proof." In Advanced Mathematical Thinking, 215–30. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-47203-1_13.
Full textZambrana Castañeda, Guillermo. "Wittgenstein On Mathematical Proof." In Mexican Studies in the History and Philosophy of Science, 235–48. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-009-0109-4_15.
Full textConference papers on the topic "Mathematical Proof and Demonstration"
Kawai, Toshio, Yoshiro Mihira, Makoto Sato, and Maki Hayashi. "Basis of universal existence of 1/f fluctuation— Mathematical proof and numerical demonstrations." In Noise in physical systems and 1/. AIP, 1993. http://dx.doi.org/10.1063/1.44625.
Full textGulen, S. Can, and Raub W. Smith. "A Simple Mathematical Approach to Data Reconciliation in a Single-Shaft Combined-Cycle System." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90145.
Full textSundaresan, Vishnu Baba, and Donald J. Leo. "Experimental Investigation for Chemo-Mechanical Actuation Using Biological Transport Mechanisms." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81366.
Full textMalak, Richard J., Lina Tucker, and Christiaan J. J. Paredis. "Composing Tradeoff Models for Multi-Attribute System-Level Decision Making." In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49970.
Full textAmirudin, Mochammad, Yusuf Fuad, and Pradnyo Wijayanti. "Studentsr Proof Schemes for Disproving Mathematical Proposition." In Mathematics, Informatics, Science, and Education International Conference (MISEIC 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/miseic-18.2018.25.
Full textMacKenzie, Donald W. "Computers and the Sociology of Mathematical Proof." In 3rd BCS-FACS Northern Formal Methods Workshop. BCS Learning & Development, 1998. http://dx.doi.org/10.14236/ewic/nfm1998.13.
Full textGurevich, Shagmar. "Proof of the Kurlberg-Rudnick Rate Conjecture." In p-ADIC MATHEMATICAL PHYSICS: 2nd International Conference. AIP, 2006. http://dx.doi.org/10.1063/1.2193112.
Full textSpadaccini, Louis, Gregory Tillman, James Gentry, Alexander Chen, and Tim Edwards. "Fuel Stabilization Unit Proof of Concept Engine Demonstration." In 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-5157.
Full textCahit, I. "A Victorian Age Proof of the Four Color Theorem." In ICMS INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE. American Institute of Physics, 2010. http://dx.doi.org/10.1063/1.3525112.
Full textMueller, Juergen, Stephen Vargo, David Bame, Dennis Fitzgerald, and William Tang. "Proof-of-concept demonstration of a micro-isolation valve." In 35th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-2726.
Full textReports on the topic "Mathematical Proof and Demonstration"
Farmer, W. M., J. D. Guttman, and F. J. Thayer. IMPS: An Interactive Mathematical Proof System. Fort Belvoir, VA: Defense Technical Information Center, July 1991. http://dx.doi.org/10.21236/ada243162.
Full textCasagranda, A., D. S. Stafford, G. Pastore, R. L. Williamson, B. W. Spencer, and J. D. Hales. UFD Proof-of-Concept Demonstration. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1408525.
Full textFletcher, B. E. Underwater Security Vehicle Proof of Concept Demonstration. Fort Belvoir, VA: Defense Technical Information Center, March 1993. http://dx.doi.org/10.21236/ada264713.
Full textChawda, P. V. Proof-of-Concept Demonstration Results for Robotic Visual Servo Controllers. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/885667.
Full textRhodes, E. A., D. L. Bowers, R. E. Boyar, and C. E. Dickerman. Advanced concept proof-of-principle demonstration: Switchable radioactive neutron source. Office of Scientific and Technical Information (OSTI), October 1995. http://dx.doi.org/10.2172/197135.
Full textHablanian, David A., Michael Bryant, Nelson Carbonell, Allan Chertok, and Paul McTaggart. Modular Aircraft Support System (MASS) Proof-of-Concept Demonstrator Field Demonstration. Fort Belvoir, VA: Defense Technical Information Center, October 2001. http://dx.doi.org/10.21236/ada413306.
Full textMosallaei, Hossein. Realization of Metamaterial-Based Devices: Mathematical Theory and Physical Demonstration. Fort Belvoir, VA: Defense Technical Information Center, February 2010. http://dx.doi.org/10.21236/ada515521.
Full textBAIDE, D. G. TANK 241-U-107 SALTCAKE DISSOLUTION PROOF OF CONCEPT RETRIEVAL DEMONSTRATION OPERATIONAL RESULTS. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/812316.
Full textPeter, F. J., and G. R. Laguna. Autonomous gas chromatograph system for Thermal Enhanced Vapor Extraction System (TEVES) proof of concept demonstration. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/383609.
Full textHu, P. S. Proof of Concept of ITS as An Alternative Data Resource: A Demonstration Project of Florida and New York Data. Office of Scientific and Technical Information (OSTI), December 2001. http://dx.doi.org/10.2172/814552.
Full text