Dissertations / Theses on the topic 'Mathematics, formulae'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Mathematics, formulae.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Witt, Ingo. "Green formulae for cone differential operators." Universität Potsdam, 2003. http://opus.kobv.de/ubp/volltexte/2008/2663/.
Full textGorokhovsky, Alexander. "Explicit formulae for characteristic classes in Noncommutative Geometry /." The Ohio State University, 1999. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488191124570879.
Full textSmall, Anthony James. "A twistorial interpretation of the Weierstrass representation formulae." Thesis, University of Warwick, 1988. http://wrap.warwick.ac.uk/34811/.
Full textDeka, Rabin. "Formulae and multiprocessor algorithms for digital signal microprocessors." Thesis, University of Bradford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304030.
Full textSharp, Richard John. "Asymptotic formulae for closed orbits of hyperbolic flows." Thesis, University of Warwick, 1990. http://wrap.warwick.ac.uk/107982/.
Full textDehkordi, Massoud Hadian. "Asymptotic formulae for some arithmetic functions in number theory." Thesis, Loughborough University, 1998. https://dspace.lboro.ac.uk/2134/12177.
Full textAndersson, Johan. "Summation formulae and zeta functions." Doctoral thesis, Stockholm : Department of Mathematics, Stockholm University, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-1074.
Full textHostetter, Michael. "Analogical representation in temporal, spatial, and mnemonic reasoning." Thesis, This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-03242009-040545/.
Full textAbdulla, Thuraya J. A. M. "Modified extended backward differentiation formulae for differential-algebraic equations with applications to time dependent PDEs." Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369071.
Full textMurr, Rüdiger. "Reciprocal classes of Markov processes : an approach with duality formulae." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/6209/.
Full textDiese Arbeit befasst sich mit der Charakterisierung von Klassen stochastischer Prozesse durch Dualitätsformeln. Es wird insbesondere der in der Literatur bisher unbehandelte Fall reziproker Klassen stochastischer Prozesse mit Sprungen untersucht. Im ersten Teil stellen wir eine neue Formulierung einer Charakterisierung von Prozessen mit unabhängigen Zuwächsen vor. Diese basiert auf der aus dem Malliavinkalkül bekannten Dualitätsformel für Prozesse mit unendlich oft teilbaren Zuwächsen. Wir präsentieren zusätzlich zwei neue Beweismethoden dieser Dualitätsformel, die nicht auf der Chaoszerlegung des Raumes quadratintegrabler Funktionale beruhen. Eine dieser Methoden basiert auf einer partiellen Integrationsformel fur unendlich oft teilbare Zufallsvektoren. In diesem Rahmen ist unsere Charakterisierung eine Verallgemeinerung des Lemma fur Gaußsche Zufallsvariablen von Stein und des Lemma fur Zufallsvariablen mit Poissonverteilung von Chen. Die Allgemeinheit dieser Methode erlaubt uns durch einen ähnlichen Zugang die Charakterisierung unendlich oft teilbarer Zufallsmaße. Im zweiten Teil der Arbeit konzentrieren wir uns auf die Charakterisierung reziproker Klassen ausgewählter Markovprozesse durch Dualitätsformeln. Wir beginnen mit einer Zusammenfassung bereits existierender Ergebnisse zu den reziproken Klassen Brownscher Bewegungen mit Drift. Es ist uns möglich die Charakterisierung solcher reziproken Klassen durch eine Dualitätsformel physikalisch umzudeuten in eine Newtonsche Gleichung. Damit gelingt uns ein Brückenschlag zwischen derartigen Charakterisierungsergebnissen und der Theorie stochastischer Mechanik durch den Interpretationsansatz, sowie der Theorie stochastischer optimaler Steuerung durch den mathematischen Ansatz. Unter Verwendung der Charakterisierung reziproker Klassen durch Dualitätsformeln beweisen wir weiterhin eine Invarianzeigenschaft der reziproken Klasse Browscher Bewegungen mit Drift unter Zeitumkehrung. Es gelingt uns weiterhin neue Resultate im Rahmen reiner Sprungprozesse zu beweisen. Wir beschreiben reziproke Klassen Markovscher Zählprozesse, d.h. Sprungprozesse mit Sprunghöhe eins, und erhalten eine Charakterisierung der reziproken Klasse vermöge einer Dualitätsformel. Diese beinhaltet als Schlüsselterme eine stochastische Ableitung nach den Sprungzeiten, ein kompensiertes stochastisches Integral und eine Invariante der reziproken Klasse. Wir präsentieren außerdem eine Interpretation der Charakterisierung einer reziproken Klasse im Rahmen der stochastischen Steuerungstheorie. Als weitere Anwendung beweisen wir eine Invarianzeigenschaft der reziproken Klasse Markovscher Zählprozesse unter Zeitumkehrung. Einige dieser Ergebnisse werden fur reine Sprungprozesse mit unterschiedlichen Sprunghöhen verallgemeinert. Insbesondere zeigen wir, dass die reziproken Klassen Markovscher Sprungprozesse vermöge reziproker Invarianten unterschieden werden können. Eine Charakterisierung der reziproken Klasse zusammengesetzter Poissonprozesse durch eine Dualitätsformel gelingt unter der Annahme inkommensurabler Sprunghöhen.
Chau, Teresa C. "IFE, an interactive formula editor." FIU Digital Commons, 1988. http://digitalcommons.fiu.edu/etd/2117.
Full textGiraud, François. "Analyse des modèles particulaires de Feynman-Kac et application à la résolution de problèmes inverses en électromagnétisme." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00834920.
Full textMwangota, Lutufyo. "Cubature on Wiener Space for the Heath--Jarrow--Morton framework." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-42804.
Full textFreiman, Viktor, and Danis Michaud. "One mathematical formula in the science textbook: looking into innovative potential of interdisciplinary mathematics teaching." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-79834.
Full textSilva, Ana M. L. G. Canas da. "Multiplicity formulas for orbifolds." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/38409.
Full textAlmomen, Randa. "Context classification for improved semantic understanding of mathematical formulae." Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8611/.
Full textHendricks, Deborah J. "The use of propositional structures and subgoals in solving multi-step college statistical word and formula problems." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=531.
Full textTitle from document title page. Document formatted into pages; contains viii, 142 p. : ill. Vita. Includes abstract. Includes bibliographical references (p. 100-108).
Duerinckx, Mitia. "Topics in the mathematics of disordered media." Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/262390.
Full textDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Duduchava, Roland. "The Green formula and layer potentials." Universität Potsdam, 1999. http://opus.kobv.de/ubp/volltexte/2008/2560/.
Full textReyes, Noli N. "An asymptotic formula in best approximation /." The Ohio State University, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487760357819651.
Full textTsai, Cheng-Chiang. "A Formula for Some Shalika Germs." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467210.
Full textMathematics
Böhm, Ulrike, Gesche Pospiech, Hermann Körndle, and Susanne Narciss. "Physicists use mathematics to describe physical principles an mathematicians use physical phenomena to illustrate mathematical formula - Do they really mean the same?" Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-82341.
Full textGanter, Nora 1976. "Orbifold genera, product formulas and power operations." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/30147.
Full textIncludes bibliographical references (p. 53-56).
There is a formula by the string theorists Dijkgraaf, Moore, Verlinde and Verlinde, expressing the orbifold elliptic genus of the symmetric powers of an almost complex manifold M in terms of the elliptic genus of M itself. We show that from the point of view of elliptic cohomology an analogous p-typical statement follows as an easy corollary from the fact that the map of spectra corresponding to the genus preserves power operations. We define higher chromatic versions of the notion of orbifold genus, involving h-tuples rather than pairs of commuting elements. Using homotopy theoretic methods we are able to prove an integrality result and show that our definition is independent of the representation of the orbifold. Our setup is so simple, that it allows us to prove DMVV-type product formulas for these higher chromatic orbifold genera in the same way that the product formula for the topological Todd genus is proved. More precisely, we show that any genus induced by an H[omega]-map into one of the Morava-Lubin-Tate cohomology theories Eh has such a product formula and that the formula depends only on h and not on the genus. Since the complex H[omega]-genera into Eh have been classified in [And95], a large family of genera to which our results apply is completely understood. Loosely speaking, our result says that some Borcherds lifts have a well-known homotopy theoretic refinement, namely total symmetric powers in elliptic cohomology.
by Nora Ganter.
Ph.D.
Kytmanov, Alexander, Simona Myslivets, and Nikolai Tarkhanov. "Holomorphic Lefschetz formula for manifolds with boundary." Universität Potsdam, 2002. http://opus.kobv.de/ubp/volltexte/2008/2635/.
Full textWilliams, Ellison Anne. "A Formula for N-Row Macdonald Polynomials." NCSU, 2004. http://www.lib.ncsu.edu/theses/available/etd-01272004-104704/.
Full textPedroza, Andrés. "Equivariant formality and localization formulas /." Thesis, Connect to Dissertations & Theses @ Tufts University, 2004.
Find full textAdviser: Loring W. Tu. Submitted to the Dept. of Mathematics. Includes bibliographical references (leaves 43-45). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Tarkhanov, Nikolai. "A fixed point formula in one complex variable." Universität Potsdam, 2003. http://opus.kobv.de/ubp/volltexte/2008/2649/.
Full textCuller, Lucas Howard. "The blowup formula for higher rank Donaldson invariants." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90181.
Full text16
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 73-74).
In this thesis, I study the relationship between the higher rank Donaldson invariants of a smooth 4-manifold X and the invariants of its blowup X#CP2 . This relationship can be expressed in terms of a formal power series in several variables, called the blowup function. I compute the restriction of the blowup function to one of its variables, by solving a special system of ordinary differential equations. I also compute the SU(3) blowup function completely, and show that it is a theta function on a family of genus 2 hyperelliptic Jacobians. Finally, I give a formal argument to explain the appearance of Abelian varieties and theta functions in four dimensional topological field theories.
by Lucas Howard Culler.
Ph. D.
Nelte, Karen. "Formulas of first-order logic in distributive normal form." Master's thesis, University of Cape Town, 1997. http://hdl.handle.net/11427/9648.
Full textIt was shown by Jaakko Hintikka that every formula of first-order logic can be written as a disjunction of formulas called constituents. Such a disjunction is called a distributive normal form of the formula. It is a generalization of the disjunctive normal form for propositional logic. However, there are some significant differences between these two normal forms, caused chiefly by the impossibility of defining the constituents in such a way that they are all consistent. Distributive normal forms and some of their properties are studied. For example, the size of distributive normal forms is examined, and although we can't determine exactly how many constituents (of each form) are consistent, it is shown that the vast majority are inconsistent. Hintikka's definition of trivial inconsistency is studied, and a new definition of trivial inconsistency is given in terms of a necessary condition for the consistency of a constituent which is stronger than the condition which Hintikka used in his definition of trivial inconsistency. An error in Hintikka's attempted proof of the completeness theorem of the theory of distributive normal forms is pointed out, and a similar completeness theorem is proved using the new definition of trivial inconsistency.
Tabony, Sawyer. "Adelic Fourier-Whittaker coefficients and the Casselman-Shalika formula." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54665.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 29).
In their paper Metaplectic Forms, D. A. Kazhdan and S. J. Patterson developed a generalization of automorphic forms that are defined on metaplectic groups. These groups are non-trivial covering groups of usual algebraic groups, and the forms defined on them are representations that respect the covering. As in the case for automorphic forms, these representations fall into a principle series, indexed by characters on a torus of the metaplectic group, and there is an associated an L-function. In the final section of their paper, an equivalence is shown in the rank one case between this -function and an Dirichlet series defined using Gauss sums, in order to demonstrate the arithmetic content. In this paper we reexamine this connection in the particular case that was discussed in Metaplectic Forms. By looking through the scope of twisted multiplicativity, a property of L-series, the computation is simplified and more easily generalized.
by Sawyer Tabony.
S.M.
Reiner-Roth, Griffin. "Rodrigues Formula for Jacobi Polynomials on the Unit Circle." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1365772575.
Full textHlavacek, Jan. "Asymptotic formula for the norms of exp(inh(t)) /." The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487950153601176.
Full textMonheim, Frank [Verfasser], and Anton [Akademischer Betreuer] Deitmar. "Non-unitary Trace Formulae / Frank Monheim ; Betreuer: Anton Deitmar." Tübingen : Universitätsbibliothek Tübingen, 2015. http://d-nb.info/1163396885/34.
Full textToyozumi, Kenichi, Takahiro Suzuki, Kensaku Mori, and Yasuhito Suenaga. "A system for real-time recognition of handwritten mathematical formulas." IEEE, 2001. http://hdl.handle.net/2237/6867.
Full textRozenblum, G. "On some analytical index formulas related to operator-valued symbols." Universität Potsdam, 2000. http://opus.kobv.de/ubp/volltexte/2008/2581/.
Full textMalek, Fadi. "Formules de type Runge-Kutta-Nystrom." Thesis, University of Ottawa (Canada), 1992. http://hdl.handle.net/10393/7564.
Full textNacinovich, Mauro, Bert-Wolfgang Schulze, and Nikolai N. Tarkhanov. "On carleman formulas for the dolbeault cohomology." Universität Potsdam, 1998. http://opus.kobv.de/ubp/volltexte/2008/2522/.
Full textFedchenko, Dmitry, and Nikolai Tarkhanov. "An index formula for Toeplitz operators." Universität Potsdam, 2014. http://opus.kobv.de/ubp/volltexte/2014/7249/.
Full textYang, Yixin. "Generalisations and applications of the Clark-Ocone formula." Thesis, University of Warwick, 2011. http://wrap.warwick.ac.uk/55664/.
Full textOuyang, Ling. "A symbol layout classification for mathematical formula using layout context /." Online version of thesis, 2009. http://hdl.handle.net/1850/10880.
Full textFedosov, Boris, Bert-Wolfgang Schulze, and Nikolai Tarkhanov. "A general index formula on tropic manifolds with conical points." Universität Potsdam, 1999. http://opus.kobv.de/ubp/volltexte/2008/2550/.
Full textToyozumi, Kenichi, Naoya Yamada, Takayuki Kitasaka, Kensaku Mori, Yasuhito Suenaga, Kenji Mase, and Tomoichi Takahashi. "A study of symbol segmentation method for handwritten mathematical formula recognition using mathematical structure information." IEEE, 2004. http://hdl.handle.net/2237/6870.
Full textMurr, Rüdiger. "Characterization of Lévy Processes by a duality formula and related results." Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/4353/.
Full textKarlsson, Olle. "The Black-Scholes Equation and Formula." Thesis, Uppsala universitet, Analys och tillämpad matematik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-200441.
Full textLindloh, René [Verfasser]. "Cubature formulas on wavelet spaces / Rene Lindloh." Kiel : Universitätsbibliothek Kiel, 2010. http://d-nb.info/1019952318/34.
Full textXie, Heng. "Grothendieck-Witt groups of quadrics and sums-of-squares formulas." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/76708/.
Full textAleksandrovič, Alesia. "Formulių redukcija multiplikatyvioje aritmetikoje." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2007. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2007~D_20070816_170521-57292.
Full textIn this postgraduate work “Reduction of formulas in the multiplicative arithmetic” the sequential variant with equality of multiplicative arithmetic is being analyzed. This calculus is a base when creating calculations which are used in different fragments of arithmetic. The aim of this work is to get acquainted with a proving theory and its application in sequential variant of multiplicative arithmetic. The work is divided into 3 sections: main conceptions, auxiliary lemmas and formula’s reduction. The short introduction into Pean’s arithmetic is given in the beginning. The sequential calculus K, which has non-logical symbol’s signature {0,`,P,.,=} is being described. Sections 2 and 3 are self-sufficient parts of this work. For any formula A(x) of calculation K the equivalent normal disjunctive form is found. Also the reduction of ordered formulas is analyzed.
Suzuki, Takahiro, Shiro Aoshima, Kensaku Mori, and Yasuhito Suenaga. "A new system for the real-time recognition of handwritten mathematical formulas." IEEE, 2000. http://hdl.handle.net/2237/6868.
Full textHolden, Nina Ph D. Massachusetts Institute of Technology. "Cardy embedding of random planar maps and a KPZ formula for mated trees." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/117865.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 247-259).
The Schramm-Loewner evolution (SLE) is a random fractal curve which describes the scaling limit of interfaces in a wide range of statistical physics models. Liouville quantum gravity (LQG) is a random fractal surface which arises as the scaling limit of discrete surfaces known as random planar maps (RPM). First, we study Hausdorff dimensions for SLE curves. We prove a KPZ-type formula which relates the Hausdorff dimension of an arbitrary subset of an SLE curve to the Hausdorff dimension of a time set for a two-dimensional correlated Brownian motion. Using our formula, we obtain new and simple proofs for a number of SLE Hausdorff dimensions, and we prove an explicit formula which says how much the Hausdorff dimension of a deterministic set increases upon being conformally mapped to an SLE curve. This is joint work with Gwynne and Miller. Then we introduce a mating-of-trees construction of SLE in Euclidean geometry in collaboration with Sun. This is the Euclidean counterpart to the mating-of-trees construction of SLE in an LQG environment by Duplantier, Miller, and Sheffield, which plays an essential role throughout the thesis. Finally, we prove scaling limit results for uniformly sampled RPM known as triangulations. In a joint work with Bernardi and Sun we show that a number of observables associated with critical site percolation on the triangulation converge jointly in law to the associated observables of SLE6 on an independent [square root of] 8/3-LQG surface. In a joint work with Sun we use this and other results to prove convergence of the triangulation under a discrete conformal embedding which we call the Cardy embedding. The conformally embedded triangulation induces an area measure and a metric on the complex plane, and we show that this measure and metric converge jointly in the scaling limit to an instance of the [square root of] 8/3-LQG disk (equivalently, to an instance of the conformally embedded Brownian disk).
by Nina Holden.
Ph. D.
Cartier, Sébastien. "Surfaces des espaces homogènes de dimension 3." Phd thesis, Université Paris-Est, 2011. http://tel.archives-ouvertes.fr/tel-00672332.
Full text