Academic literature on the topic 'Mathematics. Metric spaces. Mappings (Mathematics)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mathematics. Metric spaces. Mappings (Mathematics).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mathematics. Metric spaces. Mappings (Mathematics)"
CHO, Y. J., N. J. HUANG, and L. XIANG. "COINCIDENCE THEOREMS IN COMPLETE METRIC SPACES." Tamkang Journal of Mathematics 30, no. 1 (March 1, 1999): 1–7. http://dx.doi.org/10.5556/j.tkjm.30.1999.4191.
Full textZimmerman, Scott. "Sobolev Extensions of Lipschitz Mappings into Metric Spaces." International Mathematics Research Notices 2019, no. 8 (August 21, 2017): 2241–65. http://dx.doi.org/10.1093/imrn/rnx201.
Full textAmini, A., M. Fakhar, and J. Zafarani. "KKM mappings in metric spaces." Nonlinear Analysis: Theory, Methods & Applications 60, no. 6 (March 2005): 1045–52. http://dx.doi.org/10.1016/j.na.2004.10.003.
Full textĆirić, Ljubomir. "On some discontinuous fixed point mappings in convex metric spaces." Czechoslovak Mathematical Journal 43, no. 2 (1993): 319–26. http://dx.doi.org/10.21136/cmj.1993.128397.
Full textAras, Cigdem Gunduz, Sadi Bayramov, and Murat Ibrahim Yazar. "Soft D-metric spaces." Boletim da Sociedade Paranaense de Matemática 38, no. 7 (October 14, 2019): 137–47. http://dx.doi.org/10.5269/bspm.v38i7.44641.
Full textFUKHAR-UD-DIN, HAFIZ. "Existence and approximation of fixed points in convex metric spaces." Carpathian Journal of Mathematics 30, no. 2 (2014): 175–85. http://dx.doi.org/10.37193/cjm.2014.02.11.
Full textChernikov, P. V. "Metric spaces and extensions of mappings." Siberian Mathematical Journal 27, no. 6 (1987): 958–62. http://dx.doi.org/10.1007/bf00970017.
Full textZhou, Qingshan, Yaxiang Li, and Yuehui He. "Quasihyperbolic mappings in length metric spaces." Comptes Rendus. Mathématique 359, no. 3 (April 20, 2021): 237–47. http://dx.doi.org/10.5802/crmath.154.
Full textBridges, Douglas, and Ray Mines. "Sequentially continuous linear mappings in constructive analysis." Journal of Symbolic Logic 63, no. 2 (June 1998): 579–83. http://dx.doi.org/10.2307/2586851.
Full textStojakovic, Mila. "Common fixed point theorems in complete metric and probabilistic metric spaces." Bulletin of the Australian Mathematical Society 36, no. 1 (August 1987): 73–88. http://dx.doi.org/10.1017/s0004972700026319.
Full textDissertations / Theses on the topic "Mathematics. Metric spaces. Mappings (Mathematics)"
Niyitegeka, Jean Marie Vianney. "Generalizations of some fixed point theorems in banach and metric spaces." Thesis, Nelson Mandela Metropolitan University, 2015. http://hdl.handle.net/10948/5265.
Full textRuth, Harry Leonard Jr. "Conformal densities and deformations of uniform loewner metric spaces." Cincinnati, Ohio : University of Cincinnati, 2008. http://www.ohiolink.edu/etd/view.cgi?ucin1210203872.
Full textCommittee/Advisors: David Herron PhD (Committee Chair), David Minda PhD (Committee Member), Nageswari Shanmugalingam PhD (Committee Member). Title from electronic thesis title page (viewed Sep.3, 2008). Keywords: conformal density; uniform spaces; Loewner; quasisymmetry; quasiconofrmal. Includes abstract. Includes bibliographical references.
Stofile, Simfumene. "Fixed points of single-valued and multi-valued mappings with applications." Thesis, Rhodes University, 2013. http://hdl.handle.net/10962/d1002960.
Full textMedwid, Mark Edward. "Rigidity of Quasiconformal Maps on Carnot Groups." Bowling Green State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1497620176117104.
Full textHume, David S. "Embeddings of infinite groups into Banach spaces." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:e38f58ec-484c-4088-bb44-1556bc647cde.
Full textGonzalez, Villasanti Hugo Jose. "Stability of Input/Output Dynamical Systems on Metric Spaces: Theory and Applications." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu155558269238935.
Full textRazafindrakoto, Ando Desire. "Hyperconvex metric spaces." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4106.
Full textENGLISH ABSTRACT: One of the early results that we encounter in Analysis is that every metric space admits a completion, that is a complete metric space in which it can be densely embedded. We present in this work a new construction which appears to be more general and yet has nice properties. These spaces subsequently called hyperconvex spaces allow one to extend nonexpansive mappings, that is mappings that do not increase distances, disregarding the properties of the spaces in which they are defined. In particular, theorems of Hahn-Banach type can be deduced for normed spaces and some subsidiary results such as fixed point theorems can be observed. Our main purpose is to look at the structures of this new type of “completion”. We will see in particular that the class of hyperconvex spaces is as large as that of complete metric spaces.
AFRIKAANSE OPSOMMING: Een van die eerste resultate wat in die Analise teegekom word is dat enige metriese ruimte ’n vervollediging het, oftewel dat daar ’n volledige metriese ruimte bestaan waarin die betrokke metriese ruimte dig bevat word. In hierdie werkstuk beskryf ons sogenaamde hiperkonvekse ruimtes. Dit gee ’n konstruksie wat blyk om meer algemeen te wees, maar steeds gunstige eienskappe het. Hiermee kan nie-uitbreidende, oftewel afbeeldings wat nie afstande rek nie, uitgebrei word sodanig dat die eienskappe van die ruimte waarop dit gedefinieer is nie ’n rol speel nie. In die besonder kan stellings van die Hahn- Banach-tipe afgelei word vir genormeerde ruimtes en sekere addisionele ressultate ondere vastepuntstellings kan bewys word. Ons hoofdoel is om hiperkonvekse ruimtes te ondersoek. In die besonder toon ons aan dat die klas van alle hiperkonvekse ruimtes net so groot soos die klas van alle metriese ruimtes is.
Otafudu, Olivier Olela. "Convexity in quasi-metric spaces." Doctoral thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/10950.
Full textIncludes bibliographical references.
The principal aim of this thesis is to investigate the existence of an injective hull in the categories of T-quasi-metric spaces and of T-ultra-quasi-metric spaces with nonexpansive maps.
Jeganathan, P. "Fixed points for nonexpansive mappings in Banach spaces." Master's thesis, University of Cape Town, 1991. http://hdl.handle.net/11427/17067.
Full textSarantopoulos, I. C. "Polynomials and multilinear mappings in Banach spaces." Thesis, Brunel University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376057.
Full textBooks on the topic "Mathematics. Metric spaces. Mappings (Mathematics)"
service), SpringerLink (Online, ed. A nonlinear transfer technique for renorming. Berlin: Springer, 2009.
Find full text1862-1943, Hilbert David, ed. Hilbert's projective metric and iterated nonlinear maps. Providence, R.I., USA: American Mathematical Society, 1988.
Find full textNussbaum, Roger D. Iterated nonlinear maps and Hilbert's projective metric, II. Providence, R.I., USA: American Mathematical Society, 1989.
Find full textGrigorʹevich, Reshetni͡a︡k I͡U︡riĭ, ed. Quasiconformal mappings and Sobolev spaces. Dordrecht: Kluwer Academic Publishers, 1990.
Find full textHeinonen, Juha. Lectures on Analysis on Metric Spaces. New York, NY: Springer New York, 2001.
Find full textCiorănescu, Ioana. Geometry of banach spaces, duality mappings, and nonlinear problems. Dordrecht: Kluwer Academic Publishers, 1990.
Find full textMin, Chen. Decompositions of Teichmüller space by geodesic length mappings. Helsinki: Suomalainen Tiedeakatemia, 1991.
Find full textEndre, Pap, ed. Fixed point theory in probabilistic metric spaces. Dordrecht: Kluwer Academic, 2001.
Find full textJana, Björn, ed. Nonlinear potential theory on metric spaces. Zürich, Switzerland: European Mathematical Society, 2011.
Find full textBook chapters on the topic "Mathematics. Metric spaces. Mappings (Mathematics)"
Lin, Shou, and Ziqiu Yun. "Mappings on Metric Spaces." In Atlantis Studies in Mathematics, 53–146. Paris: Atlantis Press, 2016. http://dx.doi.org/10.2991/978-94-6239-216-8_2.
Full textKoskela, Pekka. "Sobolev Spaces and Quasiconformal Mappings on Metric Spaces." In European Congress of Mathematics, 457–67. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8268-2_26.
Full textGoud, J. Suresh, P. Rama Bhadra Murthy, Ch Achi Reddy, and K. Madhusudhan Reddy. "Common Fixed Point Theorems in 2-Metric Spaces Using Composition of Mappings via A-Contractions." In Trends in Mathematics, 103–10. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01120-8_13.
Full textNazir, Talat, and Sergei Silvestrov. "Common Fixed Point for Integral Type Contractive Mappings in Multiplicative Metric Spaces." In Springer Proceedings in Mathematics & Statistics, 723–41. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41850-2_30.
Full textAuwalu, Abba, and Ali Denker. "Cone Rectangular Metric Spaces over Banach Algebras and Fixed Point Results of T-Contraction Mappings." In Springer Proceedings in Mathematics & Statistics, 107–16. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69292-6_7.
Full textNazir, Talat, and Sergei Silvestrov. "Common Fixed Point Results for Family of Generalized Multivalued F-Contraction Mappings in Ordered Metric Spaces." In Springer Proceedings in Mathematics & Statistics, 419–32. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42105-6_20.
Full textAserkar, Anushri A., and Manjusha P. Gandhi. "The Unique Common Fixed Point Theorem for Four Mappings Satisfying Common Limit in the Range Property in b-Metric Space." In Springer Proceedings in Mathematics & Statistics, 161–71. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1153-0_14.
Full textKomornik, Vilmos. "Metric Spaces." In Springer Undergraduate Mathematics Series, 3–35. London: Springer London, 2017. http://dx.doi.org/10.1007/978-1-4471-7316-8_1.
Full textBrown, Arlen, and Carl Pearcy. "Metric spaces." In Graduate Texts in Mathematics, 96–134. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-0787-0_6.
Full textConway, John B. "Metric Spaces." In Undergraduate Texts in Mathematics, 1–38. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02368-7_1.
Full textConference papers on the topic "Mathematics. Metric spaces. Mappings (Mathematics)"
Auwalu, Abba. "A note on some fixed point theorems for generalized expansive mappings in cone metric spaces over Banach algebras." In INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5048998.
Full textMarín, Josefa. "Partial quasi-metric completeness and Caristi's type mappings." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756274.
Full textZhanakunova, Meerim, and Bekbolot Kanetov. "On strongly uniformly paracompact spaces and mappings." In INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0040268.
Full textGoleţ, Ioan, Ciprian Hedrea, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "On Generalized Contractions in Probabilistic Metric Spaces." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636943.
Full textCastro-Company, Francisco, and Pedro Tirado. "The bicompletion of intuitionistic fuzzy quasi-metric spaces." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756271.
Full textCastro-Company, Francisco, and Pedro Tirado. "Some classes of t-norms and fuzzy metric spaces." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756272.
Full textGoleţ, Ioan, and Ionuţ Goleţ. "On Fixed Point Theorems in Probabilistic Metric Spaces and Applications." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990900.
Full textBamini, S., M. Saraswathi, B. Vijayalakshmi, and A. Vadivel. "Fuzzy M-irresolute mappings and fuzzy M-connectedness in smooth topological spaces." In RECENT TRENDS IN PURE AND APPLIED MATHEMATICS. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5135191.
Full textKiosak, V., A. Savchenko, and O. Gudyreva. "On the conformal mappings of special quasi-Einstein spaces." In APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 11th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’19. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5130793.
Full textVashpanov, Y., O. Olshevska, and O. Lesechko. "Geodesic mappings of spaces with φ(Ric) vector fields." In APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 12th International On-line Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’20. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0033965.
Full text