Journal articles on the topic 'Mathematics Proof theory. Logic, Symbolic and mathematical'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Mathematics Proof theory. Logic, Symbolic and mathematical.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Eklof, Paul C. "Fred Appenzeller. An independence result in quadratic form theory: infinitary combinatorics applied to ε-Hermitian spaces. The journal of symbolic logic, vol. 54 (1989), pp. 689–699. - Otmar Spinas. Linear topologies on sesquilinear spaces of uncountable dimension. Fundamenta mathematicae, vol. 139 (1991), pp. 119–132. - James E. Baumgartner, Matthew Foreman, and Otmar Spinas. The spectrum of the Γ-invariant of a bilinear space. Journal of algebra, vol. 189 (1997), pp. 406–418. - James E. Baumgartner and Otmar Spinas. Independence and consistency proofs in quadratic form theory. The journal of symbolic logic, vol. 56 (1991), pp. 1195–1211. - Otmar Spinas. Iterated forcing in quadratic form theory. Israel journal of mathematics, vol. 79 (1992), pp. 297–315. - Otmar Spinas. Cardinal invariants and quadratic forms. Set theory of the reals, edited by Haim Judah, Israel mathematical conference proceedings, vol. 6, Gelbart Research Institute for Mathematical Sciences, Bar-Ilan University, Ramat-Gan 1993, distributed by the American Mathematical Society, Providence, pp. 563–581. - Saharon Shelah and Otmar Spinas. Gross spaces. Transactions of the American Mathematical Society, vol. 348 (1996), pp. 4257–4277." Bulletin of Symbolic Logic 7, no. 2 (June 2001): 285–86. http://dx.doi.org/10.2307/2687785.
Full textBuss, Samuel, Ulrich Kohlenbach, and Michael Rathjen. "Mathematical Logic: Proof Theory, Constructive Mathematics." Oberwolfach Reports 8, no. 4 (2011): 2963–3002. http://dx.doi.org/10.4171/owr/2011/52.
Full textBuss, Samuel, Ulrich Kohlenbach, and Michael Rathjen. "Mathematical Logic: Proof Theory, Constructive Mathematics." Oberwolfach Reports 11, no. 4 (2014): 2933–86. http://dx.doi.org/10.4171/owr/2014/52.
Full textBuss, Samuel, Rosalie Iemhoff, Ulrich Kohlenbach, and Michael Rathjen. "Mathematical Logic: Proof Theory, Constructive Mathematics." Oberwolfach Reports 14, no. 4 (December 18, 2018): 3121–83. http://dx.doi.org/10.4171/owr/2017/53.
Full textBuss, Samuel, Rosalie Iemhoff, Ulrich Kohlenbach, and Michael Rathjen. "Mathematical Logic: Proof Theory, Constructive Mathematics." Oberwolfach Reports 17, no. 4 (September 13, 2021): 1693–757. http://dx.doi.org/10.4171/owr/2020/34.
Full textArai, Toshiyasu. "Wilfried Buchholz. Notation systems for infinitary derivations. Archive for mathematical logic, vol. 30 no. 5–6 (1991), pp. 277–296. - Wilfried Buchholz. Explaining Gentzen's consistency proof within infinitary proof theory. Computational logic and proof theory, 5th Kurt Gödel colloquium, KGC '97, Vienna, Austria, August 25–29, 1997, Proceedings, edited by Georg Gottlob, Alexander Leitsch, and Daniele Mundici, Lecture notes in computer science, vol. 1289, Springer, Berlin, Heidelberg, New York, etc., 1997, pp. 4–17. - Sergei Tupailo. Finitary reductions for local predicativity, I: recursively regular ordinals. Logic Colloquium '98, Proceedings of the annual European summer meeting of the Association for Symbolic Logic, held in Prague, Czech Republic, August 9–15, 1998, edited by Samuel R. Buss, Petr Háajek, and Pavel Pudlák, Lecture notes in logic, no. 13, Association for Symbolic Logic, Urbana, and A K Peters, Natick, Mass., etc., 2000, pp. 465–499." Bulletin of Symbolic Logic 8, no. 3 (September 2002): 437–39. http://dx.doi.org/10.2178/bsl/1182353905.
Full textAvigad, Jeremy. "Forcing in Proof Theory." Bulletin of Symbolic Logic 10, no. 3 (September 2004): 305–33. http://dx.doi.org/10.2178/bsl/1102022660.
Full textGentilini, Paolo. "Proof theory and mathematical meaning of paraconsistent C-systems." Journal of Applied Logic 9, no. 3 (September 2011): 171–202. http://dx.doi.org/10.1016/j.jal.2011.04.001.
Full textNEGRI, SARA, and JAN VON PLATO. "Proof systems for lattice theory." Mathematical Structures in Computer Science 14, no. 4 (August 2004): 507–26. http://dx.doi.org/10.1017/s0960129504004244.
Full textRABE, FLORIAN. "A logical framework combining model and proof theory." Mathematical Structures in Computer Science 23, no. 5 (March 1, 2013): 945–1001. http://dx.doi.org/10.1017/s0960129512000424.
Full textHarnik, Victor, and Michael Makkai. "Lambek's categorical proof theory and Läuchli's abstract realizability." Journal of Symbolic Logic 57, no. 1 (March 1992): 200–230. http://dx.doi.org/10.2307/2275186.
Full textNyikos, Peter J. "Andreas Blass and Saharon Shelah. Ultrafilters with small generating sets. Israel journal of mathematics, vol. 65 (1989), pp. 259–271. - Andreas Blass and Saharon Shelah. There may be simple - and -points and the Rudin–Keisler ordering may be downward directed. Annals of pure and applied logic, vol. 33 (1987), pp. 213–243. - Andreas Blass. Near coherence of filters. II: Applications to operator ideals, the Stone–Čech remainder of a half-line, order ideals of sequences, and the slenderness of groups. Transactions of the American Mathematical Society, vol. 300 (1987), pp. 557–581. - Andreas Blass and Saharon Shelah. Near coherence of filters III: a simplified consistency proof. Notre Dame journal of formal logic, vol. 30 (1989), pp. 530–538. - Andreas Blass and Claude Laflamme. Consistency results about filters and the number of inequivalent growth types. The journal of symbolic logic, vol. 54 (1989), pp. 50–56. - Andreas Blass. Applications of superperfect forcing and its relatives. Set theory and its applications. Proceedings of a conference held at York University, Ontario, Canada, Aug. 10–21, 1987, edited by J. Steprāns and S. Watson, Lecture notes in mathematics, vol. 1401, Springer-Verlag, Berlin etc. 1989, pp. 18–40. - Andreas Blass and Saharon Shelah. Ultrafilters with small generating sets. Israel journal of mathematics, vol. 65 (1989), pp. 259–271." Journal of Symbolic Logic 57, no. 2 (June 1992): 763–66. http://dx.doi.org/10.2307/2275316.
Full textTurchin, Valentin F. "A constructive interpretation of the full set theory." Journal of Symbolic Logic 52, no. 1 (March 1987): 172–201. http://dx.doi.org/10.2307/2273872.
Full textBALDWIN, JOHN T. "FORMALIZATION, PRIMITIVE CONCEPTS, AND PURITY." Review of Symbolic Logic 6, no. 1 (September 19, 2012): 87–128. http://dx.doi.org/10.1017/s1755020312000263.
Full textPohlers, Wolfram. "Pure Proof Theory Aims, Methods and Results: Extended Version of Talks Given at Oberwolfach and Haifa." Bulletin of Symbolic Logic 2, no. 2 (June 1996): 159–88. http://dx.doi.org/10.2307/421108.
Full textCalude, Cristian S., and Elena Calude. "The complexity of the four colour theorem." LMS Journal of Computation and Mathematics 13 (August 27, 2010): 414–25. http://dx.doi.org/10.1112/s1461157009000461.
Full textDrápal, Aleš. "Richard Laver. The left distributive law and the freeness of an algebra of elementary embeddings. Advances in mathematics, vol. 91 (1992), pp. 209–231. - Richard Laver. A division algorithm for the free left distributive algebra. Logic Colloquium '90, ASL summer meeting in Helsinki, edited by J. Oikkonen and J. Väänänen, Lecture notes in logic, no. 2, Springer-Verlag, Berlin, Heidelberg, New York, etc., 1993, pp. 155–162. - Richard Laver. On the algebra of elementary embeddings of a rank into itself. Advances in mathematics, vol. 110 (1995), pp. 334–346. - Richard Laver. Braid group actions on left distributive structures, and well orderings in the braid groups. Journal of pure and applied algebra, vol. 108 (1996), pp. 81–98. - Patrick Dehornoy. An alternative proof of Laver's results on the algebra generated by an elementary embedding. Set theory of the continuum, edited by H. Judah, W. Just, and H. Woodin, Mathematics Sciences Research Institute publications, vol. 26, Springer-Verlag, New York, Berlin, Heidelberg, etc., 1992, pp. 27–33. - Patrick Dehornoy. Braid groups and left distributive operations. Transactions of the American Mathematical Society, vol. 345 (1994), pp. 115–150. - Patrick Dehornoy. A normal form for the free left distributive law. International journal of algebra and computation, vol. 4 (1994), pp. 499–528. - Patrick Dehornoy. From large cardinals to braids via distributive algebra. Journal of knot theory and its ramifications, vol. 4 (1995), pp. 33–79. - J. R. Steel. The well-foundedness of the Mitchell order. The journal of symbolic logic, vol. 58 (1993), pp. 931–940. - Randall Dougherty. Critical points in an algebra of elementary embeddings. Annals of pure and applied logic, vol. 65 (1993), pp. 211–241. - Randall Dougherty. Critical points in an algebra of elementary embeddings, II. Logic: from foundations to applications, European logic colloquium, edited by Wilfrid Hodges, Martin Hyland, Charles Steinhorn, and John Truss, Clarendon Press, Oxford University Press, Oxford, New York, etc., 1996, pp. 103–136. - Randall Dougherty and Thomas Jech. Finite left-distributive algebras and embedding algebras. Advances in mathematics, vol. 130 (1997), pp. 201–241." Bulletin of Symbolic Logic 8, no. 4 (December 2002): 555–60. http://dx.doi.org/10.2178/bsl/1182353941.
Full textShalack, V. I. "On First-order Theories Which Can Be Represented by Definitions." Logical Investigations 22, no. 1 (March 3, 2016): 125–35. http://dx.doi.org/10.21146/2074-1472-2016-22-1-125-135.
Full textZeman, Martin. "Ernest Schimmerling. Covering properties of core models. Sets and proofs. (Leeds, 1997), London Mathematical Society Lecture Note Series 258. Cambridge University Press, Cambridge, 1999, pp. 281–299. - Peter Koepke. An introduction to extenders and core models for extender sequences. Logic Colloquium '87 (Granada, 1987), Studies in Logic and the Foundations of Mathematics 129. North-Holland, Amsterdam, 1989, pp. 137–182. - William J. Mitchell. The core model up to a Woodin cardinal. Logic, methodology and philosophy of science, IX (Uppsala, 1991), Studies in Logic and the Foundations of Mathematics 134, North-Holland, Amsterdam, 1994, pp. 157–175. - Benedikt Löwe and John R. Steel. An introduction to core model theory. Sets and proofs (Leeds, 1997), London Mathematical Society Lecture Note Series 258, Cambridge University Press, Cambridge, 1999, pp. 103–157. - John R. Steel. Inner models with many Woodin cardinals. Annals of Pure and Applied Logic, vol. 65 no. 2 (1993), pp. 185–209. - Ernest Schimmerling. Combinatorial principles in the core model for one Woodin cardinal. Annals of Pure and Applied Logic, vol. 74 no. 2 (1995), pp. 153–201. - Philip D. Welch. Some remarks on the maximality of inner models. Logic Colloquium '98 (Prague, 1998), Lecture Notes in Logic 13, Association of Symbolic Logic, Urbana, Illinois, 2000, pp. 516–540." Bulletin of Symbolic Logic 10, no. 4 (December 2004): 583–88. http://dx.doi.org/10.1017/s1079898600003681.
Full textKanamori, Akihiro. "Gödel and Set Theory." Bulletin of Symbolic Logic 13, no. 2 (June 2007): 153–88. http://dx.doi.org/10.2178/bsl/1185803804.
Full textRoman’kov, V. A. "Algorithmic theory of solvable groups." Prikladnaya Diskretnaya Matematika, no. 52 (2021): 16–64. http://dx.doi.org/10.17223/20710410/52/2.
Full textAWODEY, STEVE, and MICHAEL A. WARREN. "Homotopy theoretic models of identity types." Mathematical Proceedings of the Cambridge Philosophical Society 146, no. 1 (January 2009): 45–55. http://dx.doi.org/10.1017/s0305004108001783.
Full textOvsyak, V. K., O. V. Ovsyak, and J. V. Petruszka. "ORDER AND ORDERING IN DISCRETE MATHEMATICS AND INFORMATICS." Ukrainian Journal of Information Technology 3, no. 1 (2021): 37–43. http://dx.doi.org/10.23939/ujit2021.03.037.
Full textHarnik, Victor. "Stability theory and set existence axioms." Journal of Symbolic Logic 50, no. 1 (March 1985): 123–37. http://dx.doi.org/10.2307/2273795.
Full textHUET, GÉRARD. "Special issue on ‘Logical frameworks and metalanguages’." Journal of Functional Programming 13, no. 2 (March 2003): 257–60. http://dx.doi.org/10.1017/s0956796802004549.
Full textSieg, Wilfried. "Hilbert's Programs: 1917–1922." Bulletin of Symbolic Logic 5, no. 1 (March 1999): 1–44. http://dx.doi.org/10.2307/421139.
Full textQudrat-I Elahi, Khandakar. "A difficulty in Arrow’s impossibility theorem." International Journal of Social Economics 44, no. 12 (December 4, 2017): 1609–21. http://dx.doi.org/10.1108/ijse-02-2016-0065.
Full textWang, Xiao Gang. "Significance of Mathematization of Philosophical Problems from the Angle of Broadspectrum Philosophy." Advanced Materials Research 433-440 (January 2012): 6315–18. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.6315.
Full textYasuhara, M. "Peter B. Andrews. An introduction to mathematical logic and type theory: to truth through proof. Computer science and applied mathematics. Academic Press, Orlando etc. 1986, xv + 304 pp." Journal of Symbolic Logic 53, no. 1 (March 1988): 312–14. http://dx.doi.org/10.1017/s0022481200029194.
Full textGabbay, Murdoch J. "Foundations of Nominal Techniques: Logic and Semantics of Variables in Abstract Syntax." Bulletin of Symbolic Logic 17, no. 2 (June 2011): 161–229. http://dx.doi.org/10.2178/bsl/1305810911.
Full textKierstead, Henry A. "G. Metakides and A. Nerode. Recursion theory and algebra. Algebra and logic, Papers from the 1974 Summer Research Institute of the Australian Mathematical Society, Monash University, Australia, edited by J. N. Crossley, Lecture notes in mathematics, vol. 450, Springer-Verlag, Berlin, Heidelberg, and New York, 1975, pp. 209–219. - Iraj Kalantari and Allen Retzlaff. Maximal vector spaces under automorphisms of the lattice of recursively enumerable vector spaces. The journal of symbolic logic, vol. 42 no. 4 (for 1977, pub. 1978), pp. 481–491. - Iraj Kalantari. Major subspaces of recursively enumerable vector spaces. The journal of symbolic logic, vol. 43 (1978), pp. 293–303. - J. Remmel. A r-maximal vector space not contained in any maximal vector space. The journal of symbolic logic, vol. 43 (1978), pp. 430–441. - Allen Retzlaff. Simple and hyperhypersimple vector spaces. The journal of symbolic logic, vol. 43 (1978), pp. 260–269. - J. B. Remmel. Maximal and cohesive vector spaces. The journal of symbolic logic, vol. 42 no. 3 (for 1977, pub. 1978), pp. 400–418. - J. Remmel. On r.e. and co-r.e. vector spaces with nonextendible bases. The journal of symbolic logic, vol. 45 (1980), pp. 20–34. - M. Lerman and J. B. Remmel. The universal splitting property: I. Logic Colloquim '80, Papers intended for the European summer meeting of the Association for Symbolic Logic, edited by D. van Dalen, D. Lascar, and T. J. Smiley, Studies in logic and the foundations of mathematics, vol. 108, North-Holland Publishing Company, Amsterdam, New York, and Oxford, 1982, pp. 181–207. - J. B. Remmel. Recursively enumerable Boolean algebras. Annals of mathematical logic, vol. 15 (1978), pp. 75–107. - J. B. Remmel. r-Maximal Boolean algebras. The journal of symbolic logic, vol. 44 (1979), pp. 533–548. - J. B. Remmel. Recursion theory on algebraic structures with independent sets. Annals of mathematical logic, vol. 18 (1980), pp. 153–191. - G. Metakides and J. B. Remmel. Recursion theory on orderings. I. A model theoretic setting. The journal of symbolic logic, vol. 44 (1979), pp. 383–402. - J. B. Remmel. Recursion theory on orderings. II. The journal of symbolic logic, vol. 45 (1980), pp. 317–333." Journal of Symbolic Logic 51, no. 1 (March 1986): 229–32. http://dx.doi.org/10.2307/2273960.
Full textLerman, M. "Carl G. JockuschJr., and David B. Posner. Double jumps of minimal degrees. The journal of symbolic logic, vol. 43 no. 4 (for 1978, pub. 1979), pp. 715–724. - Carl G. JockuschJr., and David B. Posner. Automorphism bases for degrees of unsotvability. Israel journal of mathematics, vol. 40 (1981), pp. 150–164. - Richard L. Epstein. Initial segments of degrees below 0′. Memoirs of the American Mathematical Society, no. 241. American Mathematical Society, Providence1981, vi + 102 pp. - Richard A. Shore. The theory of the degrees below 0′. The journal of the London Mathematical Society, ser. 2 vol. 24 (1981), pp. 1–14." Journal of Symbolic Logic 50, no. 2 (June 1985): 550–52. http://dx.doi.org/10.2307/2274245.
Full textKossak, Roman. "James H. Schmerl. Peano models with many generic classes. Pacific Journal of Mathematics, vol. 43 (1973), pp. 523–536. - James H. Schmerl. Correction to: “Peano models with many generic classes”. Pacific Journal of Mathematics, vol. 92 (1981), no. 1, pp. 195–198. - James H. Schmerl. Recursively saturated, rather classless models of Peano arithmetic. Logic Year 1979–80. Recursively saturated, rather classless models of Peano arithmetic. Logic Year 1979–80 (Proceedings, Seminars, and Conferences in Mathematical Logic, University of Connecticut, Storrs, Connecticut, 1979/80). edited by M. Lerman, J. H. Schmerl, and R. I. Soare, Lecture Notes in Mathematics, vol. 859. Springer, Berlin, pp. 268–282. - James H. Schmerl. Recursively saturatedmodels generated by indiscernibles. Notre Dane Journal of Formal Logic, vol. 26 (1985), no. 1, pp. 99–105. - James H. Schmerl. Large resplendent models generated by indiscernibles. The Journal of Symbolic Logic, vol. 54 (1989), no. 4, pp. 1382–1388. - James H. Schmerl. Automorphism groups of models of Peano arithmetic. The Journal of Symbolic Logic, vol. 67 (2002), no. 4, pp. 1249–1264. - James H. Schmerl. Diversity in substructures. Nonstandard models of arithmetic and set theory. edited by A. Enayat and R. Kossak, Contemporary Mathematics, vol. 361, American Mathematical Societey (2004), pp. 45–161. - James H. Schmerl. Generic automorphisms and graph coloring. Discrete Mathematics, vol. 291 (2005), no. 1–3, pp. 235–242. - James H. Schmerl. Nondiversity in substructures. The Journal of Symbolic Logic, vol. 73 (2008), no. 1, pp. 193–211." Bulletin of Symbolic Logic 15, no. 2 (June 2009): 222–27. http://dx.doi.org/10.1017/s1079898600001359.
Full textLubarsky, Robert. "Patrick Farrington. Hinges and automorphisms of the degrees of non-constructibility. The journal of the London Mathematical Society, ser. 2 vol. 28 (1983), pp. 193–202. - Petr Hájek. Some results on degrees of constructibility. Higher set theory, Proceedings, Oberwolfach, Germany, April 13–23, 1977, edited by G. H. Müller and D. S. Scott, Lecture notes in mathematics, vol. 669, Springer-Verlag, Berlin, Heidelberg, and New York, 1978, pp. 55–71. - Zofia Adamowicz. On finite lattices of degrees of constructibility of reals. The journal of symbolic logic, vol. 41 (1976), pp. 313–322. - Zofia Adamowicz. Constructive semi-lattices of degrees of constructibility. Set theory and hierarchy theory V, Bierutowice, Poland 1976, edited by A. Lachlan, M. Srebrny, and A. Zarach, Lecture notes in mathematics, vol. 619, Springer-Verlag, Berlin, Heidelberg, and New York, 1977, pp. 1–43." Journal of Symbolic Logic 54, no. 3 (September 1989): 1109–11. http://dx.doi.org/10.2307/2274781.
Full textJockusch, Carl. "Richard A. Shore. Determining automorphisms of the recursively enumerable sets. Proceedings of the American Mathematical Society, vol. 65 (1977), pp. 318– 325. - Richard A. Shore. The homogeneity conjecture. Proceedings of the National Academy of Sciences of the United States of America, vol. 76 (1979), pp. 4218– 4219. - Richard A. Shore. On homogeneity and definability in the first-order theory of the Turing degrees. The journal of symbolic logic, vol. 47 (1982), pp. 8– 16. - Richard A. Shore. The arithmetic and Turing degrees are not elementarily equivalent. Archiv für mathematische Logik und Grundlagenforschung, vol. 24 (1984), pp. 137– 139. - Richard A. Shore. The structure of the degrees of unsolvabitity. Recursion theory, edited by Anil Nerode and Richard A. Shore, Proceedings of symposia in pure mathematics, vol. 42, American Mathematical Society, Providence1985, pp. 33– 51. - Theodore A. Slaman and W. Hugh Woodin. Definability in the Turing degrees. Illinois journal of mathematics, vol. 30 (1986), pp. 320– 334." Journal of Symbolic Logic 55, no. 1 (March 1990): 358–60. http://dx.doi.org/10.2307/2274995.
Full textBecker, Howard S. "R. Dougherty and A. S. Kechris. Hausdorff measures and sets of uniqueness for trigonometric series. Proceedings of the American Mathematical Society, vol. 105 (1989), pp. 894–897. - Alexander S. Kechris and Alain Louveau. Covering theorems for uniqueness and extended uniqueness sets. Colloquium mathematicum, vol. 59 (1990), pp. 63–79. - Alexander S. Kechris. Hereditary properties of the class of closed sets of uniqueness for trigonometric series. Israel journal of mathematics, vol. 73 (1991), pp. 189–198. - A. S. Kechris and A. Louveau. Descriptive set theory and harmonic analysis. The journal of symbolic logic, vol. 57 (1992), pp. 413–441." Bulletin of Symbolic Logic 8, no. 1 (March 2002): 94–95. http://dx.doi.org/10.2178/bsl/1182353856.
Full textRessayre, J. P. "Jon Barwise and John Schlipf. On recursively saturated models of arithmetic. Model theory and algebra, A memorial tribute to Abraham Robinson, edited by D. H. Saracino and V. B. Weispfenning, Lecture notes in mathematics, vol. 498, Springer-Verlag, Berlin, Heidelberg, and New York, 1975, pp. 42–55. - Patrick Cegielski, Kenneth McAloon, and George Wilmers. Modèles récursivement saturés de l'addition et de la multiplication des entiers naturels. Logic Colloquium '80, Papers intended for the European summer meeting of the Association for Symbolic Logic, edited by D. van Dalen, D. Lascar, and T. J. Smiley, Studies in logic and the foundations of mathematics, vol. 108, North-Holland Publishing Company, Amsterdam, New York, and London, 1982, pp. 57–68. - Julia F. Knight. Theories whose resplendent models are homogeneous. Israel journal of mathematics, vol. 42 (1982), pp. 151–161. - Julia Knight and Mark Nadel. Expansions of models and Turing degrees. The journal of symbolic logic, vol. 47 (1982), pp. 587–604. - Julia Knight and Mark Nadel. Models of arithmetic and closed ideals. The journal of symbolic logic, vol. 47 no. 4 (for 1982, pub. 1983), pp. 833–840. - Henryk Kotlarski. On elementary cuts in models of arithmetic. Fundamenta mathematicae, vol. 115 (1983), pp. 27–31. - H. Kotlarski, S. Krajewski, and A. H. Lachlan. Construction of satisfaction classes for nonstandard models. Canadian mathematical bulletin—Bulletin canadien de mathématiques, vol. 24 (1981), pp. 283–293. - A. H. Lachlan. Full satisfaction classes and recursive saturation. Canadian mathematical bulletin—Bulletin canadien de mathématiques, pp. 295–297. - Leonard Lipshitz and Mark Nadel. The additive structure of models of arithmetic. Proceedings of the American Mathematical Society, vol. 68 (1978), pp. 331–336. - Mark Nadel. On a problem of MacDowell and Specker. The journal of symbolic logic, vol. 45 (1980), pp. 612–622. - C. Smoryński. Back-and-forth inside a recursively saturated model of arithmetic. Logic Colloquium '80, Papers intended for the European summer meeting of the Association for Symbolic Logic, edited by D. van Dalen, D. Lascar, and T. J. Smiley, Studies in logic and the foundations of mathematics, vol. 108, North-Holland Publishing Company, Amsterdam, New York, and London, 1982, pp. 273–278. - C. Smoryński and J. Stavi. Cofinal extension preserves recursive saturation. Model theory of algebra and arithmetic, Proceedings of the Conference on Applications of Logic to Algebra and Arithmetic held at Karpacz, Poland, September 1–7,1979, edited by L. Pacholski, J. Wierzejewski, and A. J. Wilkie, Lecture notes in mathematics, vol. 834, Springer-Verlag, Berlin, Heidelberg, and New York, 1980, pp. 338–345. - George Wilmers. Minimally saturated models. Model theory of algebra and arithmetic, Proceedings of the Conference on Applications of Logic to Algebra and Arithmetic held at Karpacz, Poland, September 1–7, 1979, edited by L. Pacholski, J. Wierzejewski, and A. J. Wilkie, Lecture notes in mathematics, vol. 834, Springer-Verlag, Berlin, Heidelberg, and New York, 1980, pp. 370–380." Journal of Symbolic Logic 52, no. 1 (March 1987): 279–84. http://dx.doi.org/10.2307/2273884.
Full textCherlin, Gregory L. "Angus Macintyre, Kenneth McKenna, and Lou van den Dries. Elimination of quantifiers in algebraic structures. Advances in mathematics, vol. 47 (1983), pp. 74–87. - L. P. D. van den Dries. A linearly ordered ring whose theory admits elimination of quantifiers is a real closed field. Proceedings of the American Mathematical Society, vol. 79 (1980), pp. 97–100. - Bruce I. Rose. Rings which admit elimination of quantifiers. The journal of symbolic logic, vol. 43 (1978), pp. 92–112; Corrigendum, vol. 44 (1979), pp. 109–110. - Chantal Berline. Rings which admit elimination of quantifiers. The journal of symbolic logic, vol. 43 (1978), vol. 46 (1981), pp. 56–58. - M. Boffa, A. Macintyre, and F. Point. The quantifier elimination problem for rings without nilpotent elements and for semi-simple rings. Model theory of algebra and arithmetic, Proceedings of the Conference on Applications of Logic to Algebra and Arithmetic held at Karpacz, Poland, September 1–7, 1979, edited by L. Pacholski, J. Wierzejewski, and A. J. Wilkie, Lecture notes in mathematics, vol. 834, Springer-Verlag, Berlin, Heidelberg, and New York, 1980, pp. 20–30. - Chantal Berline. Elimination of quantifiers for non semi-simple rings of characteristic p. Model theory of algebra and arithmetic, Proceedings of the Conference on Applications of Logic to Algebra and Arithmetic held at Karpacz, Poland, September 1–7, 1979, edited by L. Pacholski, J. Wierzejewski, and A. J. Wilkie, Lecture notes in mathematics, vol. 834, Springer-Verlag, Berlin, Heidelberg, and New York, 1980, pp. 10–19." Journal of Symbolic Logic 50, no. 4 (December 1985): 1079–80. http://dx.doi.org/10.2307/2273998.
Full textBaumgartner, James E. "Edwin W. Miller. On a property of families of sets. English with Polish summary. Sprawozdania z posiedzeń Towarzystwa Naukowego Warszawskiego (Comptes rendus des séances de la Société des Sciences et des Lettres de Varsovie), Class III, vol. 30 (1937), pp. 31–38. - Ben Dushnik and Miller E. W.. Partially ordered sets. American journal of mathematics, vol. 63 (1941), pp. 600–610. - P. Erdős. Some set-theoretical properties of graphs. Revista, Universidad Nacional de Tucumán, Serie A, Matemáticas y física teórica, vol. 3 (1942), pp. 363–367. - G. Fodor. Proof of a conjecture of P. Erdős. Acta scientiarum mathematicarum, vol. 14 no. 4 (1952), pp. 219–227. - P. Erdős and Rado R.. A partition calculus in set theory. Bulletin of the American Mathematical Society, vol. 62 (1956), pp. 427–489. - P. Erdős and Rado R.. Intersection theorems for systems of sets. The journal of the London Mathematical Society, vol. 35 (1960), pp. 85–90. - A. Hajnal. Some results and problems on set theory. Acta mathematica Academiae Scientiarum Hungaricae, vol. 11 (1960), pp. 277–298. - P. Erdős and Hajnal A.. On a property of families of sets. Acta mathematica Academiae Scientiarum Hungaricae, vol. 12 (1961), pp. 87–123. - A. Hajnal. Proof of a conjecture of S. Ruziewicz. Fundamenta mathematicae, vol. 50 (1961), pp. 123–128. - P. Erdős, Hajnal A. and Rado R.. Partition relations for cardinal numbers. Acta mathematica Academiae Scientiarum Hungaricae, vol. 16 (1965), pp. 93–196. - P. Erdős and Hajnal A.. On a problem of B. Jónsson. Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques, vol. 14 (1966), pp. 19–23. - P. Erdős and Hajnal A.. On chromatic number of graphs and set-systems. Acta mathematica Academiae Scientiarum Hungaricae, vol. 17 (1966), pp. 61–99." Journal of Symbolic Logic 60, no. 2 (June 1995): 698–701. http://dx.doi.org/10.2307/2275868.
Full textYaacov, Itaï Ben. "Ilijas Farah, Bradd Hart, and David Sherman. Model theory of operator algebras I: stability. Bulletin of the London Mathematical Society, vol. 45 (2013), no. 4, pp. 825–838, doi:10.1112/blms/bdt014. - Ilijas Farah, Bradd Hart, and David Sherman. Model theory of operator algebras II: model theory. Israel Journal of Mathematics, vol. 201 (2014), no. 1, pp. 477–505, doi:10.1007/s11856-014-1046-7. - Ilijas Farah, Bradd Hart, and David Sherman. Model theory of operator algebras III: elementary equivalence and II1factors. Bulletin of the London Mathematical Society, vol. 46 (2014), no. 3, pp. 609–628, doi:10.1112/blms/bdu012. - Isaac Goldbring, Bradd Hart, and Thomas Sinclair. The theory of tracial von Neumann algebras does not have a model companion. Journal of Symbolic Logic, vol. 78 (2013), no. 3, pp. 1000–1004." Bulletin of Symbolic Logic 21, no. 4 (December 2015): 425–27. http://dx.doi.org/10.1017/bsl.2015.32.
Full textLouveau, Alain. "Jack H. Silver. Counting the number of equivalence classes of Borel and coanalytic equivalence relations. Annals of mathematical logic, vol. 18 (1980), pp. 1–28. - John P. Burgess. Equivalences generated by families of Borel sets. Proceedings of the American Mathematical Society. vol. 69 (1978), pp. 323–326. - John P. Burgess. A reflection phenomenon in descriptive set theory. Fundamenta mathematicae. vol. 104 (1979), pp. 127–139. - L. Harrington and R. Sami. Equivalence relations, projective and beyond. Logic Colloquium '78, Proceedings of the Colloquium held in Mons, August 1978, edited by Maurice Boffa, Dirk van Dalen, and Kenneth McAloon, Studies in logic and the foundations of mathematics, vol. 97, North-Holland Publishing Company, Amsterdam, New York, and Oxford, 1979, pp. 247–264. - Leo Harrington and Saharon Shelah. Counting equivalence classes for co-κ-Souslin equivalence relations. Logic Colloquium '80, Papers intended for the European summer meeting of the Association for Symbolic Logic, edited by D. van Dalen, D. Lascar, and T. J. Smiley, Studies in logic and the foundations of mathematics, vol. 108, North-Holland Publishing Company, Amsterdam, New York, and Oxford, 1982, pp. 147–152. - Jacques Stern. On Lusin's restricted continuum problem. Annals of mathematics, ser. 2 vol. 120 (1984), pp. 7–37." Journal of Symbolic Logic 52, no. 3 (September 1987): 869–70. http://dx.doi.org/10.1017/s0022481200029856.
Full textBencivenga, Ermanno. "Hugues Leblanc. Preface. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. ix–x. - Hugues Leblanc. Introduction. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 3–16. - Hugues Leblanc and T. Hailperin. Non-designating singular terms. A revised reprint of XXV 87. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 17–21. - Hugues Leblanc and R. H. Thomason. Completeness theorems for some presupposition-free logics. A revised reprint of XXXVII 424. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 22–57. - Hugues Leblanc and R. K. Meyer. On prefacing (∀x) ⊃ A(Y/X) with (∀Y): a free quantification theory without identity. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 58–75. (Reprinted with revisions from Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 16 (1970), pp. 447–462. - Hugues Leblanc. Truth-value semantics for a logic of existence. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 76–90. (Reprinted with revisions from Notre Dame journal of formal logic, vol. 12 (1971), pp. 153–168.) - Hugues Leblanc and R. K. Meyer. Open formulas and the empty domain. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 91–98. (Reprinted from Archiv für mathematische Logik und Grundlagenforschung, vol. 12 (1969), pp. 78–84.) - K. Lambert, Hugues Leblanc, and R. K. Meyer. A liberated version of S5. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 99–102. (Reprinted with revisions from Archiv für mathematische Logik und Grundlagenforschung, vol. 12 (1969), pp. 151–154.) - Hugues Leblanc. On dispensing with things and worlds. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 103–119. (Reprinted with revisions from Logic and ontology, edited by Milton K. Munitz, New York University Press, New York 1973, pp. 241–259.) - Hugues Leblanc. Introduction. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 123–138. - Hugues Leblanc. A simplified account of validity and implication for quantificational logic. A revised reprint of XXXV 466. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 139–143. - Hugues Leblanc. A simplified strong completeness proof for QC=. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 144–155. (Reprinted with minor revisions from Akten des XIV. Internationalen Kongresses für Philosophie Wien, 2.-9. September 1968, vol. 3, Logik Erkenntnis- und Wissenschaftstheorie Sprachphilosophie Ontologie und Metaphysik, Universität Wien, Herder, Vienna 1969, pp. 83–96.) - Hugues Leblanc. Truth-value assignments and their cardinality. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 156–165. (Reprinted with revisions from Philosophia, vol. 7 (1978), pp. 305–316.) - Hugues Leblanc. Three generalizations of a theorem of Beth's. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 166–176. (Reprinted with revisions from Logique et analyse, n.s. vol. 12 (1969), pp. 205–220.) - Hugues Leblanc and R. K. Meyer. Truth-value semantics for the theory of types. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 177–197. (Reprinted with revisions from Philosophical problems in logic, Some recent developments, edited by Karel Lambert, Synthese library, D. Reidel Publishing Company, Dordrecht 1970, pp. 77–101.) - Hugues Leblanc. Wittgenstein and the truth-functionality thesis. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 198–204. (Reprinted with revisions from American philosophical quarterly, vol. 9 (1972), pp. 271–274.) - Hugues Leblanc. Matters of relevance. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 205–219. (Reprinted from Journal of philosophical logic, vol. 1 (1972), pp. 269–286. Also reprinted in Exact philosophy, Problems, tools, and goals, edited by Mario Bunge, Synthese library, D. Reidel Publishing Company, Dordrecht and Boston 1973, pp. 3–20.) - Hugues Leblanc and G. Weaver. Truth-functionality and the ramified theory of types. A revised reprint of XLII 313. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 220–235. - Hugues Leblanc. That Principia mathematica, first edition, has a predicative interpretation after all. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 236–239. (Reprinted with revisions from Journal of philosophical logic, vol. 4 (1975), pp. 67–70.) - H. Goldberg, Hugues Leblanc, and G. Weaver. A strong completeness theorem for three-valued logic: part I. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 240–246. (Reprinted with revisions from Notre Dame journal of formal logic, vol. 15 (1974), pp. 325–330.) - Hugues Leblanc. A strong completeness theorem for three-valued logic: part II. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 247–257. (Reprinted with revisions from Notre Dame journal of formal logic, vol. 18 (1977), pp. 107–116.) - Hugues Leblanc and R. P. McArthur. A completeness result for quantificational tense logic. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 258–266. (Reprinted with revisions from Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 22 (1976), pp. 89–96.) - Hugues Leblanc. Semantic deviations. A revised reprint of XLII 313. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 267–280. - Hugues Leblanc. Introduction. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 283–292. - Hugues Leblanc. Marginalia on Gentzen's Sequenzen-Kalkulë. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 293–300. (Reprinted with revisions from Contributions to logic and methodology in honor of J. M. Bocheński, edited by Anna-Teresa Tymieniecka in collaboration with Charles Parsons, North-Holland Publishing Company, Amsterdam 1965, pp. 73–83.) - Hugues Leblanc. Structural rules of inference. A revised reprint of XXVIII 256. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 301–305. - Hugues Leblanc. Proof routines for the propositional calculus. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 306–327. (Reprinted with revisions from Notre Dame journal of formal logic, vol. 4 (1963), pp. 81–104.) - Hugues Leblanc. Two separation theorems for natural deduction. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 328–349. (Reprinted with revisions from Notre Dame journal of formal logic, vol. 7 (1966), pp. 159–180.) - Hugues Leblanc. Two shortcomings of natural deduction. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 350–357. (Reprinted with revisions from The journal of philosophy, vol. 63 (1966), pp. 29–37.) - Hugues Leblanc. Subformula theorems for N-sequents. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 358–381. (Reprinted with minor revisions from The journal of symbolic logic, vol. 33 (1968), pp. 161–179.) - E. W. Beth and Hugues Leblanc. A note on the intuitionist and the classical propositional calculus. A revised reprint of XXV 351. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 382–384. - Hugues Leblanc and N. D. Belnap Jr. Intuitionism reconsidered. A revised reprint of XXVIII 256. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 385–389. - N. D. BelnapJr., Hugues Leblanc, and R. H. Thomason. On not strengthening intuitionistic logic. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 390–396. (Reprinted with revisions from Notre Dame journal of formal logic, vol. 4 no. 4 (for 1963, pub. 1964), pp. 313–320.) - Hugues Leblanc and R. H. Thomason. The demarcation line between intuitionist logic and classical logic. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 397–403. (Reprinted with revisions from Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 12 (1966), pp. 257–262.) - Hugues Leblanc. Boolean algebra and the propositional calculus. A revised reprint of XXXVII 755. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 404–407. - Hugues Leblanc. The algebra of logic and the theory of deduction. A revised reprint of XXXVII 755. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 408–413. - Hugues Leblanc and R. H. Thomason. All or none: a novel choice of primitives for elementary logic. A revised reprint of XXXIV 124. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 414–421. - Hugues Leblanc and R. K. Meyer. Matters of separation. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 422–430. (Reprinted with revisions from Notre Dame journal of formal logic, vol. 13 (1972), pp. 229–236.) - Hugues Leblanc. Generalization in first-order logic. Existence, truth, and provability, by Hugues Leblanc, State University of New York Press, Albany1982, pp. 431–452. (Reprinted with revisions from Notre Dame journal of formal logic, vol. 20 (1979), pp. 835–857.)." Journal of Symbolic Logic 50, no. 1 (March 1985): 227–31. http://dx.doi.org/10.2307/2273801.
Full text"IVAN SLESHYNSKY AS A POPULARIZER OF THE IDEAS OF MATHEMATICAL LOGIC IN UKRAINE." Journal of V. N. Karazin Kharkiv National University, Series "Philosophy. Philosophical Peripeteias", no. 62 (2020): 99–107. http://dx.doi.org/10.26565/2226-0994-2020-62-11.
Full textBuss, Samuel, Helmut Schwichtenberg, and Ulrich Kohlenbach. "Mathematical Logic: Proof Theory, Constructive Mathematics." Oberwolfach Reports, 2008, 907–52. http://dx.doi.org/10.4171/owr/2008/18.
Full textSchwichtenberg, Helmut, Vladimir Keilis-Borok, and Samuel Buss. "Mathematical Logic: Proof Theory, Type Theory and Constructive Mathematics." Oberwolfach Reports, 2005, 779–813. http://dx.doi.org/10.4171/owr/2005/14.
Full textSIEG, WILFRIED, and PATRICK WALSH. "NATURAL FORMALIZATION: DERIVING THE CANTOR-BERNSTEIN THEOREM IN ZF." Review of Symbolic Logic, November 18, 2019, 1–35. http://dx.doi.org/10.1017/s175502031900056x.
Full textSümmermann, Moritz Lucius, Daniel Sommerhoff, and Benjamin Rott. "Mathematics in the Digital Age: The Case of Simulation-Based Proofs." International Journal of Research in Undergraduate Mathematics Education, February 15, 2021. http://dx.doi.org/10.1007/s40753-020-00125-6.
Full textStrauss, Daniel Francois. "The Fall and Original Sin of Set Theory." Phronimon 19 (January 10, 2019). http://dx.doi.org/10.25159/2413-3086/4983.
Full textKusraev, A. G., and S. S. Kutateladze. "Приглашение в булевозначный анализ." Владикавказский математический журнал, no. 2 (July 4, 2018). http://dx.doi.org/10.23671/vnc.2018.2.14723.
Full textBarnet, Belinda. "Machinic Heterogenesis and Evolution." M/C Journal 2, no. 6 (September 1, 1999). http://dx.doi.org/10.5204/mcj.1789.
Full text