Academic literature on the topic 'Mathematics-Topology - Fractals'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mathematics-Topology - Fractals.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mathematics-Topology - Fractals"

1

LAPIDUS, MICHEL L. "FRACTALS AND VIBRATIONS: CAN YOU HEAR THE SHAPE OF A FRACTAL DRUM?" Fractals 03, no. 04 (December 1995): 725–36. http://dx.doi.org/10.1142/s0218348x95000643.

Full text
Abstract:
We study various aspects of the question “Can one hear the shape of a fractal drum?”, both for “drums with fractal boundary” (or “surface fractals”) and for “drums with fractal membrane” (or “mass fractals”).
APA, Harvard, Vancouver, ISO, and other styles
2

Semkow, Thomas M. "Neighborhood Volume for Bounded, Locally Self-Similar Fractals." Fractals 05, no. 01 (March 1997): 23–33. http://dx.doi.org/10.1142/s0218348x97000048.

Full text
Abstract:
We derive the formulas for neighborhood volume (Minkowski volume in d-dimensions) for fractals which have a curvature bias and are thus bounded. Both local surface fractal dimension and local mass fractal dimension are included as well as a radius of the neighborhood volume comparable with the size of the fractal. We consider two types of the neighborhood volumes: simplified and generalized, as well as the volumes below and above the fractal boundary. The formulas derived are generalizations of the equations for isotropic unbounded fractals. Based on the simplified-volume concept, we establish the procedure for calculating a distribution of physical quantities on bounded fractals and apply it to the distribution of trace elements in soil particles. Using the concept of the generalized volume, we show how an expectation value of a physical process can be calculated on bounded fractals, and apply it to the radon emanation from solid particles.
APA, Harvard, Vancouver, ISO, and other styles
3

BAK, PER, and MAYA PACZUSKI. "THE DYNAMICS OF FRACTALS." Fractals 03, no. 03 (September 1995): 415–29. http://dx.doi.org/10.1142/s0218348x95000345.

Full text
Abstract:
Fractals are formed by avalanches, driving the system toward a critical state. This critical state is a fractal in d spatial plus one temporal dimension. Long range spatial and temporal properties are described by different cuts in this fractal attractor. We unify the origin of fractals, 1/f noise, Hurst exponents, Levy flights, and punctuated equilibria in terms of avalanche dynamics, and elucidate their relationships through analytical and numerical studies of simple models.
APA, Harvard, Vancouver, ISO, and other styles
4

ZHANG, XIN-MIN, L. RICHARD HITT, BIN WANG, and JIU DING. "SIERPIŃSKI PEDAL TRIANGLES." Fractals 16, no. 02 (June 2008): 141–50. http://dx.doi.org/10.1142/s0218348x08003934.

Full text
Abstract:
We generalize the construction of the ordinary Sierpiński triangle to obtain a two-parameter family of fractals we call Sierpiński pedal triangles. These fractals are obtained from a given triangle by recursively deleting the associated pedal triangles in a manner analogous to the construction of the ordinary Sierpiński triangle, but their fractal dimensions depend on the choice of the initial triangles. In this paper, we discuss the fractal dimensions of the Sierpiński pedal triangles and the related area ratio problem, and provide some computer-generated graphs of the fractals.
APA, Harvard, Vancouver, ISO, and other styles
5

LI, WEN XIA. "THE DIMENSION OF SETS DETERMINED BY THEIR CODE BEHAVIOR." Fractals 11, no. 04 (December 2003): 345–52. http://dx.doi.org/10.1142/s0218348x0300218x.

Full text
Abstract:
By prescribing their code run behavior, we consider some subsets of Moran fractals. Fractal dimensions of these subsets are exactly obtained. Meanwhile, an interesting decomposition of Moran fractals is given.
APA, Harvard, Vancouver, ISO, and other styles
6

CHEN, YAN-GUANG. "FRACTAL TEXTURE AND STRUCTURE OF CENTRAL PLACE SYSTEMS." Fractals 28, no. 01 (February 2020): 2050008. http://dx.doi.org/10.1142/s0218348x20500085.

Full text
Abstract:
The boundaries of central place models proved to be fractal lines, which compose fractal texture of central place networks. However, the fractal texture cannot be verified by empirical analyses based on observed data. On the other hand, fractal structure of central place systems in the real world can be empirically confirmed by positive studies, but there are no corresponding models. The spatial structure of classic central place models bears Euclidean dimension [Formula: see text] rather than fractal dimensions [Formula: see text]. This paper is devoted to deriving structural fractals of central place models from the textural fractals. The method is theoretical deduction based on the dimension rules of fractal sets. The main results and findings are as follows. First, the central place fractals were formulated by the [Formula: see text] numbers and [Formula: see text] numbers. Second, three structural fractal models were constructed for central place systems according to the corresponding fractal dimensions. Third, the classic central place models proved to comprise Koch snowflake curve, Sierpinski space filling curve, and Gosper snowflake curve. Moreover, the traffic principle plays a leading role in urban and rural settlements evolution. A conclusion was reached that the textural fractal dimensions of central place models can be converted into the structural fractal dimensions and vice versa, and the structural dimensions can be directly used to appraise human settlement distributions in reality. Thus, the textural fractals can be indirectly employed to characterize the systems of human settlements.
APA, Harvard, Vancouver, ISO, and other styles
7

DEMÍR, BÜNYAMIN, ALI DENÍZ, ŞAHIN KOÇAK, and A. ERSIN ÜREYEN. "TUBE FORMULAS FOR GRAPH-DIRECTED FRACTALS." Fractals 18, no. 03 (September 2010): 349–61. http://dx.doi.org/10.1142/s0218348x10004919.

Full text
Abstract:
Lapidus and Pearse proved recently an interesting formula about the volume of tubular neighborhoods of fractal sprays, including the self-similar fractals. We consider the graph-directed fractals in the sense of graph self-similarity of Mauldin-Williams within this framework of Lapidus-Pearse. Extending the notion of complex dimensions to the graph-directed fractals we compute the volumes of tubular neighborhoods of their associated tilings and give a simplified and pointwise proof of a version of Lapidus-Pearse formula, which can be applied to both self-similar and graph-directed fractals.
APA, Harvard, Vancouver, ISO, and other styles
8

XIANG, ZHIYANG, KAI-QING ZHOU, and YIBO GUO. "GAUSSIAN MIXTURE NOISED RANDOM FRACTALS WITH ADVERSARIAL LEARNING FOR AUTOMATED CREATION OF VISUAL OBJECTS." Fractals 28, no. 04 (June 2020): 2050068. http://dx.doi.org/10.1142/s0218348x20500681.

Full text
Abstract:
Because of the self-similarity properties of nature, fractals are widely adopted as generators of natural object multimedia contents. Unfortunately, fractals are difficult to control due to their iterated function systems, and traditional researches on fractal generating visual objects focus on mathematical manipulations. In Generative Adversarial Nets (GANs), visual object generators can be automatically guided by a single image. In this work, we explore the problem of guiding fractal generators with GAN. We assume that the same category of fractal patterns is produced by a group of parameters of initial patterns, affine transformations and random noises. Connections between these fractal parameters and visual objects are modeled by a Gaussian mixture model (GMM). Generator trainings are performed as gradients on GMM instead of fractals, so that evaluation numbers of iterated function systems are minimized. The proposed model requires no mathematical expertise from the user because parameters are trained by automatic procedures of GMM and GAN. Experiments include one 2D demonstration and three 3D real-world applications, where high-resolution visual objects are generated, and a user study shows the effectiveness of artificial intelligence guidances on fractals.
APA, Harvard, Vancouver, ISO, and other styles
9

CRISTEA, LIGIA L., and PAUL SURER. "TRIANGULAR LABYRINTH FRACTALS." Fractals 27, no. 08 (December 2019): 1950131. http://dx.doi.org/10.1142/s0218348x19501317.

Full text
Abstract:
We define and study a class of fractal dendrites called triangular labyrinth fractals. For the construction, we use triangular labyrinth pattern systems, consisting of two triangular patterns: a white and a yellow one. Correspondingly, we have two fractals: a white and a yellow one. The fractals studied here are self-similar, and fit into the framework of graph directed constructions. The main results consist in showing how special families of triangular labyrinth patterns systems, which are defined based on some shape features, can generate exactly three types of dendrites: labyrinth fractals where all nontrivial arcs have infinite length, fractals where all nontrivial arcs have finite length, or fractals where the only arcs of finite lengths are line segments parallel to a certain direction. We also study the existence of tangents to arcs. The paper is inspired by research done on labyrinth fractals in the unit square that have been studied during the last decade. In the triangular case, due to the geometry of triangular shapes, some new techniques and ideas are necessary in order to obtain the results.
APA, Harvard, Vancouver, ISO, and other styles
10

LAI, PENG-JEN. "HOW TO MAKE FRACTAL TILINGS AND FRACTAL REPTILES." Fractals 17, no. 04 (December 2009): 493–504. http://dx.doi.org/10.1142/s0218348x09004533.

Full text
Abstract:
Intensive research on fractals began around 1980 and many new discoveries have been made. However, the connection between fractals, tilings and reptiles has not been thoroughly explored. This paper shows that a method, similar to that used to construct irregular tilings in ℜ2 can be employed to construct fractal tilings. Five main methods, including methods in Escher style paintings and the Conway criterion are used to create the fractal tilings. Also an algorithm is presented to generate fractal reptiles. These methods provide a more geometric way to understand fractal tilings and fractal reptiles and complements iteration methods.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Mathematics-Topology - Fractals"

1

Fraser, Jonathan M. "Dimension theory and fractal constructions based on self-affine carpets." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3869.

Full text
Abstract:
The aim of this thesis is to develop the dimension theory of self-affine carpets in several directions. Self-affine carpets are an important class of planar self-affine sets which have received a great deal of attention in the literature on fractal geometry over the last 30 years. These constructions are important for several reasons. In particular, they provide a bridge between the relatively well-understood world of self-similar sets and the far from understood world of general self-affine sets. These carpets are designed in such a way as to facilitate the computation of their dimensions, and they display many interesting and surprising features which the simpler self-similar constructions do not have. For example, they can have distinct Hausdorff and packing dimensions and the Hausdorff and packing measures are typically infinite in the critical dimensions. Furthermore, they often provide exceptions to the seminal result of Falconer from 1988 which gives the `generic' dimensions of self-affine sets in a natural setting. The work in this thesis will be based on five research papers I wrote during my time as a PhD student. The first contribution of this thesis will be to introduce a new class of self-affine carpets, which we call box-like self-affine sets, and compute their box and packing dimensions via a modified singular value function. This not only generalises current results on self-affine carpets, but also helps to reconcile the `exceptional constructions' with Falconer's singular value function approach in the generic case. This will appear in Chapter 2 and is based on a paper which appeared in 'Nonlinearity' in 2012. In Chapter 3 we continue studying the dimension theory of self-affine sets by computing the Assouad and lower dimensions of certain classes. The Assouad and lower dimensions have not received much attention in the literature on fractals to date and their importance has been more related to quasi-conformal maps and embeddability problems. This appears to be changing, however, and so our results constitute a timely and important contribution to a growing body of literature on the subject. The material in this Chapter will be based on a paper which has been accepted for publication in 'Transactions of the American Mathematical Society'. In Chapters 4-6 we move away from the classical setting of iterated function systems to consider two more exotic constructions, namely, inhomogeneous attractors and random 1-variable attractors, with the aim of developing the dimension theory of self-affine carpets in these directions. In order to put our work into context, in Chapter 4 we consider inhomogeneous self-similar sets and significantly generalise the results on box dimensions obtained by Olsen and Snigireva, answering several questions posed in the literature in the process. We then move to the self-affine setting and, in Chapter 5, investigate the dimensions of inhomogeneous self-affine carpets and prove that new phenomena can occur in this setting which do not occur in the setting of self-similar sets. The material in Chapter 4 will be based on a paper which appeared in 'Studia Mathematica' in 2012, and the material in Chapter 5 is based on a paper, which is in preparation. Finally, in Chapter 6 we consider random self-affine sets. The traditional approach to random iterated function systems is probabilistic, but here we allow the randomness in the construction to be provided by the topological structure of the sample space, employing ideas from Baire category. We are able to obtain very general results in this setting, relaxing the conditions on the maps from `affine' to `bi-Lipschitz'. In order to get precise results on the Hausdorff and packing measures of typical attractors, we need to specialise to the setting of random self-similar sets and we show again that several interesting and new phenomena can occur when we relax to the setting of random self-affine carpets. The material in this Chapter will be based on a paper which has been accepted for publication by 'Ergodic Theory and Dynamical Systems'.
APA, Harvard, Vancouver, ISO, and other styles
2

Sendrowski, Janek. "Feigenbaum Scaling." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-96635.

Full text
Abstract:
In this thesis I hope to provide a clear and concise introduction to Feigenbaum scaling accessible to undergraduate students. This is accompanied by a description of how to obtain numerical results by various means. A more intricate approach drawing from renormalization theory as well as a short consideration of some of the topological properties will also be presented. I was furthermore trying to put great emphasis on diagrams throughout the text to make the contents more comprehensible and intuitive.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Mathematics-Topology - Fractals"

1

M, Fleischmann, Tildesley D. J, Ball R. C, and Royal Society (Great Britain), eds. Fractals in the natural sciences: A discussion. Princeton, N.J: Princeton University Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Edgar, Gerald A. Measure, topology, and fractal geometry. New York: Springer-Verlag, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Measure, topology, and fractal geometry. 2nd ed. New York: Springer-Verlag, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Edgar, Gerald A. Measure, topology, and fractal geometry. 2nd ed. New York: Springer-Verlag, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

IFIP Working Conference on Fractals in the Natural and Applied Sciences (3rd 1995 Marseille, France). Fractal reviews in the natural and applied sciences: Proceedings of the Third IFIP Working Conference on Fractals in the Natural and Applied Sciences, 1995. London: Chapman & Hall, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1967-, Van Frankenhuysen Machiel, ed. Fractal geometry and number theory: Complex dimensions of fractal strings and zeros of zeta functions. Boston: Birkhäuser, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Weiss, Robert, ed. The Magicians of Form. Eagle Point, Oregon: Laurelhurst Publications, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bard Graduate Center: Decorative Arts, Design History, Material Culture, ed. The islands of Benoît Mandelbrot: Fractals, chaos, and the materiality of thinking. New Haven: Bard Graduate Center: Decorative Arts, Design History, Material Culture, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Michael, Frame, Mandelbrot Benoit B, and Mathematical Association of America, eds. Fractals, graphics, and mathematics education. [Washington, DC]: Published and distributed by the Mathematical Association of America, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Author), Royal Society (Corporate, M. Fleischmann (Editor), R. C. Ball (Editor), and D. J. Tildesley (Editor), eds. Fractals in the Natural Sciences: A Discussion (From the Proceedings of the Royal Society of London). Princeton Univ Pr, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography