Academic literature on the topic 'Mathematische Statistik'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mathematische Statistik.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mathematische Statistik"
Dinges, Gerlinde, and Matthias Templ. "Motivation zur Statistik – Computergestützt lernen in der Statistik Austria." Austrian Journal of Statistics 38, no. 1 (April 3, 2016): 3–16. http://dx.doi.org/10.17713/ajs.v38i1.256.
Full textKrämer, Walter. "D. Rasch und D. Schott, Mathematische Statistik für Mathematiker, Natur- und Ingenieurwissenschaftler." Statistical Papers 57, no. 3 (February 10, 2016): 853. http://dx.doi.org/10.1007/s00362-016-0752-0.
Full textBunke, O. "Witting, H., Mathematische Statistik I. Parametrische Verfahren bei festem Stichprobenumfang. Stuttgart, B. G. Teubner 1985. XVIII, 538 S., DM 125,–. ISBN 3-519-02026-2." ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 67, no. 11 (1987): 578. http://dx.doi.org/10.1002/zamm.19870671115.
Full textThiele, H. "Vincze, I., Mathematische Statistik mit industriellen Anwendungen, Band 1 & 2. Budapest, Akadémiai Kiadó 1984. 502 S., Ft 250,—. ISBN 963 05 3351 0 (Band 1–2)." ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 66, no. 2 (1986): 112. http://dx.doi.org/10.1002/zamm.19860660214.
Full textTrommer, R. "Stoyan, D.: Stochastik für Ingenieure und Naturwissenschaftler. Eine Einführung in die Wahrscheinlichkeitstheorie und die Mathematische Statistik. Akademie Verlag GmbH, Berlin 1993. 307 S., ISBN 3–05–501603–3, DM 34,—." Biometrical Journal 36, no. 7 (1994): 893–94. http://dx.doi.org/10.1002/bimj.4710360712.
Full textPostelnicu, T. "Winkler, W.: Vorlesungen zur Mathematischen Statistik. Mathematisch-Naturwissenschaftliche Bibliothek, Band 62. B. G. Teubner Verlagagesellnchaft, Leipzig 1983. 276 S." Biometrical Journal 28, no. 6 (1986): 718. http://dx.doi.org/10.1002/bimj.4710280610.
Full textIhden, Tanja, and Paola Janßen. "Szenarienbasierte Bayessche Netze zur Unterstützung juristischer Entscheidungen." Rechtswissenschaft 12, no. 1 (2021): 46–75. http://dx.doi.org/10.5771/1868-8098-2021-1-46.
Full textRaschke, Mathias. "Möglichkeiten der mathematischen Statistik zur Schätzung der Hochwasserwahrscheinlichkeit." Wasser und Abfall 14, no. 6 (June 2012): 49–53. http://dx.doi.org/10.1365/s35152-012-0193-6.
Full textKremer, Erhard. "Begründung des chain-ladder verfahrens mittels Mathematischer statistik." Blätter der DGVFM 22, no. 4 (October 1996): 892–93. http://dx.doi.org/10.1007/bf02808419.
Full textHeyer, H. "Natur und mathematisches Erkennen." Metrika 41, no. 1 (December 1994): 28. http://dx.doi.org/10.1007/bf01895300.
Full textDissertations / Theses on the topic "Mathematische Statistik"
Moormann, Marianne. "Begriffliches Wissen als Grundlage mathematischer Kompetenzentwicklung." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-108874.
Full textNordheimer, Swetlana. "Beziehungshaltigkeit und Vernetzungen im Mathematikunterricht der Sekundarstufe I." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2014. http://dx.doi.org/10.18452/16922.
Full textThe need for a study on relations sustainability and networks in mathematics stems, on the one hand, from current education policy requirements, and, on the other, from the rich philosophical traditions of education in the German-speaking countries (KMK 2012, 11). The goal of the present work consists, above all, in reflecting on relations sustainability and networks in mathematics lessons. This reflection is guided by three questions: What can one know, as a teacher, about relations sustainability? How can one act a teacher to ensure that students recognise relationships between mathematical content, or independently produce such relations? In order to act, one must know the reality or practice (e.g. empiricism) in which one acts. The project is focused on the development and testing of worked examples of concrete task networks ("Pythagoras’ tree" and "Around the hexagon").
Okyere, Ebenezer. "Maximum Likelihood Analysis for Bivariate Exponential Distributions." Doctoral thesis, 2007. http://hdl.handle.net/11858/00-1735-0000-0006-B395-F.
Full textSchumacher, Johannes. "Time Series Analysis informed by Dynamical Systems Theory." Doctoral thesis, 2015. https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2015061113245.
Full textBlohsfeld, Björn [Verfasser]. "Online-Aggregation über Datenströmen mit Verfahren der mathematischen Statistik in grossen Datenbanksystemen / vorgelegt von Björn Blohsfeld." 2003. http://d-nb.info/972781455/34.
Full textMoschner, Christian R. "Methodische Untersuchungen zum Einsatz der Nahinfrarot-Spektroskopie (NIRS) zur Qualitätsbeurteilung von High-Oleic-Sonnenblumen." Doctoral thesis, 2007. http://hdl.handle.net/11858/00-1735-0000-0006-B00C-E.
Full textLorkowski, Peter. "A System Architecture for the Monitoring of Continuous Phenomena by Sensor Data Streams." Doctoral thesis, 2019. https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-201903151252.
Full textPollinger, Felix. "Bewertung und Auswirkungen der Simulationsgüte führender Klimamoden in einem Multi-Modell Ensemble." Doctoral thesis, 2013. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-97982.
Full textThe recent and future increase in atmospheric greenhouse gases will cause fundamental change in the terrestrial climate system, which will lead to enormous tasks and challenges for the global society. Effective and early adaptation to this climate change will benefit hugley from optimal possible estimates of future climate change. Coupled atmosphere-ocean models (AOGCMs) are the appropriate tool for this. However, to tackle these questions, it is necessary to make far reaching assumptions about the future climate-relevant boundary conditions. Furthermore there are individual errors in each climate model. These originate from flaws in reproducing the real climate system and result in a further increase of uncertainty with regards to long-range climate projections. Hence, concering future climate change, there are pronounced differences between the results of different AOGCMs, especially under a regional point of view. It is the usual approach to use a number of AOGCMs and combine their results as a safety measure against the influence of such model errors. In this thesis, an attempt is made to develop a valuation scheme and based on that a weighting scheme, for AOGCMs in order to narrow the range of climate change projections. The 24 models that were included in the third phase of the coupled model intercomparsion project (CMIP3) are used for this purpose. First some fundamental climatologies simulated by the AOGCMs are quantitatively compared to a number of observational data. An important methodological aspect of this approach is to explicitly address the uncertainty associated with the observational data. It is revealed that statements concerning the quality of climate models based on such hindcastig approaches might be flawed due to uncertainties about observational data. However, the application of the Köppen-Geiger classification reveales that all considered AOGCMs are capable of reproducing the fundamental distribution of observed types of climate. Thus, to evaluate the models, their ability to reproduce large-scale climate variability is chosen as the criterion. The focus is on one highly complex feature, the coupled El Niño-Southern Oscillation. Addressing several aspects of this climate mode, it is demonstrated that there are AOGCMs that are less successful in doing so than others. In contrast, all models reproduce the most dominant extratropical climate modes in a satisfying manner. The decision which modes are the most important is made using a distinct approach considering several global sets of observational data. This way, it is possible to add new definitions for the time series of some well-known climate patterns, which proof to be equivalent to the standard definitions. Along with this, other popular modes are identified as less important regional patterns. The presented approach to assess the simulation of ENSO is in good agreement with other approaches, as well as the resulting rating of the overall model performance. The spectrum of the timeseries of the Southern Oscillation Index (SOI) can thus be regarded as a sound parameter of the quality of AOGCMs. Differences in the ability to simulate a realistic ENSO-system prove to be a significant source of uncertainty with respect to the future development of some fundamental and important climate parameters, namely the global near-surface air mean temperature, the SOI itself and the Indian monsoon. In addition, there are significant differences in the patterns of regional climate change as simulated by two ensembles, which are constituted according to the evaluation function previously developed. However, these effects are overall not comparable to the multi-model ensembles’ anthropogenic induced climate change signals which can be detected and quantified using a robust multi-variate approach. If all individual simulations following a specific emission scenario are combined, the resulting climate change signals can be thought of as the fundamental message of CMIP3. It appears to be quite a stable one, more or less unaffected by the use of the derived weighting scheme instead of the common approach to use equal weights for all simulations. It is reasoned that this originates mainly from the range of trends in the SOI. Apparently, the group of models that seems to have a realistic ENSO-system also shows greater variations in terms of effective climate change. This underlines the importance of natural climate variability as a major source of uncertainty concerning climate change. For the SOI there are negative Trends in the multi-model ensemble as well as positive ones. Overall, these trends tend to stabilize the development of other climate parameters when various AOGCMs are combined, whether the two distinguished parts of CMIP3 are analyzed or the weighting scheme is applied. Especially in case of the latter method, this prevents significant effects on the mean change compared to the arithmetic multi-model mean
Haß, Joachim. "Internal representations of time and motion." Doctoral thesis, 2009. http://hdl.handle.net/11858/00-1735-0000-0006-B5C3-6.
Full textMasurowski, Frank. "Eine deutschlandweite Potenzialanalyse für die Onshore-Windenergie mittels GIS einschließlich der Bewertung von Siedlungsdistanzenänderungen." Doctoral thesis, 2016. https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2016071114613.
Full textBooks on the topic "Mathematische Statistik"
Czado, Claudia, and Thorsten Schmidt. Mathematische Statistik. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17261-8.
Full textRüschendorf, Ludger. Mathematische Statistik. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41997-3.
Full textWitting, Hermann. Mathematische Statistik I. Wiesbaden: Vieweg+Teubner Verlag, 1985. http://dx.doi.org/10.1007/978-3-322-90150-7.
Full textWitting, Hermann, and Ulrich Müller-Funk. Mathematische Statistik II. Wiesbaden: Vieweg+Teubner Verlag, 1995. http://dx.doi.org/10.1007/978-3-322-90152-1.
Full textBeyer, Otfried, Horst Hackel, Volkmar Pieper, and Jürge Tiedge. Wahrscheinlichkeitsrechnung und mathematische Statistik. Wiesbaden: Vieweg+Teubner Verlag, 1999. http://dx.doi.org/10.1007/978-3-322-94870-0.
Full textBeyer, Otfried, Horst Hackel, Volkmar Pieper, and Jürgen Tiedge. Wahrscheinlichkeitsrechnung und mathematische Statistik. Wiesbaden: Vieweg+Teubner Verlag, 1995. http://dx.doi.org/10.1007/978-3-322-92396-7.
Full textPruscha, Helmut. Vorlesungen über Mathematische Statistik. Wiesbaden: Vieweg+Teubner Verlag, 2000. http://dx.doi.org/10.1007/978-3-322-82966-5.
Full textVektoranalysis, Wahrscheinlichkeitsrechnung, Mathematische Statistik, Fehler- und Ausgleichsrechnung. 5th ed. Wiesbaden: Vieweg + Teubner, 2008.
Find full textVektoranalysis, Wahrscheinlichkeitsrechnung, Mathematische Statistik, Fehler- und Ausgleichsrechnung. 6th ed. Wiesbaden: Vieweg + Teubner, 2011.
Find full textBook chapters on the topic "Mathematische Statistik"
Fließbach, Torsten. "Mathematische Statistik." In Statistische Physik, 3–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-58033-2_2.
Full textGillert, Heinz, and Volker Nollau. "Mathematische Statistik." In Übungsaufgaben zur Wahrscheinlichkeitsrechnung und mathematischen Statistik, 28–38. Wiesbaden: Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-663-07666-7_3.
Full textBeichelt, Frank E., and Douglas C. Montgomery. "Mathematische Statistik." In Teubner-Taschenbuch der Stochastik, 229–402. Wiesbaden: Vieweg+Teubner Verlag, 2003. http://dx.doi.org/10.1007/978-3-322-80067-1_4.
Full textWeitz, Edmund. "Mathematische Statistik." In Konkrete Mathematik (nicht nur) für Informatiker, 839–60. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-21565-1_67.
Full textRichter, Matthias. "Mathematische Statistik." In Grundwissen Mathematik für Ingenieure, 441–66. Wiesbaden: Vieweg+Teubner Verlag, 2001. http://dx.doi.org/10.1007/978-3-663-05772-7_13.
Full textBeyer, Otfried, Horst Hackel, Volkmar Pieper, and Jürge Tiedge. "Mathematische Statistik." In Mathematik für Ingenieure und Naturwissenschaftler, 151–246. Wiesbaden: Vieweg+Teubner Verlag, 1999. http://dx.doi.org/10.1007/978-3-322-94870-0_3.
Full textWitting, Hermann. "Mathematische Statistik." In Ein Jahrhundert Mathematik 1890–1990, 781–815. Wiesbaden: Vieweg+Teubner Verlag, 1990. http://dx.doi.org/10.1007/978-3-322-80265-1_19.
Full textFließbach, Torsten, and Hans Walliser. "Mathematische Statistik." In Arbeitsbuch zur Theoretischen Physik, 507–17. Heidelberg: Spektrum Akademischer Verlag, 2012. http://dx.doi.org/10.1007/978-3-8274-2833-2_25.
Full textBeyer, Otfried, Horst Hackel, Volkmar Pieper, and Jürgen Tiedge. "Mathematische Statistik." In Mathematik für Ingenieure und Naturwissenschaftler, 151–246. Wiesbaden: Vieweg+Teubner Verlag, 1995. http://dx.doi.org/10.1007/978-3-322-92396-7_3.
Full textWeitz, Edmund. "Mathematische Statistik." In Konkrete Mathematik (nicht nur) für Informatiker, 877–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-62618-4_68.
Full text