Academic literature on the topic 'Mathesis universalis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mathesis universalis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mathesis universalis"

1

de la Fuente Lora, Gerardo. "Mathesis Universalis." Glimpse 22, no. 2 (2021): 7–15. http://dx.doi.org/10.5840/glimpse202122221.

Full text
Abstract:
One of the most surprising elements, within the already unprecedented situation created by the COVID-19 pandemic, is the space suddenly occupied by mathematics in the world, in terms of processing public policy decisions, as well as in forms of daily communication about the disease. This essay explores ten theses about how mathematics is, and will be perceived, in a world altered by the pandemic. The different human groups facing the COVID-19 pandemic and the proliferation of messages, figures, concepts, and quantitative debates that it entails, reveals an aesthetic rather than mathematical use of the numerical. Moreover, the presence of mathematics in public debate is an indicator of the very high capacity for formal and deductive reasoning and abstraction that humanity as a whole currently possesses. However, as governments mistrusted their populations’ ability to understand, on one hand, they resolved to establish media communication about the disease in mathematical terms, and on the other, they promoted intense campaigns of fear to make people accept the unprecedented confinement due to the pandemic. Nonetheless, in the future, mathematics will increasingly become the language of politics.
APA, Harvard, Vancouver, ISO, and other styles
2

Dijksterhuis, Fokko Jan. "Reworking Descartes’ mathesis universalis." Metascience 23, no. 3 (2014): 613–18. http://dx.doi.org/10.1007/s11016-014-9904-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Radelet-de Grave, Patricia. "L’idée de «Mathesis universalis» chez Leibniz." Revue des questions scientifiques 191, no. 3-4 (2020): 457–65. http://dx.doi.org/10.14428/qs.v191i3-4.69953.

Full text
Abstract:
Analyse critique de :
 Leibniz (Gottfried Wilhelm), Mathesis universalis : écrits sur la mathématique universelle / textes introduits, traduits et annotés sous la direction de David Rabouin. – Paris : Vrin, 2018. – 256 p. – (Mathesis). – 1 vol. broché de 13,5 × 21,5 cm. – 23,00 €. – isbn 978-2-7116-2816-2.
APA, Harvard, Vancouver, ISO, and other styles
4

Vargas, Carlos Eduardo de Carvalho. "A concepção husserliana de Mathesis Universalis a partir da noção de Mannigfaltigkeitslehre." Aoristo - International Journal of Phenomenology, Hermeneutics and Metaphysics 2, no. 2 (2019): 119–39. http://dx.doi.org/10.48075/aoristo.v2i2.23254.

Full text
Abstract:
Este artigo problematiza a concepção de mathesis universalis na filosofia de Edmund Husserl a partir de uma discussão sobre a noção de Mannigfaltigkeitslehre. Inicialmente, retoma-se a questão dos números “imaginários” e depois é repassado o contexto matemático que influenciou o desenvolvimento filosófico husserliano. Finalmente, a concepção de mathesis universalis é enquadrada nas referências históricas de Descartes e Leibniz para, finalmente, mostrar as implicações fenomenológicas próprias do pensamento de Husserl.
APA, Harvard, Vancouver, ISO, and other styles
5

Dumitrescu, Marius. "Mathesis Universalis and the Cartesian Unification of Philosophy, Science, and Religion." BRAIN. Broad Research in Artificial Intelligence and Neuroscience 14, no. 4 (2023): 160–67. http://dx.doi.org/10.18662/brain/14.4/498.

Full text
Abstract:
In this paper we present the manner in which René Descartes discovered the principle of the autonomy of the spirit as a Mathesis Universalis, as a universal science, his perception being much different from the medieval scholastic one, where the intellect corresponded with the sensible reality. Descartes reversed this suitability, considering that the intellect should not be guided by things and build judgments according to them, but, on the contrary, things are analyzed according to the intellect's abilities to give them meanings and sense, to make them intelligible. Firstly, we will demonstrate that, for Descartes, the very existence, the reality of a thing depends on this light of the intellect that unifies all knowledge through Mathesis Universalis. For the French philosopher, order and measure, captured by Mathesis Universalis, become the qualities by which God, the only perfect Being, created the Universe that obeys a coherent mathematical model. Secondly, we will highlight the fact that the starting point of this new metaphysics could be found in Descartes’s view that God cannot be considered deceptive, that the world is not the creation of an evil and cunning Genius. In conclusion, knowledge through Mathesis Universalis leads the spirit to that place where the reasons of universal peace can be founded, whose purpose is to overcome those structures of the imaginary that wing the irrational drives dressed in the clothes of war and death.
APA, Harvard, Vancouver, ISO, and other styles
6

de Oliveira, Érico Andrade M. "La genèse de la méthode cartésienne : la mathesis universalis et la rédaction de la quatrième des Règles pour la direction de l’esprit." Dialogue 49, no. 2 (2010): 173–98. http://dx.doi.org/10.1017/s0012217310000235.

Full text
Abstract:
RÉSUMÉ : À bien des égards, la Règle IV paraît être formée de deux textes distincts, ce que devrait justifier la différence entre la mathesis universalis et la méthode cartésienne. Cette interprétation conventionnelle est remise en cause en montrant que la révision qui s’opère au sein de la mathématique fait de celle-ci une méthode qui contraint les sciences à instituer l’ordre et la mesure dans leurs recherches. Ainsi, la discussion sur la mathesis universalis ne vise pas une science mathématique d’un niveau supérieur, mais a eu pour but la mise en œuvre d’une universalisation des méthodes menant à la découverte de la vérité.
APA, Harvard, Vancouver, ISO, and other styles
7

Palkoska, Jan. "Mathesis universalis a universální metoda u Descarta." REFLEXE 2018, no. 53 (2018): 41–56. http://dx.doi.org/10.14712/25337637.2018.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Westerhoff, Jan C. "Poeta Calculans: Harsdorffer, Leibniz, and the "Mathesis Universalis"." Journal of the History of Ideas 60, no. 3 (1999): 449. http://dx.doi.org/10.2307/3654013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Westerhoff, Jan C. "Poeta Calculans: Harsdorffer, Leibniz, and the mathesis universalis." Journal of the History of Ideas 60, no. 3 (1999): 449–67. http://dx.doi.org/10.1353/jhi.1999.0031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Poulain, Jacques. "Die ästhetischen Grundlagen der historischen Anthropologie." Paragrana 29, no. 1 (2020): 252–60. http://dx.doi.org/10.1515/para-2020-0019.

Full text
Abstract:
AbstractDer experimentale heutige Mensch ist dazu verdammt, den Menschen neu zu denken. Er bewundert sich immer, dies zu können. Dafür muss er nur alle die Mittel benutzen und kombinieren, die er gebrauchen kann, um zu sehen, was dabei herauskommt. Und das merkwürdigste Ergebnis, über das er sich freuen kann, heißt immer, sich selbst dabei neu zu denken. Er kann sich nicht genug über sich selbst und seine ewige Neuheit freuen, wenn er sich selbst in eine totale Experimentierung der Welt und seiner selbst projiziert. Und das mit Recht, weil ihn diese totale Experimentierung seiner mathesis universalis und seiner sapientia universalis zwingt zu entdecken, dass er die magische Kraft, sich selbst und die Welt zu schaffen, allein sich selbst und insbesondere der magischen Kraft der Sprache verdankt.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Mathesis universalis"

1

Sardeiro, Leandro de Araujo. "A significação da Mathesis Universalis em Descartes." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/281919.

Full text
Abstract:
Orientador: Eneias Junior Forlin<br>Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciencias Humanas<br>Made available in DSpace on 2018-08-12T06:27:07Z (GMT). No. of bitstreams: 1 Sardeiro_LeandrodeAraujo_M.pdf: 603403 bytes, checksum: 3d1c7910596bd5fd3fdf0b9074cb77b2 (MD5) Previous issue date: 2008<br>Resumo: Desenvolveu-se o problema do conhecimento humano na constituição das Regulae ad directionem ingenii (1619-1628) no que se refere à significação da Mathesis universalis. Pretendeu-se defender uma compreensão da Mathesis universalis enquanto ciência do conhecimento em geral - diversa, portanto, das Mathematicae - mostrando a sua aplicabilidade aos diversos ramos do conhecimento por via da análise das naturezas simples. Defendeu-se que a Mathesis universalis não se esgota em uma teoria geral da quantidade por ser delineada por naturezas simples que não expressam apenas quantidades, mas todos os objetos passíveis de conhecimento, inclusive metafísicos. A universalidade da Mathesis universalis estaria expressa pela sua aplicabilidade indefinida, porque potencialmente presente em toda e qualquer descrição e problematização das naturezas simples. Por essa razão, sustentou-se que as naturezas simples não designam apenas coisas - passíveis de tratamento quantitativo -, mas se referem igualmente a proposições, cujo escopo abrange, entre outras coisas, objetos comuns a diversos saberes. A Mathesis universalis seria uma metaciência, a ocupar-se de metaobjetos. Nesse sentido, recuperou-se a noção de ingenium no intuito de mostrar que, por estar ligada à problemática mais científica das Regulae, tal noção resignara-se a uma epistemologia, sem constituir uma metafísica, fato este que não impediria a posterior aplicação da Mathesis universalis àquele campo do saber. Toda essa discussão pressupôs como válida a apresentação material do manuscrito de Hannover, encontrado por Foucher de Careil na primeira metade do século XIX, que apresenta a discussão acerca da Mathesis universalis desenvolvida na regra IV na forma de apêndice, o que nos fez levantar o questionamento acerca da "significação" da Mathesis universalis.<br>Abstract: We have dealt with the problem of human knowledge in the constitution of the Regulae ad directionem ingenii (1619-1628), as it is concerned with the signification of the Mathesis universalis. We intended to defend a comprehension of the Mathesis universalis as science of knowledge in general - different, therefore, from the Mathematicae - by showing its applicability in the diverse fields of knowledge through the analysis of the simple natures. Thus, we claim that the Mathesis universalis is not fully apprehended when it is conceived of as a general theory of quantity, for it is determined by simple natures, which do not only express quantities, but all knowledgeable objects, including the metaphysical ones. The universality of the Mathesis universalis would then be expressed in its indefinite applicability, for it is potentially present in each and every description and problematization of the simple natures. That is why, for example, we claim that the simple natures do not only express things which are dealt with quantitatively, but equally refer to propositions, in whose scope we find, among others, objects that are common to a wide range of forms of knowledge. The Mathesis universalis would then be a metascience, one that should deal with metaobjects. Thus, we have brought forth the notion of ingenium so as to show that, since it was then connected to the Regulae's more scientifical problematics, it then resignated itself to an epistemology that did not go so far as to constitute a metaphysics; what, however, would not constitute impediment to a future application of the Mathesis universalis to that field of knowledge, to wit, metaphysics. All of this discussion presupposes as valid the material presentation of the Hannover manuscript of the Regulae, found by Foucher de Careil in the first half of the XIX century, which relegates the discussion related to the mathesis universalis developed in rule IV to an appendix - what made us raise this questioning concerning the "signification" of the Mathesis universalis.<br>Mestrado<br>Mestre em Filosofia
APA, Harvard, Vancouver, ISO, and other styles
2

Gallotta, Francesco. "Mathesis Universalis e "modernità" nel pensiero di Martin Heidegger." Thesis, Sorbonne université, 2020. http://accesdistant.sorbonne-universite.fr/login?url=http://theses.paris-sorbonne.fr/2020SORUL043.pdf.

Full text
Abstract:
Ce travail de thèse a pour objet la réflexion de Heidegger sur la modernité dans les années ’30 et ’40, par rapport au concept de mathesis. Le premier chapitre est consacré à l’analyse de la conception heideggérienne de l’historicité, afin de situer la réflexion sur la modernité dans le contexte spéculatif de la « pensée de l’histoire de l’être ». Le deuxième chapitre porte sur la notion de mathesis, alors que le troisième développe la critique heideggérienne à la conception mathématique du « sujet ». Dans notre travail nous avons principalement analysé les « notes » issues des volumes récemment parus des Cahiers noirs, notamment les Réflexions (Überlegungen) rédigées du 1931 au 1939. Nous avons pris en tant que question directrice l’opposition entre le « projet mathématique » et un projet non mathématique, que Heidegger nomme « projet jeté ». Cette opposition nous a permis de montrer que le projet moderne, en tant que mathématique, se fonde sur la méconnaissance de l’« être-jeté », alors que le but propre du projet en tant que jeté est justement le saisissement de la Geworfenheit. L’idée du projet jeté se développe dans ce que Heidegger appelle explicitement le « projet de l’être en tant que temps », c’est-à-dire la conception originale dans laquelle l’être est pensé dans le déploiement de son essence, c’est-à-dire comme ce qu’atteint sa vérité (Wahrheit des Seyns). C’est la raison pour laquelle dans le contexte des années ’30 e ’40 Heidegger appelle le Dasein aussi comme la « fondation de la vérité de l’être ». Le Dasein même ne peut être conçu en tant que fondement immédiat de la connaissance, à voir en tant que subjectum<br>The present work aims at studying the meditation of Heidegger about modernity in 1930s and 1940s, related to modern concept of mathesis. The primary goal of my work is a systematic analysis of «history of being» to provide a background understanding for Heidegger’s philosophical critique of modernity. Therefore, the first part of this study is focused on Heidegger’s idea of history. The discussion of concept of mathesis and the modern mathematical concept of subjectum compose the second part. In this work I have examined mainly the Heidegger ’s Nachlass, especially the first series of Heidegger’s so-called Black Notebooks, from 1931 to 1941. We have examined the meditation of Heidegger about modernity interpreted through the prism of the antagonism between modern mathematical project and non-mathematical projection called by Heidegger thrown projection. Through to some historical analysis (a comparative study of Aristotle’s notion of movement and modern principle of inertia, or the critique to Heisenberg’s uncertainty principle) Heidegger highlights some of key aspects of modern science of nature, claiming that the mathematical projection is based on the misunderstanding of throwness. The idea of Sein und Zeit’s thrown projection, is developed in 1930s and 1940s as «project of being as time» and is expressed by the concept of truth of Being. Also, this work focus on the role of Dasein in connection with the history of being, as foundation of truth of Being, thank to appropriation of throwness. In contrast to this conception of Sein and Dasein, the modern concept of subjectum might be considered in the sense of mathematical and thereby non-historical concept of being
APA, Harvard, Vancouver, ISO, and other styles
3

Rabouin, David. "Mathesis Universalis : l'idée de "mathématique universelle" à l'âge classique." Paris 4, 2002. http://www.theses.fr/2002PA040176.

Full text
Abstract:
Cette étude se propose d'analyser le sens philosophique de la mathesis universalis, telle qu'elle s'est développée à l'âge classique. Sa méthode est généalogique. Avant de chercher la nouveauté dans les usages que proposèrent Descartes et Leibniz, elle essaye d'abord de comprendre : comment ce concept leur est parvenu, pourquoi il a pu les intéresser et ce qui distingue leur usage. A la première question, elle répond en marquant le rôle joué par la redécouverte de Proclus au XVIe siècle et la manière singulière dont cette ligne croise celle de l'algèbre nouvelle. A la seconde, elle répond, avec Leibniz, que la mathesis universalis est une "logique de l'imagination". L'imagination mathématique "fait voir", dit Descartes, les rapports entre les choses. Ainsi les mathématiques sont-elles présentées comme transparentes (perspicuae). L'usage des Classiques se distingue alors de vouloir ramener cette transparence d'un régime métaphorique à un régime mathématique<br>This thesis proposes to analyze the philosophical meaning of mathesis universalis as developed in the Classical Age. The method followed is genealogical. Hence, before trying to find a new mode of rationality in the uses of mathesis universalis proposed by Descartes and Leibniz, we will first attempt to understand how this concept came to them, why it was of interest to them and what distinguishes their use of it. To the first question we will respond by marking the role played by the rediscovery of Proclus in the XVIth century and the singular manner in which this line crosses that of the New Algebra. To the second we will respond, with Leibniz, that mathesis universalis is a "logic of the imagination". Mathematical imagination "allows us to see" ratios, says Descartes. Mathematics are thus considered as being "transparent". The Classics' use of mathesis universalis can be distinguished, then, by its desire to bring this transparency from a metaphorical realm to a mathematical one
APA, Harvard, Vancouver, ISO, and other styles
4

Rabouin, David. "Mathesis universalis : l'idée de "mathématique universelle" d'Aristote à Descartes /." Paris : Presses universitaires de France, 2009. http://catalogue.bnf.fr/ark:/12148/cb41441082j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Delean, Guillaume. "Éthique et mathesis : la question du salut sous le règne de la mathesis universalis. De Descartes à Spinoza, les coordonnées cachées de la modernité." Electronic Thesis or Diss., Lyon 3, 2023. http://www.theses.fr/2023LYO30021.

Full text
Abstract:
La mathesis universalis occupe une place singulière dans le développement du cartésianisme et, à travers lui, dans le mouvement des idées modernes, notamment grâce à sa réception heideggérienne, qui a contribué à lui conférer un rôle central dans la constitution du projet métaphysique et à y discerner la racine conjointe de la science et de la technique. Il est néanmoins nécessaire, au-delà de cette approche générique « monumentale », selon le mot de D. Rabouin, d’en circonscrire l’identité conceptuelle et, en évitant les écueils qui entourent sa réception, d’identifier les choix fondateurs présidant à la radicalité de cette entreprise. En retraçant le parcours qui conduit Descartes de la sortie de La Flèche aux années 1628-1629 et à la rédaction des Regulae ad directionem ingenii, nous montrons que la mathesis est d’abord une pratique engageant l’imagination ouvrant à une ontologie inédite que nous identifions à une forme d’anarchisme mathésique. Le recouvrement, voire le refoulement, de cette disposition dès 1630, avec la théorie des vérités éternelles, puis dans le Discours de la méthode, avec l’introduction de la figure du doute fondationnel, conduit Descartes à échouer dans son projet de penser une véritable éthique mathésique et engage la modernité dans la voie de la volonté de puissance, voire de la volonté de volonté avec les apories du nihilisme qui s’y associent. L’effort de Spinoza se présente alors comme une tentative conséquente de résoudre les tensions nées d’une telle disposition du savoir et un engagement total dans ses conséquences ontologiques, anthropologiques, logiques et épistémologiques, en vue de penser une éthique pour les temps mathésiques. Ce parcours des Regulae ad directionem ingenii à l’Ethique nous permet ainsi de situer le cartésianisme de Spinoza comme l’exploration d’un impensé de Descartes et d’ouvrir à une compréhension de l’Ethique comme vérité de la Mathesis Universalis<br>The mathesis universalis occupies a unique place in the development of Cartesianism and, through it, in the movement of modern ideas, notably thanks to its Heideggerian reception, which contributed to conferring a central role on it in the constitution of the metaphysical project and to discern the joint root of science and technology. However, beyond this generic "monumental" approach, as D. Rabouin put it, it is necessary to circumscribe its conceptual identity and, while avoiding the pitfalls that surround its reception, to identify the founding choices that preside over the radicality of this enterprise. By retracing the path that leads Descartes from the departure from La Flèche to the years 1628-1629 and the writing of the Regulae ad directionem ingenii, we show that mathesis is first and foremost a practice that engages the imagination, opening up to a novel ontology that we identify with a form of mathesis anarchism. The recovery, even the repression, of this disposition from 1630 onwards, with the theory of eternal truths, and then in the Discourse on Method, with the introduction of the foundational doubt figure, leads Descartes to fail in his project to think a genuine mathetic ethics and engages modernity in the path of the will to power, even the will to will, with the aporias of nihilism associated with it. Spinoza's effort then appears as a consistent attempt to resolve the tensions arising from such a disposition of knowledge and a total commitment to its ontological, anthropological, logical, and epistemological consequences, with a view to thinking an ethics for mathetic times. This journey from the Regulae ad directionem ingenii to the Ethics allows us to situate Spinoza's Cartesianism as the exploration of an unthought of Descartes and to open up to an understanding of the Ethics as the truth of the Mathesis Universalis
APA, Harvard, Vancouver, ISO, and other styles
6

Smith, Nathan Douglas. "The Origins of Descartes' Concept of Mind in the Regulae ad directionem ingenii." Thesis, Boston College, 2010. http://hdl.handle.net/2345/bc-ir:101348.

Full text
Abstract:
Thesis advisor: Richard Cobb-Stevens<br>Thesis advisor: Jean-Luc Solere<br>This dissertation attempts to locate the origins of Descartes' concept of mind in his early, unfinished treatise on scientific method, the Regulae ad directionem ingenii. It claims that one can see, in this early work, Descartes' commitment to substance dualism for methodological reasons. In order to begin an analysis of the Regulae, one must first attempt to resolve textual disputes concerning its integrity and one must understand the text as a historical work, dialectically situated in the tradition of late sixteenth and early seventeenth century thought. The dissertation provides this historical backdrop and textual sensitivity throughout, but it focuses on three main themes. First, the concept of mathesis universalis is taken to be the organizing principle of the work. This methodological principle defines a workable technique for solving mathematical problems, a means for applying mathematics to natural philosophical explanations, and a claim concerning the nature of mathematical truth. In each case, the mathesis universalis is designed to fit the innate capacities of the mind and the objects studied by mathesis are set apart from the mind as purely mechanical and geometrically representable objects. Second, Descartes' account of perceptual cognition, the principles of which are found in the Regulae, is examined. In this account, Descartes describes perception as a mechanical process up to the moment of conscious awareness. This point of awareness and the corresponding actions of the mind are, he claims, independent from mechanical principles; they are incorporeal and cannot be explained reductively. Finally, when Descartes outlines the explanatory bases of his natural science, he identifies certain "simple natures." These are the undetermined categories according to which actual things can be known. Descartes makes an explicit distinction between material simples and intellectual simples. It is argued that this distinction suggests a difference in kind between the sciences of the material world and the science or pure knowledge of the intellectual world. Though the Regulae is focused on physical or material explanations, there is a clear commitment to distinguishing this type of explanation from the explanation of mental content and mental acts. Hence, the Regulae demonstrates Descartes' early, methodological commitment to substance dualism<br>Thesis (PhD) — Boston College, 2010<br>Submitted to: Boston College. Graduate School of Arts and Sciences<br>Discipline: Philosophy
APA, Harvard, Vancouver, ISO, and other styles
7

Ramos, José Portugal dos Santos. "A estrutura da filosofia prática de Descartes." Programa de Pós-Graduação em Filosofia da UFBA, 2008. http://www.repositorio.ufba.br/ri/handle/ri/11486.

Full text
Abstract:
102f.<br>Submitted by Suelen Reis (suziy.ellen@gmail.com) on 2013-04-16T18:23:27Z No. of bitstreams: 1 Dissertacao Jose Ramosseg.pdf: 1260926 bytes, checksum: 53097fbd14c8bf40917c40b05a859d3d (MD5)<br>Approved for entry into archive by Rodrigo Meirelles(rodrigomei@ufba.br) on 2013-05-29T14:47:30Z (GMT) No. of bitstreams: 1 Dissertacao Jose Ramosseg.pdf: 1260926 bytes, checksum: 53097fbd14c8bf40917c40b05a859d3d (MD5)<br>Made available in DSpace on 2013-05-29T14:47:30Z (GMT). No. of bitstreams: 1 Dissertacao Jose Ramosseg.pdf: 1260926 bytes, checksum: 53097fbd14c8bf40917c40b05a859d3d (MD5) Previous issue date: 2008<br>A presente dissertação tem por objetivo explicar a estruturação da ciência cartesiana proposta nas obras do Discurso do método e na Geometrie. O caminho percorrido para chegar ao objetivo proposto foi estudar a possibilidade da caracterização da noção metódica de inteligibilidade através da filosofia matemática de Descartes. A noção metódica de inteligibilidade é o procedimento analítico que estabelece o conhecimento verdadeiro sobre o campo restrito do entendimento. Esta noção metódica possibilita, em última instância, a construção cientifica através de parâmetros claros e distintos, os quais têm como ponto de partida o pensamento analítico, a concepção de perfeição em Deus e a regularidade do método nos pressupostos matemáticos da mathesis universalis.<br>Salvador
APA, Harvard, Vancouver, ISO, and other styles
8

Smith, Nathan D. "Les origines du concept cartésien de l’esprit dans les Règles pour la direction de l’esprit." Thesis, Paris 4, 2010. http://www.theses.fr/2010PA040096.

Full text
Abstract:
La thèse vise à expliquer dans son contexte historique les Règles pour la direction de l'esprit par rapport au concept de l'esprit cartésien. J'argue que les Règles montrent une tendance vers un concept dualiste de l'esprit. Les raisons pour cette position, je pense, sont la plupart méthodologiques. Dans les Règles, Descartes a développé les fondements philosophiques de la méthode cartésienne qui a pour objet la résolution de tous les plus célèbres problèmes de l'époque dans la science de la nature et la mathématique. Cette méthode s'est fondée sur l'idée que tous les phénomènes naturels puissent être expliqués par les modèles géométriques. Alors, pour Descartes la méthode de la science de la nature est réductive, basé sur les modèles mathématiques. En conséquence, Descartes a évidement cru que les modèles qui expliquent la nature physique ne sont pas les mêmes qui puissent expliquer la nature de l'esprit. En plus, chez les Règles, l'esprit paraît comme le véhicule de la compréhension du monde physique, et par la physiologie du cerveau et par déterminer les paramètres scientifiques de l'explication et la représentation du monde physique. Donc l'esprit est bien séparée du monde physique dans les deux sens : il ne se réduit pas aux principes physique et il organise et soutiens les principes physiques. Nous validerons cette thèse en insistant sur quatre points spécifiques: (1) l'importance historique du texte des Règles pour la pensée cartésienne, (2) la nature et l'histoire de la mathesis universalis, (3) la physiologie de la cognition, et (4) les natures simples<br>The dissertation aims to contextualize and understand the Regulae ad directionem ingenii as embodying theses central to the development of Descartes' mature metaphysical concept of mind. I argue that the Regulae demonstrates a tendancy toward a dualistic concept of mind. The reasons for this, I believe, are largely methodoligical. In the Regulae, Descartes develops the philosophical foundations for a scientific method that, he thought, would allow him to solve some of the most puzzling phenomena in nature and mathematics. This method is basically predicated on the idea that all natural phenomena, i.e., physical entities, can be understood by reducing those entities to geometrical models. These geometrical models could understood and explained either mechanically or algebraically. In either case, for Descartes the scientific method is essentially reductive. As a consequence,, he clearly believes that the models that explain the physical world are not the same as those that explain the nature of the mind. Furthermore, in the Regulae, the mind appears to be a vehicle for understanding the physical world, through the physiology of the brain and by determining the scientific parameters for any representation or explanation of the physical world. Thus, the mind is truly separated from the physical world in two senses: it cannot be reduced to physical principles and it organizes and found those physical principles. We will see how this is the case by focusing on four issues: (1) the historical significance of the text in the development of Descartes' thought (2) the mathesis universalis (3) the physiology of cognition and (4) the simple natures
APA, Harvard, Vancouver, ISO, and other styles
9

Safou, Jean-Bernard. "Husserl et la métaphysique de Descartes : essai d'une interprétation phénoménologique du projet cartésien de la Mathesis universalis." Paris 4, 1999. http://www.theses.fr/1999PA040047.

Full text
Abstract:
La phénoménologie, en tant que philosophie du vingtième siècle finissant, est la métaphysique. Certes Husserl, en fondant la phénoménologie, fonde aussi la métaphysique sur des bases nouvelles, mais, qui restent tributaires de la tradition philosophique. Car, Husserl recourt à la doctrine de la mathesis universalis que Descartes a remise en valeur au dix-septième siècle pour accéder à la philosophie, qu'il a baptisée la phénoménologie. La doctrine de la mathesis universalis telle que Descartes la conçoit se définit comme un projet; la réalisation du projet philosophique cartésien se manifeste par la science universelle. Le nom qu'attribue Descartes à la philosophie, la science universelle ou sagesse humaine, légitime le sens de la philosophie, la philosophie première. Husserl reprend l'idée cartésienne de la philosophie, la science universelle. Ainsi la phénoménologie assume-t-elle le sens de la métaphysique, autrement dit la philosophie première.
APA, Harvard, Vancouver, ISO, and other styles
10

Gérard, Vincent. "Mathematique universelle et metaphysique de l'individuation. L'elaboration de l'idee de mathesis universalis dans la phenomenologie de husserl." Paris 12, 2001. http://www.theses.fr/2001PA120046.

Full text
Abstract:
La mathesis universalis est-elle l'ontologie formelle ? telle est la question a laquelle-nous nous proposons de repondre dans ce travail. Dans la premiere partie, on trouve la genese de ridee de mathesis universalis comme ontologie formelle. Dans la deuxieme, les delimitations ontologiques de la mathesis universalis par rapport a la geometrie et l'axiologie formelle. Dans la troisieme, l'elucidation phenomenologique de la mathesis universalis comme theorie des sens apophantiques purs. Dans la quatrieme, son articulation sur une metaphysique formelle ou theorie de l'individuation : la mathesis universalis est alors rearticulee sur l'ontologie formelle, mais en un autre sens de l'ontologie formelle. Les resultats auxquels nous sommes parvenu sont les suivants : 1) husserl emprunte son concept de mathesis universalis, non pas a la regle iv-b de descartes, soit pour en accomplir le sens, soit pour la detourner de son sens, mais a la tradition arihmetisante de van schooter, wallis, newton et du leibniz de 1695 ; 2) l'elaboration husserlienne de l'idee de mathesis universalis est une tentative pour identifier un ensemble de noyaux regulateurs (principe de permanence de hankel, etc. ) quinorment les possibilite d'admission d'objets dans le champ analytique formel; 3) la geometrie comme science de l'espace est exclue de ce champ ; 4) il existe en revanche une analogie radicale entre l'axiologie formelle et la mathesis universatis ; 5) husserl n'est pas seulement redevable a leibniz de l'idee de mathesis universalis, mais egalement de sa conversion philosophique; 6) la mathesis philosophique pensee a la lumiere de la theorie de la connaissance telle qu'elle est elaboree par leibniz vers 1684 n'est, ni ne veut etre, une theorie de l'etre, mais une theorie pure de la sification; 7) cette theorie de la signification s'articule sur une metaphysique formelle dont husserl emprunte le concept a lotze. Elle a pour tache de decrire les formes ideales auxquelles doivent correspondre les relations entre les elements d'un monde, quel qu'il soit.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Mathesis universalis"

1

Centrone, Stefania, Sara Negri, Deniz Sarikaya, and Peter M. Schuster, eds. Mathesis Universalis, Computability and Proof. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20447-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dumoncel, Jean-Claude. Le jeu de Wittgenstein: Essai sur la mathesis universalis. Presses universitaires de France, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rabouin, David. Mathesis universalis: L'idée de mathématique universelle d'Aristote à Descartes. Presses universitaires de France, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mathesis universalis: L'idée de mathématique universelle d'Aristote à Descartes. Presses universitaires de France, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dreher, Jochen, ed. Mathesis universalis – Die aktuelle Relevanz der „Strukturen der Lebenswelt“. Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-22329-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dumoncel, Jean-Claude. La tradition de la mathesis universalis: Platon, Leibniz, Russell. Unebévue, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Das Verhältnis der Mathesis universalis zur Logik als Wissenschaftstheorie bei E. Husserl. P. Lang, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Valditara, Linda M. Napolitano. Le idee, i numeri, l'ordine: La dottrina della mathesis universalis dall'Accademia antica al neoplatonismo. Bibliopolis, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dzygivskiĭ, P. I. Apologia of physical meaning. Alexandria, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Peckhaus, Volker. Logik, Mathesis universalis und allgemeine Wissenschaft: Leibniz und die Wiederentdeckung der formalen Logik im 19. Jahrhundert. Akademie Verlag, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Mathesis universalis"

1

Rabouin, David. "Mathesis universalis." In Encyclopedia of Early Modern Philosophy and the Sciences. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-20791-9_336-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rabouin, David. "Mathesis universalis." In Encyclopedia of Early Modern Philosophy and the Sciences. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-31069-5_336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kvasz, Ladislav. "What is Mathesis Universalis?" In Descartes on Mathematics, Method and Motion. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57061-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wiegand, Olav K. "Husserls Begriff der Mathesis Universalis." In Phaenomenologica. Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5177-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Centrone, Stefania. "Introduction: Mathesis Universalis, Proof and Computation." In Mathesis Universalis, Computability and Proof. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20447-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Awodey, Steve. "Mathesis Universalis and Homotopy Type Theory." In Mathesis Universalis, Computability and Proof. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20447-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kuznets, Roman. "Through an Inference Rule, Darkly." In Mathesis Universalis, Computability and Proof. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20447-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Link, Godehard. "Objectivity and Truth in Mathematics: A Sober Non-platonist Perspective." In Mathesis Universalis, Computability and Proof. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20447-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mainzer, Klaus. "From Mathesis Universalis to Provability, Computability, and Constructivity." In Mathesis Universalis, Computability and Proof. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20447-1_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Minari, Pierluigi. "Analytic Equational Proof Systems for Combinatory Logic and λ-Calculus:A Survey." In Mathesis Universalis, Computability and Proof. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20447-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography