Dissertations / Theses on the topic 'Mathesius Mathesius'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 24 dissertations / theses for your research on the topic 'Mathesius Mathesius.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Mathesius, Jörn [Verfasser]. "Wertmanagement durch equity carve-out : eine empirische Studie / Jörn Mathesius." Flensburg : Zentrale Hochschulbibliothek Flensburg, 2003. http://d-nb.info/1019133694/34.
Full textSardeiro, Leandro de Araujo. "A significação da Mathesis Universalis em Descartes." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/281919.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciencias Humanas
Made available in DSpace on 2018-08-12T06:27:07Z (GMT). No. of bitstreams: 1 Sardeiro_LeandrodeAraujo_M.pdf: 603403 bytes, checksum: 3d1c7910596bd5fd3fdf0b9074cb77b2 (MD5) Previous issue date: 2008
Resumo: Desenvolveu-se o problema do conhecimento humano na constituição das Regulae ad directionem ingenii (1619-1628) no que se refere à significação da Mathesis universalis. Pretendeu-se defender uma compreensão da Mathesis universalis enquanto ciência do conhecimento em geral - diversa, portanto, das Mathematicae - mostrando a sua aplicabilidade aos diversos ramos do conhecimento por via da análise das naturezas simples. Defendeu-se que a Mathesis universalis não se esgota em uma teoria geral da quantidade por ser delineada por naturezas simples que não expressam apenas quantidades, mas todos os objetos passíveis de conhecimento, inclusive metafísicos. A universalidade da Mathesis universalis estaria expressa pela sua aplicabilidade indefinida, porque potencialmente presente em toda e qualquer descrição e problematização das naturezas simples. Por essa razão, sustentou-se que as naturezas simples não designam apenas coisas - passíveis de tratamento quantitativo -, mas se referem igualmente a proposições, cujo escopo abrange, entre outras coisas, objetos comuns a diversos saberes. A Mathesis universalis seria uma metaciência, a ocupar-se de metaobjetos. Nesse sentido, recuperou-se a noção de ingenium no intuito de mostrar que, por estar ligada à problemática mais científica das Regulae, tal noção resignara-se a uma epistemologia, sem constituir uma metafísica, fato este que não impediria a posterior aplicação da Mathesis universalis àquele campo do saber. Toda essa discussão pressupôs como válida a apresentação material do manuscrito de Hannover, encontrado por Foucher de Careil na primeira metade do século XIX, que apresenta a discussão acerca da Mathesis universalis desenvolvida na regra IV na forma de apêndice, o que nos fez levantar o questionamento acerca da "significação" da Mathesis universalis.
Abstract: We have dealt with the problem of human knowledge in the constitution of the Regulae ad directionem ingenii (1619-1628), as it is concerned with the signification of the Mathesis universalis. We intended to defend a comprehension of the Mathesis universalis as science of knowledge in general - different, therefore, from the Mathematicae - by showing its applicability in the diverse fields of knowledge through the analysis of the simple natures. Thus, we claim that the Mathesis universalis is not fully apprehended when it is conceived of as a general theory of quantity, for it is determined by simple natures, which do not only express quantities, but all knowledgeable objects, including the metaphysical ones. The universality of the Mathesis universalis would then be expressed in its indefinite applicability, for it is potentially present in each and every description and problematization of the simple natures. That is why, for example, we claim that the simple natures do not only express things which are dealt with quantitatively, but equally refer to propositions, in whose scope we find, among others, objects that are common to a wide range of forms of knowledge. The Mathesis universalis would then be a metascience, one that should deal with metaobjects. Thus, we have brought forth the notion of ingenium so as to show that, since it was then connected to the Regulae's more scientifical problematics, it then resignated itself to an epistemology that did not go so far as to constitute a metaphysics; what, however, would not constitute impediment to a future application of the Mathesis universalis to that field of knowledge, to wit, metaphysics. All of this discussion presupposes as valid the material presentation of the Hannover manuscript of the Regulae, found by Foucher de Careil in the first half of the XIX century, which relegates the discussion related to the mathesis universalis developed in rule IV to an appendix - what made us raise this questioning concerning the "signification" of the Mathesis universalis.
Mestrado
Mestre em Filosofia
Rabouin, David. "Mathesis universalis : l'idée de "mathématique universelle" d'Aristote à Descartes /." Paris : Presses universitaires de France, 2009. http://catalogue.bnf.fr/ark:/12148/cb41441082j.
Full textGallotta, Francesco. "Mathesis Universalis e "modernità" nel pensiero di Martin Heidegger." Thesis, Sorbonne université, 2020. http://accesdistant.sorbonne-universite.fr/login?url=http://theses.paris-sorbonne.fr/2020SORUL043.pdf.
Full textThe present work aims at studying the meditation of Heidegger about modernity in 1930s and 1940s, related to modern concept of mathesis. The primary goal of my work is a systematic analysis of «history of being» to provide a background understanding for Heidegger’s philosophical critique of modernity. Therefore, the first part of this study is focused on Heidegger’s idea of history. The discussion of concept of mathesis and the modern mathematical concept of subjectum compose the second part. In this work I have examined mainly the Heidegger ’s Nachlass, especially the first series of Heidegger’s so-called Black Notebooks, from 1931 to 1941. We have examined the meditation of Heidegger about modernity interpreted through the prism of the antagonism between modern mathematical project and non-mathematical projection called by Heidegger thrown projection. Through to some historical analysis (a comparative study of Aristotle’s notion of movement and modern principle of inertia, or the critique to Heisenberg’s uncertainty principle) Heidegger highlights some of key aspects of modern science of nature, claiming that the mathematical projection is based on the misunderstanding of throwness. The idea of Sein und Zeit’s thrown projection, is developed in 1930s and 1940s as «project of being as time» and is expressed by the concept of truth of Being. Also, this work focus on the role of Dasein in connection with the history of being, as foundation of truth of Being, thank to appropriation of throwness. In contrast to this conception of Sein and Dasein, the modern concept of subjectum might be considered in the sense of mathematical and thereby non-historical concept of being
Rabouin, David. "Mathesis Universalis : l'idée de "mathématique universelle" à l'âge classique." Paris 4, 2002. http://www.theses.fr/2002PA040176.
Full textThis thesis proposes to analyze the philosophical meaning of mathesis universalis as developed in the Classical Age. The method followed is genealogical. Hence, before trying to find a new mode of rationality in the uses of mathesis universalis proposed by Descartes and Leibniz, we will first attempt to understand how this concept came to them, why it was of interest to them and what distinguishes their use of it. To the first question we will respond by marking the role played by the rediscovery of Proclus in the XVIth century and the singular manner in which this line crosses that of the New Algebra. To the second we will respond, with Leibniz, that mathesis universalis is a "logic of the imagination". Mathematical imagination "allows us to see" ratios, says Descartes. Mathematics are thus considered as being "transparent". The Classics' use of mathesis universalis can be distinguished, then, by its desire to bring this transparency from a metaphorical realm to a mathematical one
Nantois-Kobayashi, Sachi. ""Mathesis singularis" : lecture et subjectivité dans l'oeuvre de Roland Barthes." Paris 4, 2006. http://www.theses.fr/2006PA040197.
Full textThe intellectual evolution of Barthes is frequently haunted by the apparently contradictory assertion of the duality : theorist Barthes or nonchalant amateur Barthes ? This study as a starting point takes this contradiction repeated by the same author. In the first time, the elaboration of the semiotic system appears founded on the subjectivity, certainly not impressionist, but rooted in the experience and the practice, on the contrary to the commonplace proper to the science. In the second time, the subject comes back in the sign of the break. The searching of the « absolute subjectivity » which starts from “my” subjective reactions by taking the affects for reference points, is placed in a certain form of the knowledge by virtue of the quest for the essence of the photography and the new form of writing called “Roman” : the one is “mathesis singularis” et the other is the “science of fantasy”
Wood, David W. ""Mathesis of the Mind" : a Study of Fichte’s Wissenschaftslehre and Geometry." Paris 4, 2009. http://www.theses.fr/2009PA040135.
Full textThis is a study of the role of geometry in the philosophy of the German idealistic thinker Johann Gottlieb Fichte (1762-1814) in his main life’s work the Wissenschaftslehre (1794-1814). I propose a reconstruction of his philosophy of mathematics based on his fragmentary text the Erlanger Logik 1805. The Fichtean philosophy of mathematics is based on nine principal elements. It includes a synthetic and transcendental model of geometry as its foundation, has a number of archetypal (Ur) or ideal elements as its starting point, and is Platonistic in an ontological sense. It also seeks to solve the problem of parallel lines and the deduction of the dimensions of space. In addition, Fichte’s theory of mathematical cognition is grounded in intuition and construction, which are interpreted as paradigms for philosophical intuition and construction. However, Fichte shows that all the specific intuitions and constructions of geometry are grounded in the more universal intuitions and construction of his philosophy. Moreover, the fundamental elements of geometry, such as the point, line and drawing of the line, all furnish philosophical images (Bilder) for the acts and activities of the I or self. Finally, the first postulates of geometry possess the characteristics of self-evidence, certitude and irrefutability. According to Fichte, the first principle or Grundsatz of his Wissenschaftslehre possesses the same characteristics, thus for him the study of geometry and pure mathematics serves as a perfect propedeutic to the study of his system of philosophy
Li, Guang-Xing [Verfasser]. "Mathesis of star formation -- from kpc to parsec scales / Guang-Xing Li." Bonn : Universitäts- und Landesbibliothek Bonn, 2015. http://d-nb.info/1077289944/34.
Full textMellamphy, D. A. "Le pas sage, a mathesis, angeometry & djinnialogy of the short story." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ28619.pdf.
Full textMace, Hannah Elizabeth. "Firmicus Maternus' Mathesis and the intellectual culture of the fourth century AD." Thesis, University of St Andrews, 2017. http://hdl.handle.net/10023/11039.
Full textSmith, Nathan Douglas. "The Origins of Descartes' Concept of Mind in the Regulae ad directionem ingenii." Thesis, Boston College, 2010. http://hdl.handle.net/2345/bc-ir:101348.
Full textThesis advisor: Jean-Luc Solere
This dissertation attempts to locate the origins of Descartes' concept of mind in his early, unfinished treatise on scientific method, the Regulae ad directionem ingenii. It claims that one can see, in this early work, Descartes' commitment to substance dualism for methodological reasons. In order to begin an analysis of the Regulae, one must first attempt to resolve textual disputes concerning its integrity and one must understand the text as a historical work, dialectically situated in the tradition of late sixteenth and early seventeenth century thought. The dissertation provides this historical backdrop and textual sensitivity throughout, but it focuses on three main themes. First, the concept of mathesis universalis is taken to be the organizing principle of the work. This methodological principle defines a workable technique for solving mathematical problems, a means for applying mathematics to natural philosophical explanations, and a claim concerning the nature of mathematical truth. In each case, the mathesis universalis is designed to fit the innate capacities of the mind and the objects studied by mathesis are set apart from the mind as purely mechanical and geometrically representable objects. Second, Descartes' account of perceptual cognition, the principles of which are found in the Regulae, is examined. In this account, Descartes describes perception as a mechanical process up to the moment of conscious awareness. This point of awareness and the corresponding actions of the mind are, he claims, independent from mechanical principles; they are incorporeal and cannot be explained reductively. Finally, when Descartes outlines the explanatory bases of his natural science, he identifies certain "simple natures." These are the undetermined categories according to which actual things can be known. Descartes makes an explicit distinction between material simples and intellectual simples. It is argued that this distinction suggests a difference in kind between the sciences of the material world and the science or pure knowledge of the intellectual world. Though the Regulae is focused on physical or material explanations, there is a clear commitment to distinguishing this type of explanation from the explanation of mental content and mental acts. Hence, the Regulae demonstrates Descartes' early, methodological commitment to substance dualism
Thesis (PhD) — Boston College, 2010
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Philosophy
Ramos, José Portugal dos Santos. "A estrutura da filosofia prática de Descartes." Programa de Pós-Graduação em Filosofia da UFBA, 2008. http://www.repositorio.ufba.br/ri/handle/ri/11486.
Full textSubmitted by Suelen Reis (suziy.ellen@gmail.com) on 2013-04-16T18:23:27Z No. of bitstreams: 1 Dissertacao Jose Ramosseg.pdf: 1260926 bytes, checksum: 53097fbd14c8bf40917c40b05a859d3d (MD5)
Approved for entry into archive by Rodrigo Meirelles(rodrigomei@ufba.br) on 2013-05-29T14:47:30Z (GMT) No. of bitstreams: 1 Dissertacao Jose Ramosseg.pdf: 1260926 bytes, checksum: 53097fbd14c8bf40917c40b05a859d3d (MD5)
Made available in DSpace on 2013-05-29T14:47:30Z (GMT). No. of bitstreams: 1 Dissertacao Jose Ramosseg.pdf: 1260926 bytes, checksum: 53097fbd14c8bf40917c40b05a859d3d (MD5) Previous issue date: 2008
A presente dissertação tem por objetivo explicar a estruturação da ciência cartesiana proposta nas obras do Discurso do método e na Geometrie. O caminho percorrido para chegar ao objetivo proposto foi estudar a possibilidade da caracterização da noção metódica de inteligibilidade através da filosofia matemática de Descartes. A noção metódica de inteligibilidade é o procedimento analítico que estabelece o conhecimento verdadeiro sobre o campo restrito do entendimento. Esta noção metódica possibilita, em última instância, a construção cientifica através de parâmetros claros e distintos, os quais têm como ponto de partida o pensamento analítico, a concepção de perfeição em Deus e a regularidade do método nos pressupostos matemáticos da mathesis universalis.
Salvador
Beckers, Danny. ""Het despotisme der Mathesis" : opkomst van de propaedeutische functie van de wiskunde in Nederland, 1750-1850 /." Hilversum : Verloren, 2003. http://catalogue.bnf.fr/ark:/12148/cb39035388h.
Full textSmith, Nathan D. "Les origines du concept cartésien de l’esprit dans les Règles pour la direction de l’esprit." Thesis, Paris 4, 2010. http://www.theses.fr/2010PA040096.
Full textThe dissertation aims to contextualize and understand the Regulae ad directionem ingenii as embodying theses central to the development of Descartes' mature metaphysical concept of mind. I argue that the Regulae demonstrates a tendancy toward a dualistic concept of mind. The reasons for this, I believe, are largely methodoligical. In the Regulae, Descartes develops the philosophical foundations for a scientific method that, he thought, would allow him to solve some of the most puzzling phenomena in nature and mathematics. This method is basically predicated on the idea that all natural phenomena, i.e., physical entities, can be understood by reducing those entities to geometrical models. These geometrical models could understood and explained either mechanically or algebraically. In either case, for Descartes the scientific method is essentially reductive. As a consequence,, he clearly believes that the models that explain the physical world are not the same as those that explain the nature of the mind. Furthermore, in the Regulae, the mind appears to be a vehicle for understanding the physical world, through the physiology of the brain and by determining the scientific parameters for any representation or explanation of the physical world. Thus, the mind is truly separated from the physical world in two senses: it cannot be reduced to physical principles and it organizes and found those physical principles. We will see how this is the case by focusing on four issues: (1) the historical significance of the text in the development of Descartes' thought (2) the mathesis universalis (3) the physiology of cognition and (4) the simple natures
Safou, Jean-Bernard. "Husserl et la métaphysique de Descartes : essai d'une interprétation phénoménologique du projet cartésien de la Mathesis universalis." Paris 4, 1999. http://www.theses.fr/1999PA040047.
Full textGérard, Vincent. "Mathematique universelle et metaphysique de l'individuation. L'elaboration de l'idee de mathesis universalis dans la phenomenologie de husserl." Paris 12, 2001. http://www.theses.fr/2001PA120046.
Full textJourdan, Robert. "Culture biblique, mathesis et structures de la communication dans "The crying of Lot 49" de Thomas Pynchon." Paris 8, 1997. http://www.theses.fr/1997PA081293.
Full textThis dissertation takes the double shape of, firstly, an interrogation over language ideology and its relation to the graeco-roman and judaeo-christian worlds in thomas pynchon's novelette the crying of lot 49 and secondly of a renewed look at the diegesis thereof in the larger frame of typical + sub-plots ; in north-american literature. Thomas pynchon's frequent reference to + paranoia ; and his use of recurring schemes in european history may indicate, at least for the author of this study, a certain link to india in what is called the + indo-european ; part of english linguistics and this, in turn, is not the attitude of the novelists who predated the post- modernist american literature anymore. California in this book is + kali ;-fornia like it was in richard farina's been down so long it looks like up to me, for instance, and the more or less occult significations which are quite commonplace in that type of literature take here a new aspect : they become logical, even mathematical and very precisely so. At the end of this analysis, we can understand that these + games ; able to manipulate conciousnesses were freshly tested when giordano bruno's + mathesis ; or magical power of the higher mathematics was used during the jacobean era but have now reached their maturity. Post-modern literature is a powerful antidote, though, at least as long as it can get published
Oliveira, Zaqueu Vieira [UNESP]. "A classificação das disciplinas matemáticas e a Mathesis Universalis nos séculos XVI e XVII: um estudo do pensamento de Adriaan van Roomen." Universidade Estadual Paulista (UNESP), 2015. http://hdl.handle.net/11449/132137.
Full textDurante os séculos XVI e XVII é possível encontrar diversos estudos acerca da classificação das disciplinas, suas especificidades e diferenças. Pensadores desse período como Petrus Ramus (1515-1572), Christoph Clavius (1538-1612), Adriaan van Roomen (1561-1615) e Francis Bacon (1561-1626) se debruçaram sobre o tema não somente para classificar, organizar e hierarquizar aquelas disciplinas que eles denominavam de disciplinas matemáticas, mas também para estudar a natureza do conhecimento matemático buscando compreender se o tipo de demonstração realizada pelas disciplinas matemáticas produzia um conhecimento certo e indubitável, além de estabelecer relações com outras áreas, principalmente com a filosofia. Neste trabalho, analiso a obra Universae Mathesis Idea (1602) e o liber primus da Mathesis Polemica (1605), as quais contêm uma pequena descrição das dezoito disciplinas que van Roomen denomina de matemáticas. Tais disciplinas estão divididas em dois grupos: as matemáticas principais que são subdivididas em matemáticas puras (logística, prima mathesis, aritmética e geometria) e mistas (astronomia, uranografia, cronologia, cosmografia, geografia, corografia, topografia, topothesis, astrologia, geodesia, música, óptica e euthymetria); e as matemáticas mecânicas (sphaeropoeia, manganaria, mechanopoetica, organopoetica e thaumatopoetica) que estão relacionadas ao uso e construção de máquinas, assunto que está diretamente relacionado à instrumentação matemática, que se desenvolveu bastante naquele período. O autor traz ainda um breve capítulo sobre as disciplinas que ele nomeia de quase matemáticas. A descrição das disciplinas matemáticas de van Roomen inclui dentre outras coisas, o objeto de estudo, os princípios, o lugar em relação às demais disciplinas e a utilidade de cada uma. Buscarei não somente contribuições para estudos sobre a vida e obra de van Roomen, mas também...
During the sixteenth and seventeenth centuries we can find many studies on the classification of disciplines, their specifities and differences. Scholars of this period as Petrus Ramus (1515-1572), Christoph Clavius (1538-1612), Adriaan van Roomen (1561- 1615) and Francis Bacon (1561-1626) not only dedicated to sort, organize and prioritize those disciplines they denominated of mathematical disciplines, but also to study the nature of mathematical knowledge in order to understand if the type of statement made by mathematical disciplines produced a certain and indubitable knowledge, and to establish relatioships with other áreas, specially with philosophy. in this thesis, I analyse the work Universae Mathesis Idea (1602) and the liber pirmus of Mathesis Polemica (1605), wich contain a short description of the eighteen disciplines wich van Roomen calls mathematics. Such disciplines are divided into two groups: the principal mathematics wich are subdivided into pure mathematics (logistics, prima mathesis, arithmetic, and geometry) and mixed mathematics (astronomy, uranography, chronology, cosmography, geography, chorography, topography, topothesis, astrology, geodesy, music, optics, and euthymetria); and mechanical mathematics (sphaeropoeia, manganaria, mechanopoetica, organopoetica, and thaumatopoetica) that are related to the use and construction machinery, a subject that is directly related to mathematics instrumentation, which developed quite period. The author also presentes a brief chapter about the subjects he calls the almost mathematics. The description of van Roomen's mathematical disciplines includes among other things, the object of study, the principles, the place in relation to other disciplines and the usefulness of each. Seek contributions to studies on the life and work of van Roomen, and also try to understand some aspects of the philosophical status of mathematics at the time. Furthermore, I am ...
Oliveira, Zaqueu Vieira. "A classificação das disciplinas matemáticas e a Mathesis Universalis nos séculos XVI e XVII : um estudo do pensamento de Adriaan van Roomen /." Rio Claro, 2015. http://hdl.handle.net/11449/132137.
Full textBanca: Carlos Henrique Barbosa Gonçalves
Banca: Fàbio Maia Bertato
Banca: Fumikazu Saito
Banca: Thomás Augusto Santoro Haddad
Resumo: Durante os séculos XVI e XVII é possível encontrar diversos estudos acerca da classificação das disciplinas, suas especificidades e diferenças. Pensadores desse período como Petrus Ramus (1515-1572), Christoph Clavius (1538-1612), Adriaan van Roomen (1561-1615) e Francis Bacon (1561-1626) se debruçaram sobre o tema não somente para classificar, organizar e hierarquizar aquelas disciplinas que eles denominavam de "disciplinas matemáticas", mas também para estudar a natureza do conhecimento matemático buscando compreender se o tipo de demonstração realizada pelas disciplinas matemáticas produzia um conhecimento certo e indubitável, além de estabelecer relações com outras áreas, principalmente com a filosofia. Neste trabalho, analiso a obra Universae Mathesis Idea (1602) e o liber primus da Mathesis Polemica (1605), as quais contêm uma pequena descrição das dezoito disciplinas que van Roomen denomina de "matemáticas". Tais disciplinas estão divididas em dois grupos: as matemáticas principais que são subdivididas em matemáticas puras (logística, prima mathesis, aritmética e geometria) e mistas (astronomia, uranografia, cronologia, cosmografia, geografia, corografia, topografia, topothesis, astrologia, geodesia, música, óptica e euthymetria); e as matemáticas mecânicas (sphaeropoeia, manganaria, mechanopoetica, organopoetica e thaumatopoetica) que estão relacionadas ao uso e construção de máquinas, assunto que está diretamente relacionado à instrumentação matemática, que se desenvolveu bastante naquele período. O autor traz ainda um breve capítulo sobre as disciplinas que ele nomeia de "quase matemáticas". A descrição das disciplinas matemáticas de van Roomen inclui dentre outras coisas, o objeto de estudo, os princípios, o lugar em relação às demais disciplinas e a utilidade de cada uma. Buscarei não somente contribuições para estudos sobre a vida e obra de van Roomen, mas também...
Abstract: During the sixteenth and seventeenth centuries we can find many studies on the classification of disciplines, their specifities and differences. Scholars of this period as Petrus Ramus (1515-1572), Christoph Clavius (1538-1612), Adriaan van Roomen (1561- 1615) and Francis Bacon (1561-1626) not only dedicated to sort, organize and prioritize those disciplines they denominated of "mathematical disciplines", but also to study the nature of mathematical knowledge in order to understand if the type of statement made by mathematical disciplines produced a certain and indubitable knowledge, and to establish relatioships with other áreas, specially with philosophy. in this thesis, I analyse the work Universae Mathesis Idea (1602) and the liber pirmus of Mathesis Polemica (1605), wich contain a short description of the eighteen disciplines wich van Roomen calls "mathematics". Such disciplines are divided into two groups: the principal mathematics wich are subdivided into pure mathematics (logistics, prima mathesis, arithmetic, and geometry) and mixed mathematics (astronomy, uranography, chronology, cosmography, geography, chorography, topography, topothesis, astrology, geodesy, music, optics, and euthymetria); and mechanical mathematics (sphaeropoeia, manganaria, mechanopoetica, organopoetica, and thaumatopoetica) that are related to the use and construction machinery, a subject that is directly related to mathematics instrumentation, which developed quite period. The author also presentes a brief chapter about the subjects he calls the "almost mathematics". The description of van Roomen's mathematical disciplines includes among other things, the object of study, the principles, the place in relation to other disciplines and the usefulness of each. Seek contributions to studies on the life and work of van Roomen, and also try to understand some aspects of the philosophical status of mathematics at the time. Furthermore, I am ...
Doutor
Sato, Masato. "La formation du concept de nature chez Descartes jusqu’au Discours de la méthode." Thesis, Paris 4, 2016. http://www.theses.fr/2016PA040120.
Full textThe keen interest of Descartes constantly found in the concept of nature manifests itself in his frequent use of the term with all its semantic complexity. Nature means to him first of all the physics, on which he works particularly in the 1630s. Then, it is the essence and what makes possible our essential disposition by instituting us, and this use is frequently found in Meditationes. But the Cartesian concept of nature does not exhaust all its appearances in the uses of the explicit term, because it also appears implicitly in a dyadic link of the research of the young Descartes. On one hand, he recognizes from the beginning of his career the intrinsic existence of truths in our spirit, among which are found seeds of truths and naturae simplices as a culmination of this concept. On the other hand, the main purpose of the young philosopher is to elucidate natural faculties of ingenium with the epistemological method that can be drawn from it naturally. "Natural(-ly)" concerns not only the mechanism of knowledge, but also the question of what makes it natural, namely its foundations. The concept of nature refers thus, for Descartes until the Discourse on Method, less to the essence than to the natural structure to know the truths naturally existing in mind, and his physics is an applied science of these truths to the natural phenomena. This elucidation of the epistemic naturality is a prerequisite for his next research on the ontological naturality by the search of reasons of certainty, namely the research of nature in the sense of essence which will be carried out in Meditationes
Santos, Roger Moura dos. "A via simbólica na fundamentação da matese de mário ferreira dos santos." Universidade Federal da Paraíba, 2016. http://tede.biblioteca.ufpb.br:8080/handle/tede/9570.
Full textMade available in DSpace on 2017-09-19T14:20:43Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 4279418 bytes, checksum: 9eeb4c3b3022516f237f7a2d02939cd3 (MD5) Previous issue date: 2016-07-25
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Esta dissertação versa sobre a Matese da Filosofia Concreta de Mário Ferreira dos Santos. Em sua obra homônima ao seu projeto, Filosofia Concreta, há um predomínio da via ascensional (aristotélico-tomista); nas obras de Matese há a primazia da via descensional (platônica) – de modo que o filósofo imprime um embasamento de dupla via sobre o mesmo projeto filosófico, com o fim de enrijecê-lo. A Matese tem forte verve pitagórico-platônica, e emprega sobremaneira a via simbólica nos seus postulados. Então, como nos detemos sobre ela, após fazer uma breve síntese de alguns projetos de Mathesis, desenvolvemos a concepção de símbolo, analogia e participação: com o intuito de mostrar a correspondência que o filósofo brasileiro faz entre as suas convicções, a teoria da participação das formas platônicas, a mímeses e a simbólica numérica pitagórica. Feito isto, analisamos a Matese de Mário Ferreira – seu objeto de estudo (o princípio enquanto princípio), alguns dos seus postulados (formulações de leis eternas) e seu fim: a afirmação rigorosa do ser.
Esta dissertação versa sobre a Matese da Filosofia Concreta de Mário Ferreira dos Santos. Em sua obra homônima ao seu projeto, Filosofia Concreta, há um predomínio da via ascensional (aristotélico-tomista); nas obras de Matese há a primazia da via descensional (platônica) – de modo que o filósofo imprime um embasamento de dupla via sobre o mesmo projeto filosófico, com o fim de enrijecê-lo. A Matese tem forte verve pitagórico-platônica, e emprega sobremaneira a via simbólica nos seus postulados. Então, como nos detemos sobre ela, após fazer uma breve síntese de alguns projetos de Mathesis, desenvolvemos a concepção de símbolo, analogia e participação: com o intuito de mostrar a correspondência que o filósofo brasileiro faz entre as suas convicções, a teoria da participação das formas platônicas, a mímeses e a simbólica numérica pitagórica. Feito isto, analisamos a Matese de Mário Ferreira – seu objeto de estudo (o princípio enquanto princípio), alguns dos seus postulados (formulações de leis eternas) e seu fim: a afirmação rigorosa do ser.
Alain, Vincent. "Analyse et distinction La logique des notions en Allemagne de 1684 à 1790. Quelques remarques pour servir à l’étude des réceptions par Christian Wolff et Emmanuel Kant des Meditationes de Cognitione, Veritate et Ideis de Leibniz." Thesis, Paris 4, 2012. http://www.theses.fr/2012PA040021.
Full textLeibniz published in 1684 a short opuscule, Meditationes de Cognitione, Veritate et Ideis. This Leibniz’s essay of few pages is a true discours de la méthode for the German philosophy. This research tries to justify this declaration and restores the reception of this short text by Christian Wolff and Immanuel Kant. This work studies the development of the Begriffsanalyse in Germany. But, what means analysis for Wolff and for Kant? The study of this logic of notions, its bond to mathematics and with the Cartesian conception of Mathesis universalis, clarifies the Kantian distinction between dogmatic method and dogmatism. This inquiry goes back to the Leibnizian origin of the classical division of analytic and synthetic judgments. This work comes to an end by the study of Eberhard’s critic of the Critic. In short, like Michel Fichant formulated, this study wants to make manifest that « behind German words of Kant lay down Latin words of Leibniz »
Lawrence, Nicholas. "A Brief Introduction to Transcendental Phenomenology and Conceptual Mathematics." Thesis, Södertörns högskola, Filosofi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-32873.
Full textOganesjanová, Lena. "Alexandr Blok v českých překladech. Překlad poémy Dvanáct." Master's thesis, 2014. http://www.nusl.cz/ntk/nusl-342424.
Full text