Academic literature on the topic 'Matrice de Toeplitz'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Matrice de Toeplitz.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Matrice de Toeplitz"
Rambour, Philippe. "Valeur propre minimale d’une matrice de Toeplitz et d’un produit de matrices de Toeplitz." Annales mathématiques du Québec 39, no. 1 (June 2015): 25–48. http://dx.doi.org/10.1007/s40316-015-0033-7.
Full textRambour, Philippe, Jean-Marc Rinkel, and Abdellatif Seghier. "Inverse asymptotique de la matrice de Toeplitz et noyau de Green." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 331, no. 11 (December 2000): 857–60. http://dx.doi.org/10.1016/s0764-4442(00)01735-3.
Full textSeghier, A. "Inversion de la matrice de Toeplitz en d dimensions et développement asymptotique de la trace de l'inverse à l'ordre d." Journal of Functional Analysis 67, no. 3 (July 1986): 380–412. http://dx.doi.org/10.1016/0022-1236(86)90032-7.
Full textRambour, Philippe, and Jean-Marc Rinkel. "Un théorème de Spitzer-Stone fort pour une matrice de Toeplitz à symbole singulier défini par une classe de fonctions analytiques." Annales de la faculté des sciences de Toulouse Mathématiques 16, no. 2 (2007): 331–67. http://dx.doi.org/10.5802/afst.1151.
Full textCao, Lei, and Selcuk Koyuncu. "A note on multilevel Toeplitz matrices." Special Matrices 7, no. 1 (January 1, 2019): 114–26. http://dx.doi.org/10.1515/spma-2019-0011.
Full textAltun, Muhammed. "Fine Spectra of Symmetric Toeplitz Operators." Abstract and Applied Analysis 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/932785.
Full textLv, Xiao-Guang, and Ting-Zhu Huang. "The Inverses of Block Toeplitz Matrices." Journal of Mathematics 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/207176.
Full textKhan, Muhammad Ahsan. "A Family of Maximal Algebras of Block Toeplitz Matrices." Analele Universitatii "Ovidius" Constanta - Seria Matematica 26, no. 3 (December 1, 2018): 127–42. http://dx.doi.org/10.2478/auom-2018-0037.
Full textGutiérrez-Gutiérrez, Jesús, Xabier Insausti, and Marta Zárraga-Rodríguez. "Applications of the Periodogram Method for Perturbed Block Toeplitz Matrices in Statistical Signal Processing." Mathematics 8, no. 4 (April 14, 2020): 582. http://dx.doi.org/10.3390/math8040582.
Full textPark, Ju Yong, Jeong Su Kim, Ferenc Szollosi, and Moon Ho Lee. "The Toeplitz Circulant Jacket Matrices." Journal of the Institute of Electronics and Information Engineers 50, no. 7 (July 25, 2013): 19–26. http://dx.doi.org/10.5573/ieek.2013.50.7.019.
Full textDissertations / Theses on the topic "Matrice de Toeplitz"
Zhang, Huimin. "Algorithmes rapides et matrices de toeplitz." Paris, ENST, 1989. http://www.theses.fr/1989ENST0008.
Full textZgheib, Rania. "Tests non paramétriques minimax pour de grandes matrices de covariance." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1078/document.
Full textOur work contributes to the theory of non-parametric minimax tests for high dimensional covariance matrices. More precisely, we observe $n$ independent, identically distributed vectors of dimension $p$, $X_1,ldots, X_n$ having Gaussian distribution $mathcal{N}_p(0,Sigma)$, where $Sigma$ is the unknown covariance matrix. We test the null hypothesis $H_0 : Sigma =I$, where $I$ is the identity matrix. The alternative hypothesis is given by an ellipsoid from which a ball of radius $varphi$ centered in $I$ is removed. Asymptotically, $n$ and $p$ tend to infinity. The minimax test theory, other approaches considered for testing covariance matrices and a summary of our results are given in the introduction.The second chapter is devoted to the case of Toeplitz covariance matrices $Sigma$. The connection with the spectral density model is discussed. We consider two types of ellipsoids, describe by polynomial weights and exponential weights, respectively. We find the minimax separation rate in both cases. We establish the sharp asymptotic equivalents of the minimax type II error probability and the minimax total error probability. The asymptotically minimax test procedure is a U-statistic of order 2 weighted by an optimal way.The third chapter considers alternative hypothesis containing covariance matrices not necessarily Toeplitz, that belong to an ellipsoid of parameter $alpha$. We obtain the minimax separation rate and give sharp asymptotic equivalents of the minimax type II error probability and the minimax total error probability. We propose an adaptive test procedure free of $alpha$, for $alpha$ belonging to a compact of $(1/2, + infty)$.We implement the tests procedures given in the previous two chapters. The results show their good behavior for large values of $p$ and that, in particular, they gain significantly over existing methods for large $p$ and small $n$.The fourth chapter is dedicated to adaptive tests in the model of covariance matrices where the observations are incomplete. That is, each value of the observed vector is missing with probability $1-a$, $a in (0,1)$ and $a$ may tend to 0. We treat this problem as an inverse problem. We establish the minimax separation rates and introduce new adaptive test procedures. Here, the tests statistics are weighted by constant weights. We consider ellipsoids of Sobolev type, for both cases : Toeplitz and non Toeplitz matrices
Dridi, Marwa. "Sur les méthodes rapides de résolution de systèmes de Toeplitz bandes." Thesis, Littoral, 2016. http://www.theses.fr/2016DUNK0402/document.
Full textThis thesis aims to design new fast algorithms for numerical computation via the Toeplitz matrices. First, we introduced a fast algorithm to compute the inverse of a triangular Toeplitz matrix with real and/or complex numbers based on polynomial interpolation techniques. This algorithm requires only two FFT (2n) is clearly effective compared to predecessors. A numerical accuracy and error analysis is also considered. Numerical examples are given to illustrate the effectiveness of our method. In addition, we introduced a fast algorithm for solving a linear banded Toeplitz system. This new approach is based on extending the given matrix with several rows on the top and several columns on the right and to assign zeros and some nonzero constants in each of these rows and columns in such a way that the augmented matrix has a lower triangular Toeplitz structure. Stability of the algorithm is discussed and its performance is showed by numerical experiments. This is essential to connect our algorithms to applications such as image restoration applications, a key area in applied mathematics
Kulkarni, Rekha Panditrao. "Fonctions spline cardinales tronquées." Grenoble 1, 1985. http://tel.archives-ouvertes.fr/tel-00318472.
Full textOn propose des conditions de bout pour les fonctions spines polynomiales d'interpolation de degre p (p >ou= 2) associees aux abscisses equidistantes qui economisent le calcul et entrainent un ordre de convergence optimal. Cette fonction spline peut etre interpretee comme une fonction spline cardinale tronquee avec une correction convenable. La technique utilisee pour les fonctions splines polynomiales est applicable dans le cas des fonctions splines sous tension. On donne aussi quelques resultats pour les fonctions splines cubiques de lissage
Ben, Atti Nadia. "Calcul rapide sur les matrices structurées : Les matrices de Hankel." Phd thesis, Université de Franche-Comté, 2008. http://tel.archives-ouvertes.fr/tel-00477090.
Full textBelhaj, Skander. "Algèbre matricielle rapide en calcul formel et calcul numérique." Phd thesis, Université de Franche-Comté, 2010. http://tel.archives-ouvertes.fr/tel-00487346.
Full textArnaout, Mohamad Abed Al Rahman. "Caractérisation d'une cellule de mesure électro-acoustique-pulsée pour la qualification électrostatique des diélectriques spatiaux : modélisation électro-acoustique et traitement du signal." Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1398/.
Full textDielectric materials are frequently used in satellite structures as a thermal blanket. Subjected to an electron irradiation - space environment - they can cause in-orbit satellite anomalies. One of these aspects is the charge accumulation due to the flux of space charged particles, and particularly to electrons. This accumulation increases the local electric field in the material bulk and can lead to an Electrostatic Surface Discharge - ESD. This phenomenon could cause serious damage to the satellite structure or performance. In order to have a better control on the discharge it is necessary to clarify; the nature, position and quantity of stored charges with time and to understand the dynamics of the charge transport in solid dielectrics. The Pulsed-Electro Acoustic - PEA method allows us to obtain these features, like the spatial distribution of space charges. One of the weaknesses of this current technique is spatial resolution, about 10 µm. Dielectric materials used in satellite structures have a thickness of 50 and 75 µm. This work aims at improving the spatial resolution for the PEA method. Whatever measurement principle considered, the best spatial resolution achievable is 10µm. This is a drawback when considering rather thin insulating layers (order of tens of microns), as the case in some capacitors or films on outer parts of satellites. Also, a better resolution (1µm) is expected to provide a better description of charge generation in insulation at metal dielectric interfaces or under low energy electron beams
Khalil, Houssam. "Matrices structurées et matrices de Toeplitz par blocs de Toeplitz en calcul numérique et formel." Phd thesis, Université Claude Bernard - Lyon I, 2008. http://tel.archives-ouvertes.fr/tel-00306987.
Full textLa structure de Toeplitz, de Hankel, de Cauchy, de Vandermonde et d'autre structure plus générales sont bien exploitées pour réduire la complexité de résolution d'un système linéaire à O(n log^2 n) opérations arithmétiques.
Les matrices structurées en deux niveaux et surtout les matrices de Toeplitz par blocs de Toeplitz (TBT) apparaissent dans beaucoup des applications. Le but de ce travail est de trouver des algorithmes de résolution rapide pour des systèmes TBT de grande taille.
Dans cette thèse, on décrit les difficultés de ce problème. On donne trois algorithmes rapide, en O(n^3/2) opérations, de résolution pour les systèmes de Toeplitz bande par blocs Toeplitz bande. On donne aussi une nouvelle méthode de résolution des systèmes de Toeplitz scalaires en donnant une relation entre la solution d'un système de Toeplitz scalaires et les syzygies des polynômes en une seule variable. On généralise cette méthode pour les matrices TBT et on donne une relation entre la solution d'un tel système linéaire et les syzygies des polynômes en deux variables.
Zhang, Hui-Min. "Algorithmes rapides et matrices de Toeplitz /." Paris : École nationale supérieure des télécommunications, 1989. http://catalogue.bnf.fr/ark:/12148/cb35057627g.
Full textNg, Kwok-po, and 吳國寶. "Fast iterative methods for solving Toeplitz and Toeplitz-like systems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1992. http://hub.hku.hk/bib/B31210946.
Full textBooks on the topic "Matrice de Toeplitz"
Bojanczyk, Adam. Transformation techniques for Toeplitz and Toeplitz-plus-Hankel matrices. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1996.
Find full textBini, Dario A., Torsten Ehrhardt, Alexei Yu Karlovich, and Ilya Spitkovsky, eds. Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49182-0.
Full text1941-, Silbermann Bernd, ed. Introduction to large truncated Toeplitz matrices. New York: Springer, 1999.
Find full textBöttcher, Albrecht. Introduction to Large Truncated Toeplitz Matrices. New York, NY: Springer New York, 1999.
Find full textBöttcher, Albrecht, Israel Gohberg, and Peter Junghanns, eds. Toeplitz Matrices and Singular Integral Equations. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8199-9.
Full textBöttcher, Albrecht, and Bernd Silbermann. Introduction to Large Truncated Toeplitz Matrices. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1426-7.
Full textFreund, Roland W. Formally biorthogonal polynomials and a look-ahead Levinson algorithm for general Toeplitz systems. [Moffett Field, Calif.]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1992.
Find full textVoevodin, V. V. Vychislitelʹnye prot͡s︡essy s teplit͡s︡evymi matrit͡s︡ami. Moskva: "Nauka," Glav. red. fiziko-matematicheskoĭ lit-ry, 1987.
Find full textTëplit͡s︡evy matrit͡s︡y, nekotorye ikh analogi i prilozhenii͡a︡. Moskva: Akademii͡a︡ nauk SSSR, Otdel vychislitelʹnoĭ matematiki, 1989.
Find full textGrenander, Ulf. Toeplitz forms and their applications. 2nd ed. Providence, RI: AMS Chelsea Pub., 2001.
Find full textBook chapters on the topic "Matrice de Toeplitz"
Mursaleen, M. "Toeplitz Matrices." In SpringerBriefs in Mathematics, 1–11. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04609-9_1.
Full textBöttcher, Albrecht, and Bernd Silbermann. "Block Toeplitz Matrices." In Introduction to Large Truncated Toeplitz Matrices, 185–219. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1426-7_6.
Full textNg, Michael Kwok-Po. "Toeplitz Matrices: Computation." In Encyclopedia of Applied and Computational Mathematics, 1486–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-540-70529-1_288.
Full textBöttcher, Albrecht, and Sergei M. Grudsky. "Infinite Toeplitz Matrices." In Toeplitz Matrices, Asymptotic Linear Algebra and Functional Analysis, 1–13. Gurgaon: Hindustan Book Agency, 2000. http://dx.doi.org/10.1007/978-93-86279-04-0_1.
Full textBöttcher, Albrecht, and Sergei M. Grudsky. "Infinite Toeplitz Matrices." In Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis, 1–13. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8395-5_1.
Full textBump, Daniel. "Minors of Toeplitz Matrices." In Lie Groups, 331–38. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4094-3_41.
Full textBump, Daniel. "Minors of Toeplitz Matrices." In Lie Groups, 437–44. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8024-2_42.
Full textWidom, Harold. "Random Hermitian Matrices and (Nonrandom) Toeplitz Matrices." In Toeplitz Operators and Related Topics, 9–15. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8543-0_2.
Full textBall, Joseph A., Israel Gohberg, and Leiba Rodman. "Caratheodory-Toeplitz Interpolation." In Interpolation of Rational Matrix Functions, 487–99. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-7709-1_23.
Full textKoltracht, I., and P. Lancaster. "Condition Numbers of Toeplitz and Block Toeplitz Matrices." In I. Schur Methods in Operator Theory and Signal Processing, 271–300. Basel: Birkhäuser Basel, 1986. http://dx.doi.org/10.1007/978-3-0348-5483-2_11.
Full textConference papers on the topic "Matrice de Toeplitz"
Goldreich, Oded, and Avishay Tal. "Matrix rigidity of random toeplitz matrices." In STOC '16: Symposium on Theory of Computing. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2897518.2897633.
Full textSerra-Capizzano, Stefano, and Eugene E. Tyrtyshnikov. "Multilevel Toeplitz matrices and approximation by matrix algebras." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Franklin T. Luk. SPIE, 1998. http://dx.doi.org/10.1117/12.325700.
Full textOudin, M., and J. P. Delmas. "Asymptotic generalized eigenvalue distribution of Toeplitz block Toeplitz matrices." In ICASSP 2008 - 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2008. http://dx.doi.org/10.1109/icassp.2008.4518358.
Full textBistritz, Y., and Y. Segalov. "Integer Levinson algorithms for Toeplitz and certain Toeplitz-like matrices." In 2010 American Control Conference (ACC 2010). IEEE, 2010. http://dx.doi.org/10.1109/acc.2010.5531143.
Full textBajwa, Waheed U., Jarvis D. Haupt, Gil M. Raz, Stephen J. Wright, and Robert D. Nowak. "Toeplitz-Structured Compressed Sensing Matrices." In 2007 IEEE/SP 14th Workshop on Statistical Signal Processing. IEEE, 2007. http://dx.doi.org/10.1109/ssp.2007.4301266.
Full textHuckle, Thomas K. "Cauchy matrices and iterative methods for Toeplitz matrices." In SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Franklin T. Luk. SPIE, 1995. http://dx.doi.org/10.1117/12.211405.
Full textQin, Si, Yimin D. Zhang, Moeness G. Amin, and Abdelhak Zoubir. "Generalized coprime sampling of Toeplitz matrices." In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016. http://dx.doi.org/10.1109/icassp.2016.7472522.
Full textTan, Choon Peng, Sin Yen Chu, and Wei Yeing Pan. "Universal portfolios generated by Toeplitz matrices." In PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4882625.
Full textBojanczyk, Adam W., Richard P. Brent, and Frank R. de Hoog. "Parallel QR Decomposition Of Toeplitz Matrices." In 30th Annual Technical Symposium, edited by Jeffrey M. Speiser. SPIE, 1986. http://dx.doi.org/10.1117/12.936873.
Full textRay, P. S. "Characteristic properties of some integer Toeplitz matrices." In 1999 Information, Decision and Control. Data and Information Fusion Symposium, Signal Processing and Communications Symposium and Decision and Control Symposium. Proceedings (Cat. No.99EX251). IEEE, 1999. http://dx.doi.org/10.1109/idc.1999.754148.
Full textReports on the topic "Matrice de Toeplitz"
Holmes, R. B. On Random Correlation Matrices. 2. The Toeplitz Case. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada208229.
Full textParter, Seymour V. On the Distribution of the Singular Values of Toeplitz Matrices. Fort Belvoir, VA: Defense Technical Information Center, August 1985. http://dx.doi.org/10.21236/ada161146.
Full textAvram, Florin. On Bilinear Forms in Gaussian Random Variables, Toeplitz Matrices and Parseval's Relation. Fort Belvoir, VA: Defense Technical Information Center, November 1986. http://dx.doi.org/10.21236/ada177100.
Full text