Academic literature on the topic 'Matrice polynomiale'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Matrice polynomiale.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Matrice polynomiale"

1

Chami, Peter S., Bernd Sing, and Norris Sookoo. "Generalizing Krawtchouk Polynomials Using Hadamard Matrices." ISRN Applied Mathematics 2014 (March 4, 2014): 1–8. http://dx.doi.org/10.1155/2014/498135.

Full text
Abstract:
We investigate polynomials, called m-polynomials, whose generator polynomial has coefficients that can be arranged in a square matrix; in particular, the case where this matrix is a Hadamard matrix is considered. Orthogonality relations and recurrence relations are established, and coefficients for the expansion of any polynomial in terms of m-polynomials are obtained. We conclude this paper by an implementation of m-polynomials and some of the results obtained for them in Mathematica.
APA, Harvard, Vancouver, ISO, and other styles
2

Akemann, Gernot, Eugene Strahov, and Tim R. Würfel. "Averages of Products and Ratios of Characteristic Polynomials in Polynomial Ensembles." Annales Henri Poincaré 21, no. 12 (2020): 3973–4002. http://dx.doi.org/10.1007/s00023-020-00963-9.

Full text
Abstract:
Abstract Polynomial ensembles are a sub-class of probability measures within determinantal point processes. Examples include products of independent random matrices, with applications to Lyapunov exponents, and random matrices with an external field, that may serve as schematic models of quantum field theories with temperature. We first analyse expectation values of ratios of an equal number of characteristic polynomials in general polynomial ensembles. Using Schur polynomials, we show that polynomial ensembles constitute Giambelli compatible point processes, leading to a determinant formula f
APA, Harvard, Vancouver, ISO, and other styles
3

Seneta, E. "Characterization by orthogonal polynomial systems of finite Markov chains." Journal of Applied Probability 38, A (2001): 42–52. http://dx.doi.org/10.1017/s0021900200112665.

Full text
Abstract:
The paper characterizes matriceswhich have a given system of vectors orthogonal with respect to a given probability distribution as its right eigenvectors. Results of Hoare and Rahman are unified in this context, then all matrices with a given orthogonal polynomial system as right eigenvectors under the constrainta0j= 0 forj≥ 2 are specified. The only stochastic matricesP ={pij} satisfyingp00+p01= 1 with the Hahn polynomials as right eigenvectors have the form of the Moran mutation model.
APA, Harvard, Vancouver, ISO, and other styles
4

Ernst, Thomas. "-Pascal and -Wronskian Matrices with Implications to -Appell Polynomials." Journal of Discrete Mathematics 2013 (March 20, 2013): 1–10. http://dx.doi.org/10.1155/2013/450481.

Full text
Abstract:
We introduce a -deformation of the Yang and Youn matrix approach for Appell polynomials. This will lead to a powerful machinery for producing new and old formulas for -Appell polynomials, and in particular for -Bernoulli and -Euler polynomials. Furthermore, the --polynomial, anticipated by Ward, can be expressed as a sum of products of -Bernoulli and -Euler polynomials. The pseudo -Appell polynomials, which are first presented in this paper, enable multiple -analogues of the Yang and Youn formulas. The generalized -Pascal functional matrix, the -Wronskian vector of a function, and the vector o
APA, Harvard, Vancouver, ISO, and other styles
5

MANTUROV, VASSILY O. "MULTI-VARIABLE POLYNOMIAL INVARIANTS FOR VIRTUAL LINKS." Journal of Knot Theory and Its Ramifications 12, no. 08 (2003): 1131–44. http://dx.doi.org/10.1142/s0218216503002962.

Full text
Abstract:
We construct new invariant polynomials in two and multiple variables for virtual knots and links. They are defined as determinants of Alexander-like matrices whose determinants are virtual link invariants. These polynomials vanish on classical links. In some cases, they separate links that can not be separated by the Jones–Kauffman polynomial [Kau] and the polynomial proposed in [Ma3].
APA, Harvard, Vancouver, ISO, and other styles
6

Kobal, Damjan. "Matrix zeros of polynomials." Mathematical Gazette 104, no. 559 (2020): 27–35. http://dx.doi.org/10.1017/mag.2020.4.

Full text
Abstract:
The concepts of polynomials and matrices essentially expand and enhance the elementary arithmetic of numbers. Once introduced, polynomials and matrices open up new interesting mathematical challenges which extend to new fields of mathematical explorations within university mathematics. We present an aspect of a rather elementary exploration of polynomials and matrices, which offers a new perspective and an interesting matrix analogue to the concept of a zero of a polynomial. The discussion offers an opportunity for better comprehension of the fundamental concepts of polynomials and matrices. A
APA, Harvard, Vancouver, ISO, and other styles
7

Karcanias, Nicos, and George Halikias. "Approximate zero polynomials of polynomial matrices and linear systems." Linear Algebra and its Applications 439, no. 4 (2013): 1091–103. http://dx.doi.org/10.1016/j.laa.2012.12.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Demmel, James, and Plamen Koev. "Accurate SVDs of polynomial Vandermonde matrices involving orthonormal polynomials." Linear Algebra and its Applications 417, no. 2-3 (2006): 382–96. http://dx.doi.org/10.1016/j.laa.2005.09.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hudelson, Matt, Judi McDonald, and Enzo Wendler. "Alpha Adjacency: A generalization of adjacency matrices." Electronic Journal of Linear Algebra 35 (February 1, 2019): 365–75. http://dx.doi.org/10.13001/1081-3810.3828.

Full text
Abstract:
B. Shader and W. So introduced the idea of the skew adjacency matrix. Their idea was to give an orientation to a simple undirected graph G from which a skew adjacency matrix S(G) is created. The -adjacency matrix extends this idea to an arbitrary field F. To study the underlying undirected graph, the average -characteristic polynomial can be created by averaging the characteristic polynomials over all the possible orientations. In particular, a Harary-Sachs theorem for the average-characteristic polynomial is derived and used to determine a few features of the graph from the average-characteri
APA, Harvard, Vancouver, ISO, and other styles
10

Purbhoo, Kevin. "Total Nonnegativity and Stable Polynomials." Canadian Mathematical Bulletin 61, no. 4 (2018): 836–47. http://dx.doi.org/10.4153/cmb-2018-006-7.

Full text
Abstract:
AbstractWe consider homogeneous multiaffine polynomials whose coefficients are the Plücker coordinates of a point V of the Grassmannian. We show that such a polynomial is stable (with respect to the upper half plane) if and only if V is in the totally nonnegative part of the Grassmannian. To prove this, we consider an action of matrices on multiaffine polynomials. We show that a matrix A preserves stability of polynomials if and only if A is totally nonnegative. The proofs are applications of classical theory of totally nonnegative matrices, and the generalized Pólya–Schur theory of Borcea and
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Matrice polynomiale"

1

Kulkarni, Rekha Panditrao. "Fonctions spline cardinales tronquées." Grenoble 1, 1985. http://tel.archives-ouvertes.fr/tel-00318472.

Full text
Abstract:
On propose des conditions de bout pour les fonctions spines polynomiales d'interpolation de degré p (p≥2) associées aux abscisses équidistantes qui économisent le calcul et entraînent un ordre de convergence optimal. Cette fonction spline peut être interprétée comme une fonction spline cardinale tronquée avec une correction convenable. La technique utilisée pour les fonctions splines polynomiales est applicable dans le cas des fonctions splines sous tension. On donne aussi quelques résultats pour les fonctions splines cubiques de lissage<br>On propose des conditions de bout pour les fonctions
APA, Harvard, Vancouver, ISO, and other styles
2

Bugarin, Florian. "Vision 3D multi-images : contribution à l’obtention de solutions globales par optimisation polynomiale et théorie des moments." Thesis, Toulouse, INPT, 2012. http://www.theses.fr/2012INPT0068/document.

Full text
Abstract:
L’objectif général de cette thèse est d’appliquer une méthode d’optimisation polynomiale basée sur la théorie des moments à certains problèmes de vision artificielle. Ces problèmes sont en général non convexes et classiquement résolus à l’aide de méthodes d’optimisation locales Ces techniques ne convergent généralement pas vers le minimum global et nécessitent de fournir une estimée initiale proche de la solution exacte. Les méthodes d’optimisation globale permettent d’éviter ces inconvénients. L’optimisation polynomiale basée sur la théorie des moments présente en outre l’avantage de prendre
APA, Harvard, Vancouver, ISO, and other styles
3

Fischer, Christian. "Annulation d'interférence par trajet pour une liaison montante DS-CDMA." Paris, ENST, 2002. http://www.theses.fr/2002ENST0011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dridi, Marwa. "Sur les méthodes rapides de résolution de systèmes de Toeplitz bandes." Thesis, Littoral, 2016. http://www.theses.fr/2016DUNK0402/document.

Full text
Abstract:
Cette thèse vise à la conception de nouveaux algorithmes rapides en calcul numérique via les matrices de Toeplitz. Tout d'abord, nous avons introduit un algorithme rapide sur le calcul de l'inverse d'une matrice triangulaire de Toeplitz en se basant sur des notions d'interpolation polynomiale. Cet algorithme nécessitant uniquement deux FFT(2n) est manifestement efficace par rapport à ses prédécésseurs. ensuite, nous avons introduit un algorithme rapide pour la résolution d'un système linéaire de Toeplitz bande. Cette approche est basée sur l'extension de la matrice donnée par plusieurs lignes
APA, Harvard, Vancouver, ISO, and other styles
5

Neiger, Vincent. "Bases of relations in one or several variables : fast algorithms and applications." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEN052.

Full text
Abstract:
Dans cette thèse, nous étudions des algorithmes pour un problème de recherche de relations à une ou plusieurs variables. Il généralise celui de calculer une solution à un système d’équations linéaires modulaires sur un anneau de polynômes, et inclut par exemple le calcul d’approximants de Hermite-Padé ou d’interpolants bivariés. Plutôt qu’une seule solution, nous nous attacherons à calculer un ensemble de générateurs possédant de bonnes propriétés. Précisément, l’entrée de notre problème consiste en un module de dimension finie spécifié par l’action des variables sur ses éléments, et en un cer
APA, Harvard, Vancouver, ISO, and other styles
6

Icart, Sylvie. "Matrices polynomiales et égalisation de canal." Habilitation à diriger des recherches, Université de Nice Sophia-Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00805547.

Full text
Abstract:
Dans ce mémoire, nous nous focaliserons sur un type de matrices particulier : les matrices polynomiales de Laurent, dont les éléments sont des polynômes de Laurent, c'est à dire des polynômes avec des puissances positives et négatives de la variable $z$. Ce type de polynômes ne peut être associé à un filtre causal mais il se rencontre notamment lorsqu'on étudie le spectre de signaux à temps discret en sortie de filtre à réponse impulsionnelle finie. Nous commencerons par présenter les propriétés des polynômes de Laurent, puis des matrices polynomiales de Laurent. Nous définirons notamment la L
APA, Harvard, Vancouver, ISO, and other styles
7

Dale, Hill Jordan. "Polynomial identities for skew-symmetric matrices." Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27347.

Full text
Abstract:
As mentioned in the introduction, Racine and D'Amour have described all identities for Kn, n &lt; 5. In our research we began at n = 5, and immediately found that 8 is the minimal degree, and that there is a large space of identities for degree 8. More precisely, a space of degree 8 multilinear identities for K5 was computed and it has dimension 1756. A character for this space was also computed and it involves, in its decomposition into irreducible characters, all but 4 of S8's irreducible characters. Our next step was to look into this massive space for "simple" identities: identities that m
APA, Harvard, Vancouver, ISO, and other styles
8

Cheng, Howard. "Algorithms for Normal Forms for Matrices of Polynomials and Ore Polynomials." Thesis, University of Waterloo, 2003. http://hdl.handle.net/10012/1088.

Full text
Abstract:
In this thesis we study algorithms for computing normal forms for matrices of Ore polynomials while controlling coefficient growth. By formulating row reduction as a linear algebra problem, we obtain a fraction-free algorithm for row reduction for matrices of Ore polynomials. The algorithm allows us to compute the rank and a basis of the left nullspace of the input matrix. When the input is restricted to matrices of shift polynomials and ordinary polynomials, we obtain fraction-free algorithms for computing row-reduced forms and weak Popov forms. These algorithms can be used to com
APA, Harvard, Vancouver, ISO, and other styles
9

Pallone, Ashley H. "Entangled Polynomials." Ohio University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1615312851673664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hanselka, Christoph [Verfasser]. "Characteristic Polynomials of Selfadjoint Matrices / Christoph Hanselka." Konstanz : Bibliothek der Universität Konstanz, 2016. http://d-nb.info/1112605010/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Matrice polynomiale"

1

Pan, Victor Y. Structured Matrices and Polynomials. Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0129-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kaczorek, Tadeusz. Polynomial and Rational Matrices. Springer London, 2007. http://dx.doi.org/10.1007/978-1-84628-605-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

I, Gohberg. Matrix polynomials. Society for Industrial and Applied Mathematics, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stefanidis, Peter, Andrzej Piotr Paplińnski, and Michael John Gibbard, eds. Numerical Operations with Polynomial Matrices. Springer-Verlag, 1992. http://dx.doi.org/10.1007/bfb0039323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Freund, Roland W. On polynomial preconditioning for indefinite Hermitian matrices. Research Institute for Advanced Computer Science, NASA Ames Research Center, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Toh, Kim-Chuan. The Chebyshev polynomials of a matrix. Cornell Theory Center, Cornell University, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kuznet︠s︡ov, I︠U︡ I. Matrit︠s︡y i mnogochleny. [Izd. IVMiMG SO RAN], 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Victor, Pan, ed. Polynomial and matrix computations. Birkhäuser, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1920-, Gregory Robert Todd, ed. Error-free polynomial matrix computations. Springer-Verlag, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Formanek, Edward. The polynomial identities and invariants of nxn matrices. Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Matrice polynomiale"

1

Kraus, F. J., M. Mansour, and M. Sebek. "Hurwitz Matrix for Polynomial Matrices." In Stability Theory. Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-9208-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rosenwasser, Efim N., Bernhard P. Lampe, and Torsten Jeinsch. "Polynomial Matrices." In Computer-Controlled Systems with Delay. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15042-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Falb, Peter. "Polynomial Matrices." In Methods of Algebraic Geometry in Control Theory: Part II. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96574-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Falb, Peter. "Polynomial Matrices." In Methods of Algebraic Geometry in Control Theory: Part II. Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-1564-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Delchamps, David F. "Polynomial Matrices and Matrix Fraction Descriptions." In State Space and Input-Output Linear Systems. Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-3816-4_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rodmank, Leiba. "Orthogonal Matrix Polynomials." In Orthogonal Polynomials. Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0501-6_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Drensky, Vesselin, and Edward Formanek. "Central Polynomials for Matrices." In Polynomial Identity Rings. Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7934-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Drensky, Vesselin, and Edward Formanek. "Invariant Theory of Matrices." In Polynomial Identity Rings. Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7934-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pan, Victor Y. "Computations with Structured Matrices. Introduction." In Structured Matrices and Polynomials. Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0129-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pan, Victor Y. "Toeplitz/Hankel Matrix Structure and Polynomial Computations." In Structured Matrices and Polynomials. Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0129-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Matrice polynomiale"

1

Sunkari, Rajesh Pavan, and Linda C. Schmidt. "Laplace and Extended Adjacency Matrices for Isomorphism Detection of Kinematic Chains Using the Characteristic Polynomial Approach." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84609.

Full text
Abstract:
The kinematic chain isomorphism problem is one of the most challenging problems facing mechanism researchers. Methods using the spectral properties, characteristic polynomial and eigenvectors, of the graph related matrices were developed in literature for isomorphism detection. Detection of isomorphism using only the spectral properties corresponds to a polynomial time isomorphism detection algorithm. However, most of the methods used are either computationally inefficient or unreliable (i.e., failing to identify non-isomorphic chains). This work establishes the reliability of using the charac
APA, Harvard, Vancouver, ISO, and other styles
2

Arikawa, Keisuke. "Symbolic Computation of Inverse Kinematics for General 6R Manipulators Based on Raghavan and Roth’s Solution." In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22231.

Full text
Abstract:
Abstract We discuss the symbolic computation of inverse kinematics for serial 6R manipulators with arbitrary geometries (general 6R manipulators) based on Raghavan and Roth’s solution. The elements of the matrices required in the solution were symbolically calculated. In the symbolic computation, an algorithm for simplifying polynomials upon considering the symbolic constraints (constraints of the trigonometric functions and those of the rotation matrix), a method for symbolic elimination of the joint variables, and an efficient computation of the rational polynomials are presented. The elemen
APA, Harvard, Vancouver, ISO, and other styles
3

Karcanias, Nicos, and George Halikias. "Approximate zero polynomials of polynomial matrices and linear systems." In 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC 2011). IEEE, 2011. http://dx.doi.org/10.1109/cdc.2011.6160302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ren, Ping, and Clément Gosselin. "Trajectory Planning of Cable-Suspended Parallel Robots Using Interval Positive-Definite Polynomials." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71205.

Full text
Abstract:
In this paper, the dynamic point-to-point trajectory planning of cable-suspended robots is investigated. A simple planar two-degree-of-freedom (2-dof) robot is used to demonstrate the technique. In order to maintain the cables’ positive tension, a set of algebraic inequalities is derived from the dynamic model of the 2-dof robot. The trajectories are defined using parametric polynomials with the coefficients determined by the prescribed initial and final states, and the variable time duration. With the polynomials substituted into the inequality constraints, the planning problem is then conver
APA, Harvard, Vancouver, ISO, and other styles
5

Zheng, Qian, and Fen Wu. "State Feedback and Output Feedback Control of Polynomial Nonlinear Systems Using Fractional Lyapunov Functions." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42147.

Full text
Abstract:
In this paper, we will study the state feedback control problem of polynomial nonlinear systems using fractional Lyapunov functions. By adding constraints to bound the variation rate of each state, the general difficulty of calculating derivative of nonquadratic Lyapunov function is effectively overcome. As a result, the state feedback conditions are simplified as a set of Linear Matrix Inequalities (LMIs) with polynomial entries. Computationally tractable solution is obtained by Sum-of-Squares (SOS) decomposition. And it turns out that both of the Lyapunov matrix and the state feedback gain a
APA, Harvard, Vancouver, ISO, and other styles
6

Wang Feng, Xiong Pan, Chen Jian, Shi Li, and Cao XiBin. "D-stability analysis of polynomial matrices and polynomial matrix polytopes by using LMI approach." In 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2012. http://dx.doi.org/10.1109/iciea.2012.6360822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Redif, Soydan, Stephan Weiss, and John G. McWhirter. "An approximate polynomial matrix eigenvalue decomposition algorithm for para-Hermitian matrices." In 2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). IEEE, 2011. http://dx.doi.org/10.1109/isspit.2011.6151599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Guan, Jian, Xuan Wang, Pengming Feng, Jing Dong, and Wenwu Wang. "Matrix of Polynomials Model Based Polynomial Dictionary Learning Method for Acoustic Impulse Response Modeling." In Interspeech 2017. ISCA, 2017. http://dx.doi.org/10.21437/interspeech.2017-395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pennock, Gordon R., and Keith G. Mattson. "The Forward Position Problem of Two Puma-Type Robots Manipulating a Bennett Linkage Payload." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/mech-1146.

Full text
Abstract:
Abstract This paper presents a solution to the forward position problem of two PUMA-type robots manipulating a Bennett linkage payload. The orientation of a specified payload link is described by a sixth-order polynomial and a specified angular joint displacement in the wrist subassembly of one of the robots is described by a second-order polynomial. A solution technique, based on orthogonal transformation matrices with dual number elements, is used to obtain closed-form solutions for the remaining unknown angular joint displacements in the wrist subassembly of each robot. The paper shows that
APA, Harvard, Vancouver, ISO, and other styles
10

Corless, Robert M. "Pseudospectra for exponential polynomial matrices." In the 2009 conference. ACM Press, 2009. http://dx.doi.org/10.1145/1577190.1577192.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Matrice polynomiale"

1

Delyon, B. Expansions for Determinants and for Characteristics Polynomials of Stochastic Matrices. Defense Technical Information Center, 1988. http://dx.doi.org/10.21236/ada458571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Conforti, Michele, Gerard Cornuejols, and M. R. Rao. Decomposition of Balanced Matrices. Part 7. A Polynomial Recognition Algorithm. Defense Technical Information Center, 1991. http://dx.doi.org/10.21236/ada247400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Saydy, Lahcen, Andre Tits, and Eyad H. Abed. Guardian Maps and the Generalized Stability of Parametrized Families of Matrices and Polynomials. Defense Technical Information Center, 1989. http://dx.doi.org/10.21236/ada454727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tal-Ezer, Hillel. Polynominal Approximation of Functions of Matrices and Its Application the the Solution of a General System of Linear Equations. Defense Technical Information Center, 1987. http://dx.doi.org/10.21236/ada211390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Carr, III, Borges L. E., Giraldo C. F., and F. X. Matrix-Free Polynomial-Based Nonlinear Least Squares Optimized Preconditioning and its Application to Discontinuous Galerkin Discretizations of the Euler Equations. Defense Technical Information Center, 2015. http://dx.doi.org/10.21236/ada625374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!