Academic literature on the topic 'Matrices laplaciennes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Matrices laplaciennes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Matrices laplaciennes"

1

Kook, Woong, and Kang-Ju Lee. "Weighted Tree-Numbers of Matroid Complexes." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings, 27th..., Proceedings (2015). http://dx.doi.org/10.46298/dmtcs.2459.

Full text
Abstract:
International audience We give a new formula for the weighted high-dimensional tree-numbers of matroid complexes. This formula is derived from our result that the spectra of the weighted combinatorial Laplacians of matroid complexes consist of polynomials in the weights. In the formula, Crapo’s $\beta$-invariant appears as the key factor relating weighted combinatorial Laplacians and weighted tree-numbers for matroid complexes. Nous présentons une nouvelle formule pour les nombres d’arbres pondérés de grande dimension des matroïdes complexes. Cette formule est dérivée du résultat que le spectr
APA, Harvard, Vancouver, ISO, and other styles
2

Teufl, Elmar, and Stephan Wagner. "Spanning forests, electrical networks, and a determinant identity." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AK,..., Proceedings (2009). http://dx.doi.org/10.46298/dmtcs.2699.

Full text
Abstract:
International audience We aim to generalize a theorem on the number of rooted spanning forests of a highly symmetric graph to the case of asymmetric graphs. We show that this can be achieved by means of an identity between the minor determinants of a Laplace matrix, for which we provide two different (combinatorial as well as algebraic) proofs in the simplest case. Furthermore, we discuss the connections to electrical networks and the enumeration of spanning trees in sequences of self-similar graphs. Nous visons à généraliser un théorème sur le nombre de forêts couvrantes d'un graphe fortement
APA, Harvard, Vancouver, ISO, and other styles
3

Martin, Jeremy L., and Jennifer D. Wagner. "On the Spectra of Simplicial Rook Graphs." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AS,..., Proceedings (2013). http://dx.doi.org/10.46298/dmtcs.12819.

Full text
Abstract:
The $\textit{simplicial rook graph}$ $SR(d,n)$ is the graph whose vertices are the lattice points in the $n$th dilate of the standard simplex in $\mathbb{R}^d$, with two vertices adjacent if they differ in exactly two coordinates. We prove that the adjacency and Laplacian matrices of $SR(3,n)$ have integral spectra for every $n$. We conjecture that $SR(d,n)$ is integral for all $d$ and $n$, and give a geometric construction of almost all eigenvectors in terms of characteristic vectors of lattice permutohedra. For $n \leq \binom{d}{2}$, we give an explicit construction of smallest-weight eigenv
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Matrices laplaciennes"

1

Wehbe, Diala. "Simulations and applications of large-scale k-determinantal point processes." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I012/document.

Full text
Abstract:
Avec la croissance exponentielle de la quantité de données, l’échantillonnage est une méthode pertinente pour étudier les populations. Parfois, nous avons besoin d’échantillonner un grand nombre d’objets d’une part pour exclure la possibilité d’un manque d’informations clés et d’autre part pour générer des résultats plus précis. Le problème réside dans le fait que l’échantillonnage d’un trop grand nombre d’individus peut constituer une perte de temps.Dans cette thèse, notre objectif est de chercher à établir des ponts entre la statistique et le k-processus ponctuel déterminantal(k-DPP) qui est
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Matrices laplaciennes"

1

Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs. CRC Press LLC, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Molitierno, Jason J. Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Molitierno, Jason J. Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs. Taylor & Francis Group, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Applications of combinatorial matrix theory to Laplacian matrices of graphs. CRC Press, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!