Academic literature on the topic 'Matrix algebra'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Matrix algebra.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Matrix algebra"

1

Rife, Susan A. "Matrix algebra." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1996. http://handle.dtic.mil/100.2/ADA316035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Delatorre, Anthony R., and William K. Cooke. "Matrix algebra." Thesis, Monterey, California. Naval Postgraduate School, 1998. http://hdl.handle.net/10945/8658.

Full text
Abstract:
Approved for public release; Distribution is unlimited<br>This thesis is designed to act as an instructor's supplement for refresher matrix algebra courses at the Naval Postgraduate School (NPS). The need for a beginning matrix algebra supplement is driven by the unique circumstances of most NPS students. Most military students attend XPS several years after receiving their undergraduate degrees. This supplement, unlike most college textbooks, bridges the gap between the student's educational lay-off and the rigors of mathematically oriented degrees such as applied math, operations research and engineering. By reviewing the fundamental concepts of vectors and matrices, and performing basic operations with them, the student quickly develops the background needed in NPS's demanding curriculums. This supplement focuses on matrix and vector operations, linear transformations, systems of linear equations, and computational techniques for solving systems of linear equations. The goal is to enhance current matrix algebra textbooks and help the beginning student build a foundation for higher level engineering and mathematics based courses.
APA, Harvard, Vancouver, ISO, and other styles
3

Rubensson, Emanuel H. "Matrix Algebra for Quantum Chemistry." Doctoral thesis, Stockholm : Bioteknologi, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Esslamzadeh, Gholam Hossein. "Banach algebra structure and amenability of a class of matrix algebras with applications." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0002/NQ29033.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Truong, Kevin. "Statistics of eigenvectors in non-invariant random matrix ensembles." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/50928/.

Full text
Abstract:
In this thesis we begin by presenting an introduction on random matrices, their different classes and applications in quantum mechanics to study the characteristics of the eigenvectors of a particular random matrix model. The focus of this work is on one of the oldest and most well-known symmetry classes of random matrices - the Gaussian unitary ensemble. We look at how the different possible deformations of the Gaussian unitary ensemble could have an impact on the nature of the eigenvectors, and back up our results by numerical simulations to confirm validity. We will begin exploring the structure of the eigenvectors by employing the supersymmetry technique, a method for studying eigenvectors of complex quantum systems. In particular, we can analyse the moments of the eigenvectors, a quantity used in the classification of eigenvectors, in different random matrix models. Eigenvectors can either be extended, localised or critical and the scaling of the moments of the eigenvectors with matrix size N is used to determine the exact type. This enables one to study the transition of the eigenvectors from extended to localised and the intermediate stages. We consider different classes of random matrices, such as random matrices with an external source and structured random matrices. In particular, we studied the Rosenzweig-Porter model by generalising our previous results from a deterministic potential to a random one and study the impact of such an alteration to the model.
APA, Harvard, Vancouver, ISO, and other styles
6

Ammar, Gregory, Christian Mehl, and Volker Mehrmann. "Schur-Like Forms for Matrix Lie Groups, Lie Algebras and Jordan Algebras." Universitätsbibliothek Chemnitz, 2005. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200501032.

Full text
Abstract:
We describe canonical forms for elements of a classical Lie group of matrices under similarity transformations in the group. Matrices in the associated Lie algebra and Jordan algebra of matrices inherit related forms under these similarity transformations. In general, one cannot achieve diagonal or Schur form, but the form that can be achieved displays the eigenvalues of the matrix. We also discuss matrices in intersections of these classes and their Schur-like forms. Such multistructered matrices arise in applications from quantum physics and quantum chemistry.
APA, Harvard, Vancouver, ISO, and other styles
7

Boito, Paola. "Structured matrix based methods for approximate polynomial GCD." Doctoral thesis, Scuola Normale Superiore, 2008. http://hdl.handle.net/11384/85672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wilkerson, Owen Tanner. "Fast, Sparse Matrix Factorization and Matrix Algebra via Random Sampling for Integral Equation Formulations in Electromagnetics." UKnowledge, 2019. https://uknowledge.uky.edu/ece_etds/147.

Full text
Abstract:
Many systems designed by electrical & computer engineers rely on electromagnetic (EM) signals to transmit, receive, and extract either information or energy. In many cases, these systems are large and complex. Their accurate, cost-effective design requires high-fidelity computer modeling of the underlying EM field/material interaction problem in order to find a design with acceptable system performance. This modeling is accomplished by projecting the governing Maxwell equations onto finite dimensional subspaces, which results in a large matrix equation representation (Zx = b) of the EM problem. In the case of integral equation-based formulations of EM problems, the M-by-N system matrix, Z, is generally dense. For this reason, when treating large problems, it is necessary to use compression methods to store and manipulate Z. One such sparse representation is provided by so-called H^2 matrices. At low-to-moderate frequencies, H^2 matrices provide a controllably accurate data-sparse representation of Z. The scale at which problems in EM are considered ``large'' is continuously being redefined to be larger. This growth of problem scale is not only happening in EM, but respectively across all other sub-fields of computational science as well. The pursuit of increasingly large problems is unwavering in all these sub-fields, and this drive has long outpaced the rate of advancements in processing and storage capabilities in computing. This has caused computational science communities to now face the computational limitations of standard linear algebraic methods that have been relied upon for decades to run quickly and efficiently on modern computing hardware. This common set of algorithms can only produce reliable results quickly and efficiently for small to mid-sized matrices that fit into the memory of the host computer. Therefore, the drive to pursue larger problems has even began to outpace the reasonable capabilities of these common numerical algorithms; the deterministic numerical linear algebra algorithms that have gotten matrix computation this far have proven to be inadequate for many problems of current interest. This has computational science communities focusing on improvements in their mathematical and software approaches in order to push further advancement. Randomized numerical linear algebra (RandNLA) is an emerging area that both academia and industry believe to be strong candidates to assist in overcoming the limitations faced when solving massive and computationally expensive problems. This thesis presents results of recent work that uses a random sampling method (RSM) to implement algebraic operations involving multiple H^2 matrices. Significantly, this work is done in a manner that is non-invasive to an existing H^2 code base for filling and factoring H^2 matrices. The work presented thus expands the existing code's capabilities with minimal impact on existing (and well-tested) applications. In addition to this work with randomized H^2 algebra, improvements in sparse factorization methods for the compressed H^2 data structure will also be presented. The reported developments in filling and factoring H^2 data structures assist in, and allow for, the further pursuit of large and complex problems in computational EM (CEM) within simulation code bases that utilize the H^2 data structure.
APA, Harvard, Vancouver, ISO, and other styles
9

Wilding, David. "Linear algebra over semirings." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/linear-algebra-over-semirings(1dfe7143-9341-4dd1-a0d1-ab976628442d).html.

Full text
Abstract:
Motivated by results of linear algebra over fields, rings and tropical semirings, we present a systematic way to understand the behaviour of matrices with entries in an arbitrary semiring. We focus on three closely related problems concerning the row and column spaces of matrices. This allows us to isolate and extract common properties that hold for different reasons over different semirings, yet also lets us identify which features of linear algebra are specific to particular types of semiring. For instance, the row and column spaces of a matrix over a field are isomorphic to each others' duals, as well as to each other, but over a tropical semiring only the first of these properties holds in general (this in itself is a surprising fact). Instead of being isomorphic, the row space and column space of a tropical matrix are anti-isomorphic in a certain order-theoretic and algebraic sense. The first problem is to describe the kernels of the row and column spaces of a given matrix. These equivalence relations generalise the orthogonal complement of a set of vectors, and the nature of their equivalence classes is entirely dependent upon the kind of semiring in question. The second, Hahn-Banach type, problem is to decide which linear functionals on row and column spaces of matrices have a linear extension. If they all do, the underlying semiring is called exact, and in this case the row and column spaces of any matrix are isomorphic to each others' duals. The final problem is to explain the connection between the row space and column space of each matrix. Our notion of a conjugation on a semiring accounts for the different possibilities in a unified manner, as it guarantees the existence of bijections between row and column spaces and lets us focus on the peculiarities of those bijections. Our main original contribution is the systematic approach described above, but along the way we establish several new results about exactness of semirings. We give sufficient conditions for a subsemiring of an exact semiring to inherit exactness, and we apply these conditions to show that exactness transfers to finite group semirings. We also show that every Boolean ring is exact. This result is interesting because it allows us to construct a ring which is exact (also known as FP-injective) but not self-injective. Finally, we consider exactness for residuated lattices, showing that every involutive residuated lattice is exact. We end by showing that the residuated lattice of subsets of a finite monoid is exact if and only if the monoid is a group.
APA, Harvard, Vancouver, ISO, and other styles
10

Tadanki, Sasidhar. "Multiple resonant multiconductor transmission line resonator design using circulant block matrix algebra." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-dissertations/249.

Full text
Abstract:
The purpose of this dissertation is to provide a theoretical model to design RF coils using multiconductor transmission line (MTL) structures for MRI applications. In this research, an MTL structure is represented as a multiport network using its port admittance matrix. Resonant conditions and closed-form solutions for different port resonant modes are calculated by solving the eigenvalue problem of port admittance matrix using block matrix algebra. A mathematical proof to show that the solution of the characteristic equation of the port admittance matrix is equivalent to solving the source side input impedance is presented. The proof is derived by writing the transmission chain parameter matrix of an MTL structure, and mathematically manipulating the chain parameter matrix to produce a solution to the characteristic equation of the port admittance matrix. A port admittance matrix can be formulated to take one of the forms depending on the type of MTL structure: a circulant matrix, or a circulant block matrix (CB), or a block circulant circulant block matrix (BCCB). A circulant matrix can be diagonalized by a simple Fourier matrix, and a BCCB matrix can be diagonalized by using matrices formed from Kronecker products of Fourier matrices. For a CB matrix, instead of diagonalizing to compute the eigenvalues, a powerful technique called “reduced dimension method� can be used. In the reduced dimension method, the eigenvalues of a circulant block matrix are computed as a set of the eigenvalues of matrices of reduced dimension. The required reduced dimension matrices are created using a combination of the polynomial representor of a circulant matrix and a permutation matrix. A detailed mathematical formulation of the reduced dimension method is presented in this thesis. With the application of the reduced dimension method for a 2n+1 MTL structure, the computation of eigenvalues for a 4n X 4n port admittance matrix is simplified to the computation of eigenvalues of 2n matrices of size 2 X 2. In addition to reduced computations, the model also facilitates analytical formulations for coil resonant conditions. To demonstrate the effectiveness of the proposed methods (2n port model and reduced dimension method), a two-step approach was adopted. First, a standard published RF coil was analyzed using the proposed models. The obtained resonant conditions are then compared with the published values and are verified by full-wave numerical simulations. Second, two new dual tuned coils, a surface coil design using the 2n port model, and a volume coil design using the reduced dimensions method are proposed, constructed, and bench tested. Their validation was carried out by employing 3D EM simulations as well as undertaking MR imaging on clinical scanners. Imaging experiments were conducted on phantoms, and the investigations indicate that the RF coils achieve good performance characteristics and a high signal-to-noise ratio in the regions of interest.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography