Academic literature on the topic 'Matrix array'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Matrix array.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Matrix array"
Maringa, Maina, and LM Masu. "The effects of different fibre packing geometries on the transverse matrix strain magnification and fibre strain reduction in uniaxially aligned continuous fibre-reinforced composites." Journal of Composite Materials 50, no. 29 (July 28, 2016): 4159–70. http://dx.doi.org/10.1177/0021998316631701.
Full textXu, Le, Rui Li, Xiaoqun Chen, Feng Wei, and Xiaowei Shi. "Wideband Frequency Invariant Array Synthesis Based on Matrix Singular Value Decomposition." Electronics 10, no. 16 (August 23, 2021): 2039. http://dx.doi.org/10.3390/electronics10162039.
Full textMatsushita, Yohsuke, Hiroyuki Shimada, Takuya Miyashita, Miki Shibata, Shigeki Naka, Hiroyuki Okada, and Hiroyoshi Onnagawa. "Organic Bi-function Matrix Array." Japanese Journal of Applied Physics 44, no. 4B (April 21, 2005): 2826–29. http://dx.doi.org/10.1143/jjap.44.2826.
Full textPelli, P., H. Elfström, K. Jefimovs, J. Aikio, M. Karppinen, P. Vahimaa, and M. Kuittinen. "Replicated data-matrix array generators." Optics Communications 260, no. 1 (April 2006): 329–36. http://dx.doi.org/10.1016/j.optcom.2005.10.016.
Full textKim, K., and S. R. Saunders. "Adaptive antenna array using real symmetric array covariance matrix." Electronics Letters 37, no. 7 (2001): 405. http://dx.doi.org/10.1049/el:20010281.
Full textZheng, Mei-yan, Ke-song Chen, Hong-gang Wu, and Xian-pan Liu. "Sparse Planar Array Synthesis Using Matrix Enhancement and Matrix Pencil." International Journal of Antennas and Propagation 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/147097.
Full textSUBRAMANIAN, K. G., KALPANA MAHALINGAM, ROSNI ABDULLAH, and ATULYA K. NAGAR. "TWO-DIMENSIONAL DIGITIZED PICTURE ARRAYS AND PARIKH MATRICES." International Journal of Foundations of Computer Science 24, no. 03 (April 2013): 393–408. http://dx.doi.org/10.1142/s012905411350010x.
Full textWu, Tao, Yiwen Li, Zhengxin Li, Yijie Huang, and Jiwei Xu. "A 2D Nested Array Based DOA Estimator for Incoherently Distributed Sources via Sparse Representation Utilizing L1-Norm." International Journal of Antennas and Propagation 2019 (July 3, 2019): 1–11. http://dx.doi.org/10.1155/2019/6941963.
Full textDi, Jiaying, Wen Hu, Mengxia Li, and Hongtao Li. "An optimized 2D-Robust Adaptive Beamforming algorithm based on Matrix Completion in sparse array." MATEC Web of Conferences 208 (2018): 01003. http://dx.doi.org/10.1051/matecconf/201820801003.
Full textJiang, Wei, Guodong Qin, and Jian Dong. "DOA Estimation for a Passive Synthetic Array Based on Cross-Correlation Matrix." International Journal of Signal Processing Systems 5, no. 2 (June 2017): 55–59. http://dx.doi.org/10.18178/ijsps.5.2.55-59.
Full textDissertations / Theses on the topic "Matrix array"
Rashedin, Razib. "Novel miniature matrix array transducer system for loudspeakers." Thesis, Cardiff University, 2007. http://orca.cf.ac.uk/56177/.
Full textLe, Hai Van Dinh. "A new general purpose systolic array for matrix computations." PDXScholar, 1988. https://pdxscholar.library.pdx.edu/open_access_etds/3796.
Full textHanson, Timothy B. "Cascade adaptive array structures." Ohio : Ohio University, 1990. http://www.ohiolink.edu/etd/view.cgi?ohiou1173207031.
Full textLIU, HUAZHOU. "DIGITAL DIRECTION FINDING SYSTEM DESIGN AND ANALYSIS." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1060976413.
Full textQuintero, Badillo Jorge R. "Non-destructive Evaluation of Ceramic Matrix Composites at High Temperature using Laser Ultrasonics." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1511800640467908.
Full textLepkowski, Stefan. "An ultra-compact and low loss passive beamforming network integrated on chip with off chip linear array." Thesis, Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53599.
Full textPark, Edward S. "Microfluidic chamber arrays for testing cellular responses to soluble-matrix and gradient signals." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39471.
Full textLiu, Yuanli. "Development of Cross-reactive Sensors Array: Practical Approach for Ion Detection in Aqueous Media." Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1345428697.
Full textDiarra, Bakary. "Study and optimization of 2D matrix arrays for 3D ultrasound imaging." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10165/document.
Full text3D Ultrasound imaging is a fast-growing medical imaging modality. In addition to its numerous advantages (low cost, non-ionizing beam, portability) it allows to represent the anatomical structures in their natural form that is always three-dimensional. The relativelyslow mechanical scanning probes tend to be replaced by two-dimensional matrix arrays that are an extension in both lateral and elevation directions of the conventional 1D probe. This2D positioning of the elements allows the ultrasonic beam steering in the whole space. Usually, the piezoelectric elements of a 2D array probe are aligned on a regular grid and spaced out of a distance (the pitch) subject to the space sampling law (inter-element distancemust be shorter than a mid-wavelength) to limit the impact of grating lobes. This physical constraint leads to a multitude of small elements. The equivalent in 2D of a 1D probe of 128elements contains 128x128 = 16,384 elements. Connecting such a high number of elements is a real technical challenge as the number of channels in current ultrasound scanners rarely exceeds 256. The proposed solutions to control this type of probe implement multiplexing or elements number reduction techniques, generally using random selection approaches (« spars earray »). These methods suffer from low signal to noise ratio due to the energy loss linked to the small number of active elements. In order to limit the loss of performance, optimization remains the best solution. The first contribution of this thesis is an extension of the « sparse array » technique combined with an optimization method based on the simulated annealing algorithm. The proposed optimization reduces the required active element number according to the expected characteristics of the ultrasound beam and permits limiting the energy loss compared to the initial dense array probe.The second contribution is a completely new approach adopting a non-grid positioningof the elements to remove the grating lobes and to overstep the spatial sampling constraint. This new strategy allows the use of larger elements leading to a small number of necessaryelements for the same probe surface. The active surface of the array is maximized, whichresults in a greater output energy and thus a higher sensitivity. It also allows a greater scansector as the grating lobes are very small relative to the main lobe. The random choice of the position of the elements and their apodization (or weighting coefficient) is optimized by the simulated annealing.The proposed methods are systematically compared to the dense array by performing simulations under realistic conditions. These simulations show a real potential of the developed techniques for 3D imaging.A 2D probe of 8x24 = 192 elements was manufactured by Vermon (Vermon SA, Tours,France) to test the proposed methods in an experimental setting. The comparison between simulation and experimental results validate the proposed methods and prove their feasibility
L'ecografia 3D è una modalità di imaging medicale in rapida crescita. Oltre ai vantaggiin termini di prezzo basso, fascio non ionizzante, portabilità, essa permette di rappresentare le strutture anatomiche nella loro forma naturale, che è sempre tridimensionale. Le sonde ascansione meccanica, relativamente lente, tendono ad essere sostituite da quelle bidimensionali che sono una estensione in entrambe le direzioni laterale ed azimutale dellasonda convenzionale 1D. Questo posizionamento 2D degli elementi permette l'orientamentodel fascio ultrasonico in tutto lo spazio. Solitamente, gli elementi piezoelettrici di una sondamatriciale 2D sono allineati su una griglia regolare e separati da una distanza (detta “pitch”) sottoposta alla legge del campionamento spaziale (la distanza inter-elemento deve esseremeno della metà della lunghezza d'onda) per limitare l'impatto dei lobi di rete. Questo vincolo fisico porta ad una moltitudine di piccoli elementi. L'equivalente di una sonda 1D di128 elementi contiene 128x128 = 16.384 elementi in 2D. Il collegamento di un così grandenumero di elementi è una vera sfida tecnica, considerando che il numero di canali negliecografi attuali supera raramente 256. Le soluzioni proposte per controllare questo tipo disonda implementano le tecniche di multiplazione o la riduzione del numero di elementi, utilizzando un metodo di selezione casuale (« sparse array »). Questi metodi soffrono di unbasso rapporto segnale-rumore dovuto alla perdita di energia. Per limitare la perdita di prestazioni, l’ottimizzazione rimane la soluzione migliore. Il primo contributo di questa tesi è un’estensione del metodo dello « sparse array » combinato con un metodo di ottimizzazione basato sull'algoritmo del simulated annealing. Questa ottimizzazione riduce il numero degli elementi attivi richiesto secondo le caratteristiche attese del fascio di ultrasuoni e permette di limitare la perdita di energia.Il secondo contributo è un approccio completamente nuovo, che propone di adottare un posizionamento fuori-griglia degli elementi per rimuovere i lobi secondari e per scavalcare il vincolo del campionamento spaziale. Questa nuova strategia permette l'uso di elementi piùgrandi, riducendo così il numero di elementi necessari per la stessa superficie della sonda. La superficie attiva della sonda è massimizzata, questo si traduce in una maggiore energia equindi una maggiore sensibilità. Questo permette inoltre la scansione di un più grande settore,in quanto i lobi secondari sono molto piccoli rispetto al lobo principale. La scelta casualedella posizione degli elementi e la loro apodizzazione viene ottimizzata dal simulate dannealing. I metodi proposti sono stati sistematicamente confrontati con la sonda completaeseguendo simulazioni in condizioni realistiche. Le simulazioni mostrano un reale potenzialedelle tecniche sviluppate per l'imaging 3D.Una sonda 2D di 8x24 = 192 elementi è stata fabbricata da Vermon (Vermon SA, ToursFrance) per testare i metodi proposti in un ambiente sperimentale. Il confronto tra lesimulazioni e i risultati sperimentali ha permesso di convalidare i metodi proposti edimostrare la loro fattibilità
Ozer, Erhan. "Application of the T-matrix method to the numerical modeling of a linear active sonar array." Monterey, California: Naval Postgraduate School, 2013. http://hdl.handle.net/10945/34718.
Full textClassically, the T-matrix method is a procedure to exactly compute the multiple scattering of an incident wave from a “cloud” of objects, given knowledge of the free-field scattering properties of a single object for an arbitrary incident wave. For acoustic waves, Profs. Baker and Scandrett have extended the T-matrix method to the case in which the radiation sources are also the scatterers, that is, to the case of an array of active transducers. This thesis is the first successful practical demonstration of the T-matrix method applied to an active sonar array for which a finite-element model was employed to compute the scattering properties of a single transducer. For validation, a T-matrix model of a linear array of piezoelectric spherical thin-shell transducers was modeled, for which analytical approximate values of the T-matrix element values are known. Subsequently, a T-matrix model of a linear array of piezoelectric class V flextensional “ring-shell” transducers was modeled. Beam patterns of the linear array models computed with the T-matrix method are compared with those of an array of point sources, demonstrating that the T-matrix method produces more realistic beam patterns, especially for end fire arrays.
Books on the topic "Matrix array"
Tomás, Lang, ed. Matrix computations on systolic-type arrays. Boston: Kluwer Academic Publishers, 1992.
Find full textMoreno, Jaime H., and Tomás Lang. Matrix Computations on Systolic-Type Arrays. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3610-9.
Full textMoreno, Jaime H. Matrix Computations on Systolic-Type Arrays. Boston, MA: Springer US, 1992.
Find full textBadano, Luigi P., Roberto M. Lang, and Alexandra Goncalves. Three-dimensional echocardiography. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198726012.003.0007.
Full textTowe, E., and D. Pal. Intersublevel quantum-dot infrared photodetectors. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.7.
Full textBook chapters on the topic "Matrix array"
Akdemir, Deniz. "Array Normal Model and Incomplete Array Variate Observations." In Applied Matrix and Tensor Variate Data Analysis, 93–122. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55387-8_5.
Full textMoreno, Jaime H., and Tomás Lang. "Linear Pseudosystolic Array for Matrix Algorithms." In The Kluwer International Series in Engineering and Computer Science, 199–223. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3610-9_7.
Full textMilovanović, E. I., I. Ž. Milovanović, and M. K. Stojčev. "Matrix inversion algorithm for linear array processor." In Parallel Processing: CONPAR 92—VAPP V, 367–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-55895-0_432.
Full textFrumkin, M. A. "Systolic array for eigenvalue of jacobi matrix." In Lecture Notes in Computer Science, 274–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/3-540-50647-0_118.
Full textKader, A. A. Abdel. "Ocsamo a systolic array for matrix operations." In Lecture Notes in Computer Science, 319–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/3-540-16811-7_186.
Full textShen, Min, and Lin Zhu. "Microphone Array Autocorrelation Matrix and Error Analysis." In Lecture Notes in Electrical Engineering, 587–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27323-0_74.
Full textOkša, Gabriel. "Combined Systolic Array for Matrix Portrait Computation." In Parallel Computation, 58–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-49164-3_6.
Full textVilser, Rolf-Jürgen, Reiner Creutzburg, Michael Gössel, and Hans-Jörg Grundmann. "Parallel matrix multiplication on an array-logical processor." In Recent Issues in Pattern Analysis and Recognition, 72–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/3-540-51815-0_44.
Full textLam, Stephen P. S. "An iterative array processor architecture for matrix computation." In PARLE'94 Parallel Architectures and Languages Europe, 777–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58184-7_155.
Full textFernau, Henning, Rudolf Freund, Rani Siromoney, and K. G. Subramanian. "Contextual Array Grammars with Matrix and Regular Control." In Descriptional Complexity of Formal Systems, 98–110. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41114-9_8.
Full textConference papers on the topic "Matrix array"
Kojima, T. "Matrix Array Transducer and Flexible Matrix Arry Transducer." In IEEE 1986 Ultrasonics Symposium. IEEE, 1986. http://dx.doi.org/10.1109/ultsym.1986.198816.
Full textJianfeng Gu, Ping Wei, and Heng-Ming Tai. "DOA estimation using cross-correlation matrix." In 2010 IEEE International Symposium on Phased Array Systems and Technology (ARRAY 2010). IEEE, 2010. http://dx.doi.org/10.1109/array.2010.5613308.
Full textMatsushita, Yohsuke, Hiroyuki Shimada, Takuya Miyashita, Miki Shibata, Shigeki Naka, Hiroyuki Okada, and Hiroyoshi Onnagawa. "Organic Bi-Function Matrix Array." In 2004 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2004. http://dx.doi.org/10.7567/ssdm.2004.a-4-5.
Full textZhou, Mingyuan, Chunping Wang, Minhua Chen, John Paisley, David Dunson, and Lawrence Carin. "Nonparametric Bayesian matrix completion." In 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM). IEEE, 2010. http://dx.doi.org/10.1109/sam.2010.5606741.
Full textHjorungnes, Are, and Daniel P. Palomar. "Patterned complex-valued matrix derivatives." In 2008 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM). IEEE, 2008. http://dx.doi.org/10.1109/sam.2008.4606875.
Full textYang, Xiangyang, Joseph Lindmayer, and George M. Storti. "Fully parallel optical matrix-matrix multiplier using spherical lens array." In Aerospace Sensing, edited by Dennis R. Pape. SPIE, 1992. http://dx.doi.org/10.1117/12.139921.
Full textInfante, Leopoldo, Stefano Mosca, and Giulio Pellegrini. "A beam synthesis procedure for matrix-fed cylindrical antenna arrays." In 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST). IEEE, 2016. http://dx.doi.org/10.1109/array.2016.7832543.
Full textHamza, Syed A., and Moeness G. Amin. "Sparse Array Design Utilizing Matrix Completion." In 2019 53rd Asilomar Conference on Signals, Systems, and Computers. IEEE, 2019. http://dx.doi.org/10.1109/ieeeconf44664.2019.9048713.
Full textBoehm, Rainer, and Thomas Heckel. "Simulation of sparse matrix array designs." In 44TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLUME 37. Author(s), 2018. http://dx.doi.org/10.1063/1.5031560.
Full textHyberg, Per, Magnus Jansson, and Bjorn Ottersten. "Array mapping: Optimal transformation matrix design." In Proceedings of ICASSP '02. IEEE, 2002. http://dx.doi.org/10.1109/icassp.2002.5745256.
Full textReports on the topic "Matrix array"
Chatterjee, Siddhartha, Alvin R. Lebeck, Praveen K. Patnala, and Mithuna Thottehodi. Recursive Array Layouts and Fast Matrix Multiplication. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada440384.
Full textChou, S. I. Eigenvalues of Covariance Matrix for Two-Source Array Processing. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada236924.
Full textLe, Hai. A new general purpose systolic array for matrix computations. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.5680.
Full textChou, S. I. Geometric Characterization of Eigenvalues of Covariance Matrix for Two- Source Array Processing. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada236923.
Full textWilliford, R. E. Stochastic propagation of an array of parallel cracks: Exploratory work on matrix fatigue damage in composite laminates. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5524606.
Full textGao, David. A new sieving matrix for DNA sequencing, genotyping and mutation detection and high-throughput genotyping with a 96-capillary array system. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/754779.
Full textShore, Robert, and Arthur D. Yaghjian. Scattering-Matrix Analysis of Linear Periodic Arrays of Short Electric Dipoles. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada429431.
Full text