Dissertations / Theses on the topic 'Matrix regression'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Matrix regression.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Fischer, Manfred M., and Philipp Piribauer. "Model uncertainty in matrix exponential spatial growth regression models." WU Vienna University of Economics and Business, 2013. http://epub.wu.ac.at/4013/1/wp158.pdf.
Full textSeries: Department of Economics Working Paper Series
Piribauer, Philipp, and Manfred M. Fischer. "Model uncertainty in matrix exponential spatial growth regression models." Wiley-Blackwell, 2015. http://dx.doi.org/10.1111/gean.12057.
Full textLi, Yihua M. Eng Massachusetts Institute of Technology. "Blind regression : understanding collaborative filtering from matrix completion to tensor completion." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105983.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 37-39).
Neighborhood-based Collaborative filtering (CF) methods have proven to be successful in practice and are widely applied in commercial recommendation systems. Yet theoretical understanding of their performance is lacking. In this work, we introduce a new framework of Blind Regression which assumes that there are latent features associated with input variables, and we observe outputs of some Lipschitz continuous function over those unobserved features. We apply our framework to the problem of matrix completion and give a nonparametric method which, similar to CF, combines the local estimates according to the distance between the neighbors. We use the sample variance of the difference in ratings between neighbors as the proximity of the distance. Through error analysis, we show that the minimum sample variance is a good proxy of the prediction error in the estimates. Experiments on real-world datasets suggests that our matrix completion algorithm outperforms classic user-user and item-item CF approaches. Finally, our framework easily extends to the setting of higher-order tensors and we present our algorithm for tensor completion. The result from real-world application of image inpainting demonstrates that our method is competitive with the state-of-the-art tensor factorization approaches in terms of predictive performance.
by Yihua Li.
M. Eng.
Fallowfield, Jonathan Andrew. "The role of matrix metalloproteinase-13 in the regression of liver fibrosis." Thesis, University of Southampton, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.443059.
Full textAlbertson, K. V. "Pre-test estimation in a regression model with a mis-specified error covariance matrix." Thesis, University of Canterbury. Economics, 1993. http://hdl.handle.net/10092/4315.
Full textMei, Jiali. "Time series recovery and prediction with regression-enhanced nonnegative matrix factorization applied to electricity consumption." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS578/document.
Full textWe are interested in the recovery and prediction of multiple time series from partially observed and/or aggregate data.Motivated by applications in electricity network management, we investigate tools from multiple fields that are able to deal with such data issues.After examining kriging from spatio-temporal statistics and a hybrid method based on the clustering of individuals, we propose a general framework based on nonnegative matrix factorization.This frameworks takes advantage of the intrisic correlation between the multivariate time series to greatly reduce the dimension of the parameter space.Once the estimation problem is formalized in the nonnegative matrix factorization framework, two extensions are proposed to improve the standard approach.The first extension takes into account the individual temporal autocorrelation of each of the time series.This increases the precision of the time series recovery.The second extension adds a regression layer into nonnegative matrix factorization.This allows exogenous variables that are known to be linked with electricity consumption to be used in estimation, hence makes the factors obtained by the method to be more interpretable, and also increases the recovery precision.Moreover, this method makes the method applicable to prediction.We produce a theoretical analysis on the framework which concerns the identifiability of the model and the convergence of the algorithms that are proposed.The performance of proposed methods to recover and forecast time series is tested on several multivariate electricity consumption datasets at different aggregation level
Bownds, Christopher D. "Updating the Navy's recruit quality matrix : an analysis of educational credentials and the success of first-term sailors /." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Mar%5FBownds.pdf.
Full textBogren, Patrik, and Isak Kristola. "Exploring the use of call stack depth limits to reduce regression testing costs." Thesis, Mittuniversitetet, Institutionen för data- och systemvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-43166.
Full textKuljus, Kristi. "Rank Estimation in Elliptical Models : Estimation of Structured Rank Covariance Matrices and Asymptotics for Heteroscedastic Linear Regression." Doctoral thesis, Uppsala universitet, Matematisk statistik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9305.
Full textWang, Shuo. "An Improved Meta-analysis for Analyzing Cylindrical-type Time Series Data with Applications to Forecasting Problem in Environmental Study." Digital WPI, 2015. https://digitalcommons.wpi.edu/etd-theses/386.
Full textKim, Jingu. "Nonnegative matrix and tensor factorizations, least squares problems, and applications." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42909.
Full textNasseri, Sahand. "Application of an Improved Transition Probability Matrix Based Crack Rating Prediction Methodology in Florida’s Highway Network." Scholar Commons, 2008. https://scholarcommons.usf.edu/etd/424.
Full textTorp, Emil, and Patrik Önnegren. "Driving Cycle Generation Using Statistical Analysis and Markov Chains." Thesis, Linköpings universitet, Fordonssystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-94147.
Full textEn körcykel är en beskriving av hur hastigheten för ett fordon ändras under en körning. Körcykler används bland annat till att miljöklassa bilar och för att utvärdera fordonsprestanda. Olika metoder för att generera stokastiska körcykler baserade på verklig data har använts runt om i världen, men det har varit svårt att efterlikna naturliga körcykler. Möjligheten att generera stokastiska körcykler som representerar en uppsättning naturliga körcykler studeras. Data från över 500 körcykler bearbetas och kategoriseras. Dessa används för att skapa överergångsmatriser där varje element motsvarar ett visst tillstånd, med hastighet och acceleration som tillståndsvariabler. Matrisen tillsammans med teorin om Markovkedjor används för att generera stokastiska körcykler. De genererade körcyklerna valideras med hjälp percentilgränser för ett antal karaktäristiska variabler som beräknats för de naturliga körcyklerna. Hastighets- och accelerationsfördelningen hos de genererade körcyklerna studeras och jämförs med de naturliga körcyklerna för att säkerställa att de är representativa. Statistiska egenskaper jämfördes och de genererade körcyklerna visade sig likna den ursprungliga uppsättningen körcykler. Fyra olika metoder används för att bestämma vilka statistiska variabler som beskriver de naturliga körcyklerna. Två av metoderna använder regressionsanalys. Hierarkisk klustring av statistiska variabler föreslås som ett tredje alternativ. Den sista metoden kombinerar klusteranalysen med regressionsanalysen. Hela processen är automatiserad och ett grafiskt användargränssnitt har utvecklats i Matlab för att underlätta användningen av programmet.
Deshpande, Seemantini R. "Evaluation of PM2.5 Components and Source Apportionment at a Rural Site in the Ohio River Valley Region." Ohio University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1187123906.
Full textVIZCAINO, Lelio Alejandro Arias. "Um novo resíduo para classes de modelos de regressão na família exponencial." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/18636.
Full textMade available in DSpace on 2017-04-25T14:30:32Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertacao_Lelio_Alejandro_Arias_Vizcaino.pdf: 1217481 bytes, checksum: 3e169ccf7afc8c3a244b8cc4a07c9cbf (MD5) Previous issue date: 2016-12-05
FACEPE
entre as principais metodologias estatísticas, a análise de regressão é uma das formas mais efetivas para modelar dados. Neste sentido, a análise de diagnóstico é imprescindível para determinar o que poder ter acontecido no processo gerador dos dados caso os pressupostos impostos a este não sejam plausíveis. Uma das ferramentas mais úteis em diagnóstico é a avaliação dos resíduos. Neste trabalho, propomos um novo resíduo para as classes de modelos de regressão linear e não linear baseados na família exponencial com dispersão variável (Smyth (1989)). A proposta permite incorporar de forma simultânea informações relativas aos submodelos da média e da dispersão sem fazer uso de matrizes de projeção para sua padronização. Resultados de simulação e de aplicações a dados reais mostram que o novo resíduo é altamente competitivo em relação ao resíduos amplamente usados e consolidados na literatura.
In statistical methodologies, regression analysis can be a very effective way to model data. In this sense, the diagnostic analysis is needed to try to determine what might happened in the data generating process if the conditions imposed to it are not true. One of the most useful techniques to detect the goodness of fit to the model is the evaluation of residuals. In this work, we propose a new residual to the class of linear and nonlinear regression models based on exponential family with variable dispersion (Smyth (1989)). The proposal incorporates simultaneously information from the sub-models of the mean and the dispersion without using projection matrices for its standardization. Simulation resultsandapplicationsinrealdatashowthatthenewresidualishighlycompetitivewith respect to residuals widely used and established in the literature.
Shrestha, Prabha. "Application of Influence Function in Sufficient Dimension Reduction Models." Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1595278335591108.
Full textSavas, Berkant. "Algorithms in data mining using matrix and tensor methods." Doctoral thesis, Linköpings universitet, Beräkningsvetenskap, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11597.
Full textLind, Nilsson Rasmus. "Machine learning in logistics : Increasing the performance of machine learning algorithms on two specific logistic problems." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64761.
Full textData Ductus, ett multinationellt IT-konsultföretag vill utveckla en AI som övervakar ett logistiksystem och uppmärksammar fel. När denna AI är tillräckligt upplärd ska den föreslå korrigering eller automatiskt korrigera problem som uppstår. Detta projekt presenterar hur man arbetar med maskininlärningsproblem och ger en djupare inblick i hur kors-validering och regularisering, bland andra tekniker, används för att förbättra prestandan av maskininlärningsalgoritmer på det definierade problemet. Dessa tekniker testas och utvärderas i vårt logistiksystem på tre olika maskininlärnings algoritmer, nämligen Naïve Bayes, Logistic Regression och Random Forest. Utvärderingen av algoritmerna leder oss till att slutsatsen är att Random Forest, som använder korsvaliderade parametrar, ger bästa prestanda på våra specifika problem, medan de andra två faller bakom i varje testad kategori. Det blev klart för oss att kors-validering är ett enkelt, men kraftfullt verktyg för att öka prestanda hos maskininlärningsalgoritmer.
Chun, Yongwan. "Behavioral specifications of network autocorrelation in migration modeling an analysis of migration flows by spatial filtering /." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1187188476.
Full textCarpenter, Lee Wyatt. "Valuing Natural Space and Landscape Fragmentation in Richmond, VA." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4645.
Full textHassani, Mujtaba. "CONSTRUCTION EQUIPMENT FUEL CONSUMPTION DURING IDLING : Characterization using multivariate data analysis at Volvo CE." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-49007.
Full textShrewsbury, John Stephen. "Calibration of trip distribution by generalised linear models." Thesis, University of Canterbury. Department of Civil and Natuaral Resources Engineering, 2012. http://hdl.handle.net/10092/7685.
Full textMcDonald, Timothy Myles. "Making sense of genotype x environment interaction of Pinus radiata in New Zealand." Thesis, University of Canterbury. School of Forestry, 2009. http://hdl.handle.net/10092/3222.
Full textAllan, Michelle L. "Measuring Skill Importance in Women's Soccer and Volleyball." Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd2809.pdf.
Full textBilal, Mustafa. "Relationships Between Felt Intensity And Recorded Ground Motion Parameters For Turkey." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615426/index.pdf.
Full texthowever it is possible to reduce the losses by taking several remedies. Reduction of seismic losses starts with identifying and estimating the expected damage to some accuracy. Since both the design styles and the construction defects exhibit mostly local properties all over the world, damage estimations should be performed at regional levels. Another important issue in disaster mitigation is to determine a robust measure of ground motion intensity parameters. As of now, well-built correlations between shaking intensity and instrumental ground motion parameters are not yet studied in detail for Turkish data. In the first part of this thesis, regional empirical Damage Probability Matrices (DPMs) are formed for Turkey. As the input data, the detailed damage database of the 17 August 1999 Kocaeli earthquake (Mw=7.4) is used. The damage probability matrices are derived for Sakarya, Bolu and Kocaeli, for both reinforced concrete and masonry buildings. Results are compared with previous similar studies and the differences are discussed. After validation with future data, these DPMs can be used in the calculation of earthquake insurance premiums. In the second part of this thesis, two relationships between the felt-intensity and peak ground motion parameters are generated using linear least-squares regression technique. The first one correlates Modified Mercalli Intensity (MMI) to Peak Ground Acceleration (PGA) whereas the latter one does the same for Peak Ground Velocity (PGV). Old damage reports and isoseismal maps are employed for deriving 92 data pairs of MMI, PGA and PGV used in the regression analyses. These local relationships can be used in the future for ShakeMap applications in rapid response and disaster management activities.
Somé, Sobom Matthieu. "Estimations non paramétriques par noyaux associés multivariés et applications." Thesis, Besançon, 2015. http://www.theses.fr/2015BESA2030/document.
Full textThis work is about nonparametric approach using multivariate mixed associated kernels for densities, probability mass functions and regressions estimation having supports partially or totally discrete and continuous. Some key aspects of kernel estimation using multivariate continuous (classical) and (discrete and continuous) univariate associated kernels are recalled. Problem of supports are also revised as well as a resolution of boundary effects for univariate associated kernels. The multivariate associated kernel is then defined and a construction by multivariate mode-dispersion method is provided. This leads to an illustration on the bivariate beta kernel with Sarmanov's correlation structure in continuous case. Properties of these estimators are studied, such as the bias, variances and mean squared errors. An algorithm for reducing the bias is proposed and illustrated on this bivariate beta kernel. Simulations studies and applications are then performed with bivariate beta kernel. Three types of bandwidth matrices, namely, full, Scott and diagonal are used. Furthermore, appropriated multiple associated kernels are used in a practical discriminant analysis task. These are the binomial, categorical, discrete triangular, gamma and beta. Thereafter, associated kernels with or without correlation structure are used in multiple regression. In addition to the previous univariate associated kernels, bivariate beta kernels with or without correlation structure are taken into account. Simulations studies show the performance of the choice of associated kernels with full or diagonal bandwidth matrices. Then, (discrete and continuous) associated kernels are combined to define mixed univariate associated kernels. Using the tools of unification of discrete and continuous analysis, the properties of the mixed associated kernel estimators are shown. This is followed by an R package, created in univariate case, for densities, probability mass functions and regressions estimations. Several smoothing parameter selections are implemented via an easy-to-use interface. Throughout the paper, bandwidth matrix selections are generally obtained using cross-validation and sometimes Bayesian methods. Finally, some additionnal informations on normalizing constants of associated kernel estimators are presented for densities or probability mass functions
Balmand, Samuel. "Quelques contributions à l'estimation de grandes matrices de précision." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1024/document.
Full textUnder the Gaussian assumption, the relationship between conditional independence and sparsity allows to justify the construction of estimators of the inverse of the covariance matrix -- also called precision matrix -- from regularized approaches. This thesis, originally motivated by the problem of image classification, aims at developing a method to estimate the precision matrix in high dimension, that is when the sample size $n$ is small compared to the dimension $p$ of the model. Our approach relies basically on the connection of the precision matrix to the linear regression model. It consists of estimating the precision matrix in two steps. The off-diagonal elements are first estimated by solving $p$ minimization problems of the type $ell_1$-penalized square-root of least-squares. The diagonal entries are then obtained from the result of the previous step, by residual analysis of likelihood maximization. This various estimators of the diagonal entries are compared in terms of estimation risk. Moreover, we propose a new estimator, designed to consider the possible contamination of data by outliers, thanks to the addition of a $ell_2/ell_1$ mixed norm regularization term. The nonasymptotic analysis of the consistency of our estimator points out the relevance of our method
Žiupsnys, Giedrius. "Klientų duomenų valdymas bankininkystėje." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20110709_152442-86545.
Full textThis work is about analysing regularities in bank clients historical credit data. So first of all bank information repositories are analyzed to comprehend banks data. Then using data mining algorithms and software for bank data sets, which describes credit repayment history, clients insolvency risk is being tried to estimate. So first step in analyzis is information preprocessing for data mining. Later various classification algorithms is used to make models wich classify our data sets and help to identify insolvent clients as accurate as possible. Besides clasiffication, regression algorithms are analyzed and prediction models are created. These models help to estimate how long client are late to pay deposit. So when researches have been done data marts and data flow schema are presented. Also classification and regressions algorithms and models, which shows best estimation results for our data sets, are introduced.
Augusto, Taize Machado. "A regressão da prostata ventral de ratos pos-castração envolve alterações no conteudo de heparam sulfato e da expressão da heparanase." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/317566.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-10T03:50:54Z (GMT). No. of bitstreams: 1 Augusto_TaizeMachado_M.pdf: 1393330 bytes, checksum: 02bc668b22957f9820d07a1791a2218b (MD5) Previous issue date: 2007
Resumo: O crescimento e fisiologia da próstata são dependentes de andrógenos e sua privação resulta numa regressão acentuada na glândula, com uma redução a 10% do tamanho original após 21 dias de castração. Esta redução no tamanho é causada pela perda de ...
Abstract: The growth and physiology of the prostate are dependent on androgens and androgen deprivation results in marked regression of the organ, which is reduced to 10% of the original size 21 days after castration. This reduction in size is caused by t...
Mestrado
Biologia Celular
Mestre em Biologia Celular e Estrutural
Söderberg, Max Joel, and Axel Meurling. "Feature selection in short-term load forecasting." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259692.
Full textI denna rapport undersöks korrelation och betydelsen av olika attribut för att förutspå energiförbrukning 24 timmar framåt. Attributen härstammar från tre kategorier: väder, tid och tidigare energiförbrukning. Korrelationerna tas fram genom att utföra Pearson Correlation och Mutual Information. Detta resulterade i att de högst korrelerade attributen var de som representerar tidigare energiförbrukning, följt av temperatur och månad. Två identiska attributmängder erhölls genom att ranka attributen över korrelation. Tre attributmängder skapades manuellt. Den första mängden innehåll sju attribut som representerade tidigare energiförbrukning, en för varje dag, sju dagar innan datumet för prognosen av energiförbrukning. Den andra mängden bestod av väderoch tidsattribut. Den tredje mängden bestod av alla attribut från den första och andra mängden. Dessa mängder jämfördes sedan med hjälp av olika maskininlärningsmodeller. Resultaten visade att mängden med alla attribut och den med tidigare energiförbrukning gav bäst resultat för samtliga modeller.
Chen, I.-Chen. "Improved Methods and Selecting Classification Types for Time-Dependent Covariates in the Marginal Analysis of Longitudinal Data." UKnowledge, 2018. https://uknowledge.uky.edu/epb_etds/19.
Full textPrůša, Petr. "Multi-label klasifikace textových dokumentů." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2012. http://www.nusl.cz/ntk/nusl-412872.
Full textCasadiego, Jose, Mor Nitzan, Sarah Hallerberg, and Marc Timme. "Model-free inference of direct network interactions from nonlinear collective dynamics." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-232175.
Full textMercado, Salazar Jorge Anibal, and S. M. Masud Rana. "A Confirmatory Analysis for Automating the Evaluation of Motivation Letters to Emulate Human Judgment." Thesis, Högskolan Dalarna, Institutionen för information och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:du-37469.
Full textMai, Xiaoyi. "Méthodes des matrices aléatoires pour l’apprentissage en grandes dimensions." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC078/document.
Full textThe BigData challenge induces a need for machine learning algorithms to evolve towards large dimensional and more efficient learning engines. Recently, a new direction of research has emerged that consists in analyzing learning methods in the modern regime where the number n and the dimension p of data samples are commensurately large. Compared to the conventional regime where n>>p, the regime with large and comparable n,p is particularly interesting as the learning performance in this regime remains sensitive to the tuning of hyperparameters, thus opening a path into the understanding and improvement of learning techniques for large dimensional datasets.The technical approach employed in this thesis draws on several advanced tools of high dimensional statistics, allowing us to conduct more elaborate analyses beyond the state of the art. The first part of this dissertation is devoted to the study of semi-supervised learning on high dimensional data. Motivated by our theoretical findings, we propose a superior alternative to the standard semi-supervised method of Laplacian regularization. The methods involving implicit optimizations, such as SVMs and logistic regression, are next investigated under realistic mixture models, providing exhaustive details on the learning mechanism. Several important consequences are thus revealed, some of which are even in contradiction with common belief
Casadiego, Jose, Mor Nitzan, Sarah Hallerberg, and Marc Timme. "Model-free inference of direct network interactions from nonlinear collective dynamics." Nature Publishing Group, 2017. https://tud.qucosa.de/id/qucosa%3A30728.
Full textHanusek, Lubomír. "Míry kvality klasifikačních modelů a jejich převod." Doctoral thesis, Vysoká škola ekonomická v Praze, 2003. http://www.nusl.cz/ntk/nusl-77091.
Full textCavalcanti, Alexsandro Bezerra. "Aperfeiçoamento de métodos estatísticos em modelos de regressão da família exponencial." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-05082009-170043/.
Full textIn this work, we develop three topics related to the exponential family nonlinear regression. First, we obtain the asymptotic covariance matrix of order $n^$, where $n$ is the sample size, for the maximum likelihood estimators corrected by the bias of order $n^$ in generalized linear models, considering the precision parameter known. Second, we calculate an asymptotic formula of order $n^{-1/2}$ for the skewness of the distribution of the maximum likelihood estimators of the mean parameters and of the precision and dispersion parameters in exponential family nonlinear models considering that the dispersion parameter is the same although unknown for all observations. Finally, we obtain Bartlett-type correction factors for the score test in exponential family nonlinear models assuming that the precision parameter is modelled by covariates. Monte Carlo simulation studies are developed to evaluate the results obtained in the three topics.
NÓBREGA, Caio Santos Bezerra. "Uma estratégia para predição da taxa de aprendizagem do gradiente descendente para aceleração da fatoração de matrizes." Universidade Federal de Campina Grande, 2014. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/362.
Full textMade available in DSpace on 2018-04-11T14:50:08Z (GMT). No. of bitstreams: 1 CAIO SANTOS BEZERRA NÓBREGA - DISSERTAÇÃO PPGCC 2014..pdf: 983246 bytes, checksum: 5eca7651706ce317dc514ec2f1aa10c3 (MD5) Previous issue date: 2014-07-30
Capes
Sugerir os produtos mais apropriados aos diversos tipos de consumidores não é uma tarefa trivial, apesar de ser um fator chave para aumentar satisfação e lealdade destes. Devido a esse fato, sistemas de recomendação têm se tornado uma ferramenta importante para diversas aplicações, tais como, comércio eletrônico, sites personalizados e redes sociais. Recentemente, a fatoração de matrizes se tornou a técnica mais bem sucedida de implementação de sistemas de recomendação. Os parâmetros do modelo de fatoração de matrizes são tipicamente aprendidos por meio de métodos numéricos, tal como o gradiente descendente. O desempenho do gradiente descendente está diretamente relacionada à configuração da taxa de aprendizagem, a qual é tipicamente configurada para valores pequenos, com o objetivo de não perder um mínimo local. Consequentemente, o algoritmo pode levar várias iterações para convergir. Idealmente,é desejada uma taxa de aprendizagem que conduza a um mínimo local nas primeiras iterações, mas isto é muito difícil de ser realizado dada a alta complexidade do espaço de valores a serem pesquisados. Começando com um estudo exploratório em várias bases de dados de sistemas de recomendação, observamos que, para a maioria das bases, há um padrão linear entre a taxa de aprendizagem e o número de iterações necessárias para atingir a convergência. A partir disso, propomos utilizar modelos de regressão lineares simples para predizer, para uma base de dados desconhecida, um bom valor para a taxa de aprendizagem inicial. A ideia é estimar uma taxa de aprendizagem que conduza o gradiente descendenteaummínimolocalnasprimeirasiterações. Avaliamosnossatécnicaem8bases desistemasderecomendaçãoreaisecomparamoscomoalgoritmopadrão,oqualutilizaum valorfixoparaataxadeaprendizagem,ecomtécnicasqueadaptamataxadeaprendizagem extraídas da literatura. Nós mostramos que conseguimos reduzir o número de iterações até em 40% quando comparados à abordagem padrão.
Suggesting the most suitable products to different types of consumers is not a trivial task, despite being a key factor for increasing their satisfaction and loyalty. Due to this fact, recommender systems have be come an important tool for many applications, such as e-commerce, personalized websites and social networks. Recently, Matrix Factorization has become the most successful technique to implement recommendation systems. The parameters of this model are typically learned by means of numerical methods, like the gradient descent. The performance of the gradient descent is directly related to the configuration of the learning rate, which is typically set to small values, in order to do not miss a local minimum. As a consequence, the algorithm may take several iterations to converge. Ideally, one wants to find a learning rate that will lead to a local minimum in the early iterations, but this is very difficult to achieve given the high complexity of search space. Starting with an exploratory study on several recommendation systems datasets, we observed that there is an over all linear relationship between the learnin grate and the number of iterations needed until convergence. From this, we propose to use simple linear regression models to predict, for a unknown dataset, a good value for an initial learning rate. The idea is to estimate a learning rate that drives the gradient descent as close as possible to a local minimum in the first iteration. We evaluate our technique on 8 real-world recommender datasets and compared it with the standard Matrix Factorization learning algorithm, which uses a fixed value for the learning rate over all iterations, and techniques fromt he literature that adapt the learning rate. We show that we can reduce the number of iterations until at 40% compared to the standard approach.
Ferreira, do Nascimento Melo da Silva Tatiane. "Estimação do posto da matriz dos parâmetros do modelo de regressão Dirichlet." Universidade Federal de Pernambuco, 2004. https://repositorio.ufpe.br/handle/123456789/6586.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
O modelo de regressão Dirichlet é útil, por exemplo, na modelagem de taxas e proporções, onde a soma das componentes de cada vetor de observações é igual a um. Os coeficientes deste modelo de regressão constituem uma matriz. Se esta matriz não tem posto completo, ou seja, se alguns de seus elementos podem ser escritos como combinações lineares de outros, então a quantidade de parâmetros do modelo a serem estimados é menor. Nosso objetivo é estimar o posto desta matriz de parâmetros, utilizando uma estatística de teste proposta por Ratsimalahelo (2003), através do procedimento de teste sequencial e dos critérios de informação BIC (Bayesian Information Criteria) e HQIC (Hannan Quinn Information Criteria). Em seguida, avaliamos o desempenho dos estimadores do posto da matriz de coeficientes, baseados nestes procedimentos. Neste trabalho consideramos dois modelos de regressão Dirichlet. Através dos resultados de simulação de Monte Carlo, observamos que quando utilizamos o procedimento de teste sequencial, para estimar o posto da matriz de coefiientes dos modelos de regressão Dirichlet, o desempenho dos estimadores, em geral, é melhor em termos de viés e erro quadrático médio do que quando utilizamos os critérios de informação BIC e HQIC
Cardoso, Alexandre Bruni. "Envolvimento de metaloproteinases de matriz no desenvolvimento e na regressão da prostata ventral de roedores." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/317558.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-15T10:03:30Z (GMT). No. of bitstreams: 1 Cardoso_AlexandreBruni_D.pdf: 5087353 bytes, checksum: c88d322680c216b0a0f0c99aef894042 (MD5) Previous issue date: 2010
Resumo: Importante glândula acessória do trato reprodutor de mamíferos, a próstata é um órgão alvo de várias doenças benignas e malignas, que ocorrem principalmente com o envelhecimento. Tanto o desenvolvimento prostático pós-natal como a regressão da glândula após a ablação hormonal são caracterizados por intensa modificação no comportamento das células e remodelação da matriz extracelular (MEC). As metaloproteinases de matriz (MMP) constituem uma família de enzimas que degradam principalmente componentes de MEC. Portanto, pareceu-nos plausível que as MMPs tenham papel crucial na remodelação tecidual que ocorre em decorrência dos eventos morfogenéticos da próstata ventral (PV) e na progressiva regressão prostática pós-castração. Assim, o objetivo desse trabalho foi investigar o papel da MMP-2 no desenvolvimento prostático pós-natal em roedores e das MMP-2, -7 e - 9 na regressão da PV de ratos pós-castração. Para isso, foram empregadas técnicas moleculares, bioquímicas e análises morfológicas. A aplicação do siRNA específico para MMP-2 comprometeu o crescimento, a ramificação, a formação de lúmen e a proliferação de células epiteliais da PV de ratos in vitro, além de provocar um acúmulo de fibras colagênicas no compartimento estromal. A PV do camundongo MMP-2-/- adultos apresentou peso relativo reduzido e um menor volume epitelial, que resultaram de menor proliferação epitelial, menor ramificação ductal e maior estabilização da matriz colagênica durante a primeira semana de desenvolvimento pós-natal. Na regressão da próstata ventral de ratos após a castração encontraram-se múltiplas ondas de morte celular e uma relação direta entre a expressão e atividade das MMP-2, -7 e -9 e o pico de apoptose que ocorre 11 dias após a castração. Conclui-se através dos resultados apresentados neste trabalho, que tanto o desenvolvimento prostático pós-natal, como a regressão prostática pós-castração são dependentes da expressão e atividade das MMPs.
Abstract: The prostate is an important gland of the reproductive tract of mammals, which is a target of several benign and malign diseases affecting the elder. Both postnatal prostate development and prostate regression after androgenic ablation are characterized by intense modification in cell behavior and remodeling of extracellular matrix (ECM). MMPs constitute a family of endopeptidases which are able to cleave preferentially ECM components. Thus, it seems reasonable that these enzymes play a crucial role in tissue remodeling that happens during the ventral prostate (VP) morphogenesis and in the prostate regression after castration. In this study, we aimed to define the involvment of MMP-2 in the postnatal prostate development of rodent and the involvement of MMP-2, -7 and -9 rat ventral prostate regression after castration. For this aim, we have used molecular, biochemical and morphological approaches. siRNA specific for MMP-2 compromised the rat VP growth, branching, lumen formation and epithelial cell proliferation, besides leading an accumulation of collagen fibers in the stroma. MMP-2-/- VP showed a reduced relative weight and epithelial volume, besides displaying a decreased epithelial proliferation and branching and a stabilization of collagen matrix at the end of the first postnatal week. In the prostate regression after castration, we found multiple waves of cell death and a direct association between activity and expression of MMP-2, -7 and -9 and an apoptotic peak that occurs at the 11th Day after castration. In conclusion, the results presented here showed that both postnatal prostate development and prostate regression after castration are dependent on the expression and activity of MMPs.
Doutorado
Biologia Celular
Doutor em Biologia Celular e Estrutural
Fridgeirsdottir, Gudrun A. "The development of a multiple linear regression model for aiding formulation development of solid dispersions." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/52176/.
Full textReynaldo, Cristiane. "Regressão "Ridge" : um metodo alternativo para o mal condicionamento da matriz das regressoras." [s.n.], 1997. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306421.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-07-23T01:02:58Z (GMT). No. of bitstreams: 1 Reynaldo_Cristiane_M.pdf: 5575729 bytes, checksum: 4b593e80e6808d756d592b909b7f9c70 (MD5) Previous issue date: 1997
Resumo: Nas análises de regressão linear múltipla existem muitas situações onde o mal condicionamento da matriz das regressoras está presente. De forma geral, o que se costuma fazer é eliminar uma das variáveis do modelo de regressão. Entretanto, supomos que este processo já foi realizado e o mal condicionamento ainda permanece. Essa situações não é ilusória uma vez que existem muitos exemplos em dados econômicos. Assim, sugerimos a regressão "ridge" como um método alternativo. Existem várias maneiras de se obter os estimadores "ridge", aqui, fornecemos algumas delas. Portanto, o objetivo deste trabalho é comparar os estimadores "ridge" e mostrar suas vantagens sobre os estimadores de mínimos quadrados, quando os dados estão mal condicionados.
Abstract: Not informed.
Mestrado
Mestre em Estatística
MIGLIAVACCA, ELDER. "Modelagem do desempenho separativo de ultracentrifugas por regressao multivariada com matriz de covariancia." reponame:Repositório Institucional do IPEN, 2004. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11155.
Full textMade available in DSpace on 2014-10-09T14:05:51Z (GMT). No. of bitstreams: 1 09624.pdf: 7500503 bytes, checksum: 0fbfc877328a1063a37709866b6cefdc (MD5)
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Stecenková, Marina. "Srovnání vybraných klasifikačních metod pro vícerozměrná data." Master's thesis, Vysoká škola ekonomická v Praze, 2012. http://www.nusl.cz/ntk/nusl-124516.
Full textKalender, Emre. "Parametric Estimation Of Clutter Autocorrelation Matrix For Ground Moving Target Indication." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615313/index.pdf.
Full textTomek, Peter. "Approximation of Terrain Data Utilizing Splines." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2012. http://www.nusl.cz/ntk/nusl-236488.
Full textAoki, Reiko. "Uma possivel solução para o problema de mal condicionamento da matriz do modelo de regressão." [s.n.], 1992. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307058.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-07-18T08:18:45Z (GMT). No. of bitstreams: 1 Aoki_Reiko_M.pdf: 1136090 bytes, checksum: 97731b7b71e8a97d18ebf6356157f5be (MD5) Previous issue date: 1992
Resumo: Não informado.
Abstract: Not informed.
Mestrado
Mestre em Estatística
Tomaya, Lorena Yanet Cáceres. "Inferência em modelos de regressão com erros de medição sob enfoque estrutural para observações replicadas." Universidade Federal de São Carlos, 2014. https://repositorio.ufscar.br/handle/ufscar/4584.
Full textFinanciadora de Estudos e Projetos
The usual regression model fits data under the assumption that the explanatory variable is measured without error. However, in many situations the explanatory variable is observed with measurement errors. In these cases, measurement error models are recommended. We study a structural measurement error model for replicated observations. Estimation of parameters of the proposed models was obtained by the maximum likelihood and maximum pseudolikelihood methods. The behavior of the estimators was assessed in a simulation study with different numbers of replicates. Moreover, we proposed the likelihood ratio test, Wald test, score test, gradient test, Neyman's C test and pseudolikelihood ratio test in order to test hypotheses of interest related to the parameters. The proposed test statistics are assessed through a simulation study. Finally, the model was fitted to a real data set comprising measurements of concentrations of chemical elements in samples of Egyptian pottery. The computational implementation was developed in R language.
Um dos procedimentos usuais para estudar uma relação entre variáveis é análise de regressão. O modelo de regressão usual ajusta os dados sob a suposição de que as variáveis explicativas são medidas sem erros. Porém, em diversas situações as variáveis explicativas apresentam erros de medição. Nestes casos são utilizados os modelos com erros de medição. Neste trabalho estudamos um modelo estrutural com erros de medição para observações replicadas. A estimação dos parâmetros dos modelos propostos foi efetuada pelos métodos de máxima verossimilhança e de máxima pseudoverossimilhança. O comportamento dos estimadores de alguns parâmetros foi analisado por meio de simulações para diferentes números de réplicas. Além disso, são propostos o teste da razão de verossimilhanças, o teste de Wald, o teste escore, o teste gradiente, o teste C de Neyman e o teste da razão de pseudoverossimilhanças com o objetivo de testar algumas hipóteses de interesse relacionadas aos parâmetros. As estatísticas propostas são avaliadas por meio de simulações. Finalmente, o modelo foi ajustado a um conjunto de dados reais referentes a medições de concentrações de elementos químicos em amostras de cerâmicas egípcias. A implementação computacional foi desenvolvida em linguagem R.
Durif, Ghislain. "Multivariate analysis of high-throughput sequencing data." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1334/document.
Full textThe statistical analysis of Next-Generation Sequencing data raises many computational challenges regarding modeling and inference, especially because of the high dimensionality of genomic data. The research work in this manuscript concerns hybrid dimension reduction methods that rely on both compression (representation of the data into a lower dimensional space) and variable selection. Developments are made concerning: the sparse Partial Least Squares (PLS) regression framework for supervised classification, and the sparse matrix factorization framework for unsupervised exploration. In both situations, our main purpose will be to focus on the reconstruction and visualization of the data. First, we will present a new sparse PLS approach, based on an adaptive sparsity-inducing penalty, that is suitable for logistic regression to predict the label of a discrete outcome. For instance, such a method will be used for prediction (fate of patients or specific type of unidentified single cells) based on gene expression profiles. The main issue in such framework is to account for the response to discard irrelevant variables. We will highlight the direct link between the derivation of the algorithms and the reliability of the results. Then, motivated by questions regarding single-cell data analysis, we propose a flexible model-based approach for the factorization of count matrices, that accounts for over-dispersion as well as zero-inflation (both characteristic of single-cell data), for which we derive an estimation procedure based on variational inference. In this scheme, we consider probabilistic variable selection based on a spike-and-slab model suitable for count data. The interest of our procedure for data reconstruction, visualization and clustering will be illustrated by simulation experiments and by preliminary results on single-cell data analysis. All proposed methods were implemented into two R-packages "plsgenomics" and "CMF" based on high performance computing