Academic literature on the topic 'Matriz tridiagonal'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Matriz tridiagonal.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Matriz tridiagonal"

1

Rasmawati, Rasmawati, Lailany Yahya, Agusyarif Rezka Nuha, and Resmawan Resmawan. "DETERMINAN SUATU MATRIKS TOEPLITZ K-TRIDIAGONAL MENGGUNAKAN METODE REDUKSI BARIS DAN EKSPANSI KOFAKTOR." Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi 9, no. 1 (April 30, 2021): 6–16. http://dx.doi.org/10.34312/euler.v9i1.10354.

Full text
Abstract:
This paper discusses the determinants of a k-tridiagonal Toeplitz matrix using row reduction and cofactor expansion methods. The analysis was carried out recursively from the general form of the determinant of the tridiagonal Toeplitz matrix, the determinant of the 2-tridiagonal Toeplitz matrix, and the determinant of the 3-tridiagonal Toeplitz matrix. In the end, the general form of the determinant of the k-tridiagonal Toeplitz matrix is obtained.
APA, Harvard, Vancouver, ISO, and other styles
2

Kovačec, Alexander. "Schrödinger’s tridiagonal matrix." Special Matrices 9, no. 1 (January 1, 2021): 149–65. http://dx.doi.org/10.1515/spma-2020-0124.

Full text
Abstract:
Abstract In the third part of his famous 1926 paper ‘Quantisierung als Eigenwertproblem’, Schrödinger came across a certain parametrized family of tridiagonal matrices whose eigenvalues he conjectured. A 1991 paper wrongly suggested that his conjecture is a direct consequence of an 1854 result put forth by Sylvester. Here we recount some of the arguments that led Schrödinger to consider this particular matrix and what might have led to the wrong suggestion. We then give a self-contained elementary (though computational) proof which would have been accessible to Schrödinger. It needs only partial fraction decomposition. We conclude this paper by giving an outline of the connection established in recent decades between orthogonal polynomial systems of the Hahn class and certain tridiagonal matrices with fractional entries. It also allows to prove Schrödinger’s conjecture.
APA, Harvard, Vancouver, ISO, and other styles
3

Zgirouski, A. A., and N. A. Likhoded. "Modified method of parallel matrix sweep." Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series 55, no. 4 (January 7, 2020): 425–34. http://dx.doi.org/10.29235/1561-2430-2019-55-4-425-434.

Full text
Abstract:
The topic of this paper refers to efficient parallel solvers of block-tridiagonal linear systems of equations. Such systems occur in numerous modeling problems and require usage of high-performance multicore computation systems. One of the widely used methods for solving block-tridiagonal linear systems in parallel is the original block-tridiagonal sweep method. We consider the algorithm based on the partitioning idea. Firstly, the initial matrix is split into parts and transformations are applied to each part independently to obtain equations of a reduced block-tridiagonal system. Secondly, the reduced system is solved sequentially using the classic Thomas algorithm. Finally, all the parts are solved in parallel using the solutions of a reduced system. We propose a modification of this method. It was justified that if known stability conditions for the matrix sweep method are satisfied, then the proposed modification is stable as well.
APA, Harvard, Vancouver, ISO, and other styles
4

Fu, Yaru, Xiaoyu Jiang, Zhaolin Jiang, and Seongtae Jhang. "Analytic determinants and inverses of Toeplitz and Hankel tridiagonal matrices with perturbed columns." Special Matrices 8, no. 1 (May 4, 2020): 131–43. http://dx.doi.org/10.1515/spma-2020-0012.

Full text
Abstract:
AbstractIn this paper, our main attention is paid to calculate the determinants and inverses of two types Toeplitz and Hankel tridiagonal matrices with perturbed columns. Specifically, the determinants of the n × n Toeplitz tridiagonal matrices with perturbed columns (type I, II) can be expressed by using the famous Fibonacci numbers, the inverses of Toeplitz tridiagonal matrices with perturbed columns can also be expressed by using the well-known Lucas numbers and four entries in matrix 𝔸. And the determinants of the n×n Hankel tridiagonal matrices with perturbed columns (type I, II) are (−1]) {\left( { - 1} \right)^{{{n\left( {n - 1} \right)} \over 2}}} times of the determinant of the Toeplitz tridiagonal matrix with perturbed columns type I, the entries of the inverses of the Hankel tridiagonal matrices with perturbed columns (type I, II) are the same as that of the inverse of Toeplitz tridiagonal matrix with perturbed columns type I, except the position. In addition, we present some algorithms based on the main theoretical results. Comparison of our new algorithms and some recent works is given. The numerical result confirms our new theoretical results. And we show the superiority of our method by comparing the CPU time of some existing algorithms studied recently.
APA, Harvard, Vancouver, ISO, and other styles
5

Dub, P., and O. Litzman. "The Darwin procedure in optics of layered media and the matrix theory." Acta Crystallographica Section A Foundations of Crystallography 55, no. 4 (July 1, 1999): 613–20. http://dx.doi.org/10.1107/s010876739801513x.

Full text
Abstract:
The Darwin dynamical theory of diffraction for two beams yields a nonhomogeneous system of linear algebraic equations with a tridiagonal matrix. It is shown that different formulae of the two-beam Darwin theory can be obtained by a uniform view of the basic properties of tridiagonal matrices, their determinants (continuants) and their close relationship to continued fractions and difference equations. Some remarks concerning the relation of the Darwin theory in the three-beam case to tridiagonal block matrices are also presented.
APA, Harvard, Vancouver, ISO, and other styles
6

Pan, Hongyan, and Zhaolin Jiang. "VanderLaan Circulant Type Matrices." Abstract and Applied Analysis 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/329329.

Full text
Abstract:
Circulant matrices have become a satisfactory tools in control methods for modern complex systems. In the paper, VanderLaan circulant type matrices are presented, which include VanderLaan circulant, left circulant, andg-circulant matrices. The nonsingularity of these special matrices is discussed by the surprising properties of VanderLaan numbers. The exact determinants of VanderLaan circulant type matrices are given by structuring transformation matrices, determinants of well-known tridiagonal matrices, and tridiagonal-like matrices. The explicit inverse matrices of these special matrices are obtained by structuring transformation matrices, inverses of known tridiagonal matrices, and quasi-tridiagonal matrices. Three kinds of norms and lower bound for the spread of VanderLaan circulant and left circulant matrix are given separately. And we gain the spectral norm of VanderLaang-circulant matrix.
APA, Harvard, Vancouver, ISO, and other styles
7

Nomura, Kazumasa, and Paul Terwilliger. "Totally bipartite tridiagonal pairs." Electronic Journal of Linear Algebra 37 (June 22, 2021): 434–91. http://dx.doi.org/10.13001/ela.2021.5029.

Full text
Abstract:
There is a concept in linear algebra called a tridiagonal pair. The concept was motivated by the theory of $Q$-polynomial distance-regular graphs. We give a tutorial introduction to tridiagonal pairs, working with a special case as a concrete example. The special case is called totally bipartite, or totally bipartite (TB). Starting from first principles, we give an elementary but comprehensive account of TB tridiagonal pairs. The following topics are discussed: (i) the notion of a TB tridiagonal system; (ii) the eigenvalue array; (iii) the standard basis and matrix representations; (iv) the intersection numbers; (v) the Askey--Wilson relations; (vi) a recurrence involving the eigenvalue array; (vii) the classification of TB tridiagonal systems; (viii) self-dual TB tridiagonal pairs and systems; (ix) the $\mathbb{Z}_3$-symmetric Askey--Wilson relations; (x) some automorphisms and antiautomorphisms associated with a TB tridiagonal pair; and (xi) an action of the modular group ${\rm PSL}_2(\mathbb{Z})$ associated with a TB tridiagonal pair.
APA, Harvard, Vancouver, ISO, and other styles
8

Qi, Feng, and Ai-Qi Liu. "Alternative proofs of some formulas for two tridiagonal determinants." Acta Universitatis Sapientiae, Mathematica 10, no. 2 (December 1, 2018): 287–97. http://dx.doi.org/10.2478/ausm-2018-0022.

Full text
Abstract:
Abstract In the paper, the authors provide five alternative proofs of two formulas for a tridiagonal determinant, supply a detailed proof of the inverse of the corresponding tridiagonal matrix, and provide a proof for a formula of another tridiagonal determinant. This is a companion of the paper [F. Qi, V. Čerňanová,and Y. S. Semenov, Some tridiagonal determinants related to central Delannoy numbers, the Chebyshev polynomials, and the Fibonacci polynomials, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 81 (2019), in press.
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Kwang-Wu. "Horadam Sequences and Tridiagonal Determinants." Symmetry 12, no. 12 (November 28, 2020): 1968. http://dx.doi.org/10.3390/sym12121968.

Full text
Abstract:
We consider a family of particular tridiagonal matrix determinants which can represent the general second-order linear recurrence sequences. These determinants can be changed to symmetric or skew-symmetric tridiagonal determinants. To evaluate the complex factorizations of any Horadam sequence, we evaluate the eigenvalues of some special tridiagonal matrices and their corresponding eigenvectors. We also use these determinant representations to obtain some formulas in these sequences.
APA, Harvard, Vancouver, ISO, and other styles
10

Usmani, R. A. "Inversion of Jacobi's tridiagonal matrix." Computers & Mathematics with Applications 27, no. 8 (April 1994): 59–66. http://dx.doi.org/10.1016/0898-1221(94)90066-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Matriz tridiagonal"

1

Miranda, Wilson Domingos Sidinei Alves. "Algoritmo paralelo para determinação de autovalores de matrizes hermitianas." reponame:Repositório Institucional da UnB, 2015. http://repositorio.unb.br/handle/10482/20642.

Full text
Abstract:
Dissertação (mestrado)–Universidade de Brasília, Universidade UnB de Planaltina, Programa de Pós-Graduação em Ciência de Materiais, 2015.
Submitted by Raquel Viana (raquelviana@bce.unb.br) on 2016-06-01T21:17:59Z No. of bitstreams: 1 2015_WilsonDomingosSidineiAlvesMiranda.pdf: 850688 bytes, checksum: ebf1c7ea3222d989fe0dd442d10edd33 (MD5)
Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-06-01T21:18:27Z (GMT) No. of bitstreams: 1 2015_WilsonDomingosSidineiAlvesMiranda.pdf: 850688 bytes, checksum: ebf1c7ea3222d989fe0dd442d10edd33 (MD5)
Made available in DSpace on 2016-06-01T21:18:28Z (GMT). No. of bitstreams: 1 2015_WilsonDomingosSidineiAlvesMiranda.pdf: 850688 bytes, checksum: ebf1c7ea3222d989fe0dd442d10edd33 (MD5)
Um dos principais problemas da álgebra linear computacional é o problema de autovalor, Au = lu, onde A é usualmente uma matriz de ordem grande. A maneira mais efetiva de resolver tal problema consiste em reduzir a matriz A para a forma tridiagonal e usar o método da bissecção ou algoritmo QR para encontrar alguns ou todos os autovalores. Este trabalho apresenta uma implementação em paralelo utilizando uma combinação dos métodos da bissecção, secante e Newton-Raphson para a solução de problemas de autovalores de matrizes hermitianas. A implementação é voltada para unidades de processamentos gráficos (GPUs) visando a utilização em computadores que possuam placas gráficas com arquitetura CUDA. Para comprovar a eficiência e aplicabilidade da implementação, comparamos o tempo gasto entre os algoritmos usando a GPU, a CPU e as rotinas DSTEBZ e DSTEVR da biblioteca LAPACK. O problema foi dividido em três fases, tridiagonalização, isolamento e extração, as duas últimas calculadas na GPU. A tridiagonalização via DSYTRD da LAPACK, calculada em CPU, mostrou-se mais eficiente do que a realizada em CUDA via DSYRDB. O uso do método zeroinNR na fase de extração em CUDA foi cerca de duas vezes mais rápido que o método da bissecção em CUDA. Então o método híbrido é o mais eficiente para o nosso caso. _______________________________________________________________________________________________ ABSTRACT
One of the main problems in computational linear algebra is the eigenvalue problem Au = lu, where A is usually a matrix of big order. The most effective way to solve this problem is to reduce the matrix A to tridiagonal form and use the method of bisection or QR algorithm to find some or all of the eigenvalues. This work presents a parallel implementation using a combination of methods bisection, secant and Newton-Raphson for solving the eigenvalues problem for Hermitian matrices. Implementation is focused on graphics processing units (GPUs) aimed at use in computers with graphics cards with CUDA architecture. To prove the efficiency and applicability of the implementation, we compare the time spent between the algorithms using the GPU, the CPU and DSTEBZ and DSTEVR routines from LAPACK library. The problem was divided into three phases, tridiagonalization, isolation and extraction, the last two calculated on the GPU. The tridiagonalization by LAPACK’s DSYTRD, calculated on the CPU, proved more efficient than the DSYRDB in CUDA. The use of the method zeroinNR on the extraction phase in CUDA was about two times faster than the bisection method in CUDA. So the hybrid method is more efficient for our case.
APA, Harvard, Vancouver, ISO, and other styles
2

Rocha, Lindomar José. "Determinação de autovalores e autovetores de matrizes tridiagonais simétricas usando CUDA." reponame:Repositório Institucional da UnB, 2015. http://repositorio.unb.br/handle/10482/19625.

Full text
Abstract:
Dissertação (mestrado)–Universidade de Brasília, Universidade UnB de Planaltina, Programa de Pós-Graduação em Ciência de Materiais, 2015.
Submitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2015-12-15T17:59:17Z No. of bitstreams: 1 2015_LindomarJoséRocha.pdf: 1300687 bytes, checksum: f028dc5aba5d9f92f1b2ee949e3e3a3d (MD5)
Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-02-29T22:14:44Z (GMT) No. of bitstreams: 1 2015_LindomarJoséRocha.pdf: 1300687 bytes, checksum: f028dc5aba5d9f92f1b2ee949e3e3a3d (MD5)
Made available in DSpace on 2016-02-29T22:14:44Z (GMT). No. of bitstreams: 1 2015_LindomarJoséRocha.pdf: 1300687 bytes, checksum: f028dc5aba5d9f92f1b2ee949e3e3a3d (MD5)
Diversos ramos do conhecimento humano fazem uso de autovalores e autovetores, dentre eles têm-se Física, Engenharia, Economia, etc. A determinação desses autovalores e autovetores pode ser feita utilizando diversas rotinas computacionais, porém umas mais rápidas que outras nesse senário de ganho de velocidade aparece a opção de se usar a computação paralela de forma mais especifica a CUDA da Nvidia é uma opção que oferece um ganho de velocidade significativo, nesse modelo as rotinas são executadas na GPU onde se tem diversos núcleos de processamento. Dada a tamanha importância dos autovalores e autovetores o objetivo desse trabalho é determinar rotinas que possam efetuar o cálculos dos mesmos com matrizes tridiagonais simétricas reais de maneira mais rápida e segura, através de computação paralela com uso da CUDA. Objetivo esse alcançado através da combinação de alguns métodos numéricos para a obtenção dos autovalores e um alteração no método da iteração inversa utilizado na determinação dos autovetores. Temos feito uso de rotinas LAPACK para comparar com as nossas rotinas desenvolvidas em CUDA. De acordo com os resultados, a rotina desenvolvida em CUDA tem a vantagem clara de velocidade quer na precisão simples ou dupla, quando comparado com o estado da arte das rotinas de CPU a partir da biblioteca LAPACK. ______________________________________________________________________________________________ ABSTRACT
Severa branches of human knowledge make use of eigenvalues and eigenvectors, among them we have physics, engineering, economics, etc. The determination of these eigenvalues and eigenvectors can be using various computational routines, som faster than others in this speed increase scenario appears the option to use the parallel computing more specifically the Nvidia’s CUDA is an option that provides a gain of significant speed, this model the routines are performed on the GPU which has several processing cores. Given the great importance of the eigenvalues and eigenvectors the objective of this study is to determine routines that can perform the same calculations with real symmetric tridiagonal matrices more quickly and safely, through parallel computing with use of CUDA. Objective that achieved by some combination of numerical methods to obtain the eigenvalues and a change in the method of inverse iteration used to determine of the eigenvectors, which was used LAPACK routines to compare with routine developed in CUDA. According to the results of the routine developed in CUDA has marked superiority with single or double precision, in the question speed regarding the routines of LAPACK.
APA, Harvard, Vancouver, ISO, and other styles
3

Ziad, Abderrahmane. "Contributions au calcul numérique des valeurs propres des matrices normales." Saint-Etienne, 1996. http://www.theses.fr/1996STET4001.

Full text
Abstract:
Première partie: la convergence globale de l'algorithme QR avec le shift de Rayleigh appliquée à une matrice normale Hessenberg supérieure irréductible est démontrée. Ensuite nous avons proposé un shift avec lequel la convergence est cubique, lorsque la matrice est symétrique tridiagonale irréductible. Deuxième partie: nous avons proposé une méthode pour le calcul d'une valeur propre de rang donné d'une matrice symétrique tridiagonale irréductible, cette méthode est un procédé d'initialisation de la méthode dite d'itération inverse de Rayleigh
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Yuguang. "Algorithm design for structured matrix computations." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Wei. "GMRES ON A TRIDIAGONAL TOEPLITZ LINEAR SYSTEM." UKnowledge, 2007. http://uknowledge.uky.edu/gradschool_diss/549.

Full text
Abstract:
The Generalized Minimal Residual method (GMRES) is often used to solve a nonsymmetric linear system Ax = b. But its convergence analysis is a rather difficult task in general. A commonly used approach is to diagonalize A = XΛX-1 and then separate the study of GMRES convergence behavior into optimizing the condition number of X and a polynomial minimization problem over As spectrum. This artificial separation could greatly overestimate GMRES residuals and likely yields error bounds that are too far from the actual ones. On the other hand, considering the effects of both As spectrum and the conditioning of X at the same time poses a difficult challenge, perhaps impossible to deal with in general but only possible for certain particular linear systems. This thesis will do so for a (nonsymmetric) tridiagonal Toeplitz system. Sharp error bounds on and sometimes exact expressions for residuals are obtained. These expressions and/or bounds are in terms of the three parameters that define A and Chebyshev polynomials of the first kind or the second kind.
APA, Harvard, Vancouver, ISO, and other styles
6

Larriba, Pey Josep Lluís. "Design and evaluation of tridiagonal solvers for vector and parallel computers." Doctoral thesis, Universitat Politècnica de Catalunya, 1995. http://hdl.handle.net/10803/6012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Archid, Atika. "Méthodes par blocs adaptées aux matrices structurées et au calcul du pseudo-inverse." Thesis, Littoral, 2013. http://www.theses.fr/2013DUNK0394/document.

Full text
Abstract:
Nous nous intéressons dans cette thèse, à l'étude de certaines méthodes numériques de type krylov dans le cas symplectique, en utilisant la technique de blocs. Ces méthodes, contrairement aux méthodes classiques, permettent à la matrice réduite de conserver la structure Hamiltonienne ou anti-Hamiltonienne ou encore symplectique d'une matrice donnée. Parmi ces méthodes, nous nous sommes intéressés à la méthodes d'Arnoldi symplectique par bloc que nous appelons aussi bloc J-Arnoldi. Notre but essentiel est d’étudier cette méthode de façon théorique et numérique, sur la nouvelle structure du K-module libre ℝ²nx²s avec K = ℝ²sx²s où s ≪ n désigne la taille des blocs utilisés. Un deuxième objectif est de chercher une approximation de l'epérateur exp(A)V, nous étudions en particulier le cas où A est une matrice réelle Hamiltonnienne et anti-symétrique de taille 2n x 2n et V est une matrice rectangulaire ortho-symplectique de taille 2n x 2s sur le sous-espace de Krylov par blocs Km(A,V) = blockspan {V,AV,...,Am-1V}, en conservant la structure de la matrice V. Cette approximation permet de résoudre plusieurs problèmes issus des équations différentielles dépendants d'un paramètre (EDP) et des systèmes d'équations différentielles ordinaires (EDO). Nous présentons également une méthode de Lanczos symplectique par bloc, que nous nommons bloc J-Lanczos. Cette méthode permet de réduire une matrice structurée sous la forme J-tridiagonale par bloc. Nous proposons des algorithmes basés sur deux types de normalisation : la factorisation S R et la factorisation Rj R. Dans une dernière partie, nous proposons un algorithme qui généralise la méthode de Greville afin de déterminer la pseudo inverse de Moore-Penros bloc de lignes par bloc de lignes d'une matrice rectangulaire de manière itérative. Nous proposons un algorithme qui utilise la technique de bloc. Pour toutes ces méthodes, nous proposons des exemples numériques qui montrent l'efficacité de nos approches
We study, in this thesis, some numerical block Krylov subspace methods. These methods preserve geometric properties of the reduced matrix (Hamiltonian or skew-Hamiltonian or symplectic). Among these methods, we interest on block symplectic Arnoldi, namely block J-Arnoldi algorithm. Our main goal is to study this method, theoretically and numerically, on using ℝ²nx²s as free module on (ℝ²sx²s, +, x) with s ≪ n the size of block. A second aim is to study the approximation of exp (A)V, where A is a real Hamiltonian and skew-symmetric matrix of size 2n x 2n and V a rectangular matrix of size 2n x 2s on block Krylov subspace Km (A, V) = blockspan {V, AV,...Am-1V}, that preserve the structure of the initial matrix. this approximation is required in many applications. For example, this approximation is important for solving systems of ordinary differential equations (ODEs) or time-dependant partial differential equations (PDEs). We also present a block symplectic structure preserving Lanczos method, namely block J-Lanczos algorithm. Our approach is based on a block J-tridiagonalization procedure of a structured matrix. We propose algorithms based on two normalization methods : the SR factorization and the Rj R factorization. In the last part, we proposea generalized algorithm of Greville method for iteratively computing the Moore-Penrose inverse of a rectangular real matrix. our purpose is to give a block version of Greville's method. All methods are completed by many numerical examples
APA, Harvard, Vancouver, ISO, and other styles
8

Edvardsson, Elisabet. "Band structures of topological crystalline insulators." Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-65536.

Full text
Abstract:
Topological insulators and topological crystalline insulators are materials that have a bulk band structure that is gapped, but that also have toplogically protected non-gapped surface states. This implies that the bulk is insulating, but that the material can conduct electricity on some of its surfaces. The robustness of these surface states is a consequence of time-reversal symmetry, possibly in combination with invariance under other symmetries, like that of the crystal itself. In this thesis we review some of the basic theory for such materials. In particular we discuss how topological invariants can be derived for some specific systems. We then move on to do band structure calculations using the tight-binding method, with the aim to see the topologically protected surface states in a topological crystalline insulator. These calculations require the diagonalization of block tridiagonal matrices. We finish the thesis by studying the properties of such matrices in more detail and derive some results regarding the distribution and convergence of their eigenvalues.
APA, Harvard, Vancouver, ISO, and other styles
9

Ceresoli, Eliamar. "O método de divisão-e-conquista na solução de auto-sistemas de matrizes simétricas." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2002. http://hdl.handle.net/10183/1642.

Full text
Abstract:
O presente trabalho apresenta um estudo do método de divisão-e-conquista para solução dos auto-sistemas de matrizes tridiagonais simétricas. Inicialmente, explanamos a parte teórica, e posteriormente, por meio de exemplos numéricos mostramos seu funcionamento. Para a realização deste estudo, utilizou-se o software Maple como ferramenta auxiliar. Realizamos comparações e análises dos auto-sistemas encontrados com as rotinas DSTEDC e DSTEQR do LAPACK, que utilizam respectivamente o método de divisão-e-conquista e o método QR e também comparamos estes com os resultados encontrados por nós. Verificamos por meio de testes os tempos, que as rotinas citadas, dispendem na resolução de alguns auto-sistemas. Os resultados apresentados mostram que o método de Divisão-e-Conquista é competitivo com o método tradicional, QR, para o cálculo de autovalores e autovetores de matrizes tridiagonais simétricas.
APA, Harvard, Vancouver, ISO, and other styles
10

Štrympl, Martin. "Výpočet vlastních čísel a vlastních vektorů hermitovské matice." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-242085.

Full text
Abstract:
This project deals with computation of eigenvalues and eigenvectors of Hermitian positive-semidefinite complex square matrix of order 4. The target is an implementation of computation in language VHDL to field-programmable gate array of type Xilinx Zynq-7000. This master project deals with algorithms used for computation of eigenvalues and eigenvectors of positive-semidefinite symmetric real square and positive-semidefinite complex Hermitian matrix and the analysis of algorithms by AnalyzeAlgorithm program assembled for this purpose. The closing part of this project describes implementation of the computation into field-programmable gate array with use of IP core Xilinx® Floating-Point \linebreak Operator and SVAOptimalizer, SVAInterpreter and SVAToDSPCompiler programs.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Matriz tridiagonal"

1

Blech, Richard A. Parallel Gaussian estimation of a block tridiagonal matrix using multiple microcomputers. Cleveland, Ohio: Lewis Research Center, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Parallel Gaussian elimination of a block tridiagonal matrix using multiple microcomputers. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Parallel Gaussian elimination of a block tridiagonal matrix using multiple microcomputers. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Research Institute for Advanced Computer Science (U.S.), ed. An O(logN) parallel algorithm for computing the Eigenvalues of a symmetric tridiagonal matrix. [Moffett Field, Calif.?]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Matriz tridiagonal"

1

Lyche, Tom. "Diagonally Dominant Tridiagonal Matrices; Three Examples." In Numerical Linear Algebra and Matrix Factorizations, 27–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36468-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stojčev, M. K., E. I. Milovanović, M. D. Mihajlović, and I. Ž. Milovanović. "Parallel algorithm for inverting tridiagonal matrix on linear processor array." In Parallel Processing: CONPAR 94 — VAPP VI, 229–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58430-7_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kaveh, Ali, Hossein Rahami, and Iman Shojaei. "Numerical Solution for System of Linear Equations Using Tridiagonal Matrix." In Swift Analysis of Civil Engineering Structures Using Graph Theory Methods, 287–302. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45549-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wakatani, Akiyoshi. "A Parallel Scheme for Solving a Tridiagonal Matrix with Pre-propagation." In Recent Advances in Parallel Virtual Machine and Message Passing Interface, 222–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39924-7_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ghazali, Khadizah, Jumat Sulaiman, Yosza Dasril, and Darmesah Gabda. "Application of Newton-4EGSOR Iteration for Solving Large Scale Unconstrained Optimization Problems with a Tridiagonal Hessian Matrix." In Lecture Notes in Electrical Engineering, 401–11. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2622-6_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Spectral function of tridiagonal Hermitian matrix." In Translations of Mathematical Monographs, 19–23. Providence, Rhode Island: American Mathematical Society, 2018. http://dx.doi.org/10.1090/mmono/247/03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Appendix A. A Tridiagonal Matrix Solver." In Introduction to Modeling Convection in Planets and Stars, 283. Princeton University Press, 2013. http://dx.doi.org/10.1515/9781400848904-015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Construction of the tridiagonal matrix by given spectral functions." In Translations of Mathematical Monographs, 33–39. Providence, Rhode Island: American Mathematical Society, 2018. http://dx.doi.org/10.1090/mmono/247/05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Issakhov, Alibek. "Mathematical Modelling of the Thermal Process in the Aquatic Environment with Considering the Hydrometeorological Condition at the Reservoir-Cooler by Using Parallel Technologies." In Sustaining Power Resources through Energy Optimization and Engineering, 227–43. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9755-3.ch010.

Full text
Abstract:
This paper presents the mathematical model of the thermal power plant in reservoir under different hydrometeorological conditions, which is solved by three dimensional Navier - Stokes and temperature equations for an incompressible fluid in a stratified medium. A numerical method based on the projection method, which divides the problem into four stages. At the first stage it is assumed that the transfer of momentum occurs only by convection and diffusion. Intermediate velocity field is solved by fractional steps method. At the second stage, three-dimensional Poisson equation is solved by the Fourier method in combination with tridiagonal matrix method (Thomas algorithm). At the third stage it is expected that the transfer is only due to the pressure gradient. Finally stage equation for temperature solved like momentum equation with fractional step method. To increase the order of approximation compact scheme was used. Then qualitatively and quantitatively approximate the basic laws of the hydrothermal processes depending on different hydrometeorological conditions are determined.
APA, Harvard, Vancouver, ISO, and other styles
10

"Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator." In Conference Publications. AIMS Press, 2013. http://dx.doi.org/10.3934/proc.2013.2013.247.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Matriz tridiagonal"

1

Ran, Qi-Wen, Zhong-Zhao Zhang, De-Yun Wei, and Xue-Jun Sha. "Novel nearly tridiagonal commuting matrix and fractionalizations of generalized DFT matrix." In 2009 Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2009. http://dx.doi.org/10.1109/ccece.2009.5090192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, Jingpin, Liman Chen, and Cong Shen. "Inverse arnoldi algorithm for construction of tridiagonal quaternion matrix." In 2018 Chinese Control And Decision Conference (CCDC). IEEE, 2018. http://dx.doi.org/10.1109/ccdc.2018.8407567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Özay, Evrim Korkmaz. "Face recognition using tridiagonal matrix enhanced multivariance products representation." In ICNPAA 2016 WORLD CONGRESS: 11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences. Author(s), 2017. http://dx.doi.org/10.1063/1.4972675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kilic, Emrah, and Aynur Yalciner. "Explicit spectrum of a circulant-tridiagonal matrix with applications." In CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2019 (CEST). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5114548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hanna, Magdy Tawfik. "Orthonormal eigenvectors of the DFT-IV matrix by the eigenanalysis of a nearly tridiagonal matrix." In 2011 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2011. http://dx.doi.org/10.1109/iscas.2011.5937860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baykara, N. A., and Metin Demiralp. "Infinite Vector Decomposition in Tridiagonal Matrix Enhanced Multivariance Products Representation (TMEMPR) Perspective." In 2014 International Conference on Mathematics and Computers in Sciences and in Industry (MCSI). IEEE, 2014. http://dx.doi.org/10.1109/mcsi.2014.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Assi, I. A., H. Bahlouli, and A. D. Alhaidari. "Solvable potentials for the 1D Dirac equation using the tridiagonal matrix representations." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM 2015). Author(s), 2016. http://dx.doi.org/10.1063/1.4953124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Wei, and Timothy S. Fisher. "Simulation of Phonon Interfacial Transport in Strained Silicon-Germanium Heterostructures." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80053.

Full text
Abstract:
A nonequilibrium Green’s function (NEGF) method is used to simulate the phonon transport across a strained thin film between two semi-infinite contacts. The calculation of dynamical matrix, self-energy matrix and transmission function are discussed. Uncoupled Green’s functions are computed numerically using a block tridiagonal algorithm. The numerical role of the broadening constant is investigated. The bulk density of states in a single atomic chain is calculated and compares well with an analytical solution. The transmission function and thermal conductance across the thin film are evaluated for two different configurations (Ge-Si-Ge and Si-Ge-Si) and compared against homogeneous bulk systems (Si only and Ge only), indicating that heterogeneous interfaces reduce thermal conductance significantly.
APA, Harvard, Vancouver, ISO, and other styles
9

García-Illescas, M. A., and Luis Alvarez-Icaza. "On-Line Identification of Three-Dimensional Shear Building Models." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5102.

Full text
Abstract:
An on-line identification scheme for shear building models using recursive least squares with a matrix parameterized model is presented. Based on Gershgorin circles and tridiagonal matrices properties, the identified model stability is guaranteed in the presence of low excitation or low damping. Stability of the model helps in the design of more robust control laws. The scheme is evaluated in an experimental test-bed with a scaled five stories building where an on-line reduced order model is derived. Results indicate that when employing this matrix parametrization, a significant reduction in the number of calculations involved is achieved, when compared to the standard vector parametrization based schemes, such that real-time applications are feasible to implement. Moreover, the stability on the identified model is preserved.
APA, Harvard, Vancouver, ISO, and other styles
10

Gozukirmizi, Cosar, and Metin Demiralp. "The Influence of Initial Vector Selection on Tridiagonal Matrix Enhanced Multivariance Products Representation." In 2014 International Conference on Mathematics and Computers in Sciences and in Industry (MCSI). IEEE, 2014. http://dx.doi.org/10.1109/mcsi.2014.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Matriz tridiagonal"

1

Dongarra, J. J., G. A. Geist, and C. H. Romine. Computing the eigenvalues and eigenvectors of a general matrix by reduction to general tridiagonal form. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6502671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography