Academic literature on the topic 'Matriz tridiagonal'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Matriz tridiagonal.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Matriz tridiagonal"
Rasmawati, Rasmawati, Lailany Yahya, Agusyarif Rezka Nuha, and Resmawan Resmawan. "DETERMINAN SUATU MATRIKS TOEPLITZ K-TRIDIAGONAL MENGGUNAKAN METODE REDUKSI BARIS DAN EKSPANSI KOFAKTOR." Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi 9, no. 1 (April 30, 2021): 6–16. http://dx.doi.org/10.34312/euler.v9i1.10354.
Full textKovačec, Alexander. "Schrödinger’s tridiagonal matrix." Special Matrices 9, no. 1 (January 1, 2021): 149–65. http://dx.doi.org/10.1515/spma-2020-0124.
Full textZgirouski, A. A., and N. A. Likhoded. "Modified method of parallel matrix sweep." Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series 55, no. 4 (January 7, 2020): 425–34. http://dx.doi.org/10.29235/1561-2430-2019-55-4-425-434.
Full textFu, Yaru, Xiaoyu Jiang, Zhaolin Jiang, and Seongtae Jhang. "Analytic determinants and inverses of Toeplitz and Hankel tridiagonal matrices with perturbed columns." Special Matrices 8, no. 1 (May 4, 2020): 131–43. http://dx.doi.org/10.1515/spma-2020-0012.
Full textDub, P., and O. Litzman. "The Darwin procedure in optics of layered media and the matrix theory." Acta Crystallographica Section A Foundations of Crystallography 55, no. 4 (July 1, 1999): 613–20. http://dx.doi.org/10.1107/s010876739801513x.
Full textPan, Hongyan, and Zhaolin Jiang. "VanderLaan Circulant Type Matrices." Abstract and Applied Analysis 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/329329.
Full textNomura, Kazumasa, and Paul Terwilliger. "Totally bipartite tridiagonal pairs." Electronic Journal of Linear Algebra 37 (June 22, 2021): 434–91. http://dx.doi.org/10.13001/ela.2021.5029.
Full textQi, Feng, and Ai-Qi Liu. "Alternative proofs of some formulas for two tridiagonal determinants." Acta Universitatis Sapientiae, Mathematica 10, no. 2 (December 1, 2018): 287–97. http://dx.doi.org/10.2478/ausm-2018-0022.
Full textChen, Kwang-Wu. "Horadam Sequences and Tridiagonal Determinants." Symmetry 12, no. 12 (November 28, 2020): 1968. http://dx.doi.org/10.3390/sym12121968.
Full textUsmani, R. A. "Inversion of Jacobi's tridiagonal matrix." Computers & Mathematics with Applications 27, no. 8 (April 1994): 59–66. http://dx.doi.org/10.1016/0898-1221(94)90066-3.
Full textDissertations / Theses on the topic "Matriz tridiagonal"
Miranda, Wilson Domingos Sidinei Alves. "Algoritmo paralelo para determinação de autovalores de matrizes hermitianas." reponame:Repositório Institucional da UnB, 2015. http://repositorio.unb.br/handle/10482/20642.
Full textSubmitted by Raquel Viana (raquelviana@bce.unb.br) on 2016-06-01T21:17:59Z No. of bitstreams: 1 2015_WilsonDomingosSidineiAlvesMiranda.pdf: 850688 bytes, checksum: ebf1c7ea3222d989fe0dd442d10edd33 (MD5)
Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-06-01T21:18:27Z (GMT) No. of bitstreams: 1 2015_WilsonDomingosSidineiAlvesMiranda.pdf: 850688 bytes, checksum: ebf1c7ea3222d989fe0dd442d10edd33 (MD5)
Made available in DSpace on 2016-06-01T21:18:28Z (GMT). No. of bitstreams: 1 2015_WilsonDomingosSidineiAlvesMiranda.pdf: 850688 bytes, checksum: ebf1c7ea3222d989fe0dd442d10edd33 (MD5)
Um dos principais problemas da álgebra linear computacional é o problema de autovalor, Au = lu, onde A é usualmente uma matriz de ordem grande. A maneira mais efetiva de resolver tal problema consiste em reduzir a matriz A para a forma tridiagonal e usar o método da bissecção ou algoritmo QR para encontrar alguns ou todos os autovalores. Este trabalho apresenta uma implementação em paralelo utilizando uma combinação dos métodos da bissecção, secante e Newton-Raphson para a solução de problemas de autovalores de matrizes hermitianas. A implementação é voltada para unidades de processamentos gráficos (GPUs) visando a utilização em computadores que possuam placas gráficas com arquitetura CUDA. Para comprovar a eficiência e aplicabilidade da implementação, comparamos o tempo gasto entre os algoritmos usando a GPU, a CPU e as rotinas DSTEBZ e DSTEVR da biblioteca LAPACK. O problema foi dividido em três fases, tridiagonalização, isolamento e extração, as duas últimas calculadas na GPU. A tridiagonalização via DSYTRD da LAPACK, calculada em CPU, mostrou-se mais eficiente do que a realizada em CUDA via DSYRDB. O uso do método zeroinNR na fase de extração em CUDA foi cerca de duas vezes mais rápido que o método da bissecção em CUDA. Então o método híbrido é o mais eficiente para o nosso caso. _______________________________________________________________________________________________ ABSTRACT
One of the main problems in computational linear algebra is the eigenvalue problem Au = lu, where A is usually a matrix of big order. The most effective way to solve this problem is to reduce the matrix A to tridiagonal form and use the method of bisection or QR algorithm to find some or all of the eigenvalues. This work presents a parallel implementation using a combination of methods bisection, secant and Newton-Raphson for solving the eigenvalues problem for Hermitian matrices. Implementation is focused on graphics processing units (GPUs) aimed at use in computers with graphics cards with CUDA architecture. To prove the efficiency and applicability of the implementation, we compare the time spent between the algorithms using the GPU, the CPU and DSTEBZ and DSTEVR routines from LAPACK library. The problem was divided into three phases, tridiagonalization, isolation and extraction, the last two calculated on the GPU. The tridiagonalization by LAPACK’s DSYTRD, calculated on the CPU, proved more efficient than the DSYRDB in CUDA. The use of the method zeroinNR on the extraction phase in CUDA was about two times faster than the bisection method in CUDA. So the hybrid method is more efficient for our case.
Rocha, Lindomar José. "Determinação de autovalores e autovetores de matrizes tridiagonais simétricas usando CUDA." reponame:Repositório Institucional da UnB, 2015. http://repositorio.unb.br/handle/10482/19625.
Full textSubmitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2015-12-15T17:59:17Z No. of bitstreams: 1 2015_LindomarJoséRocha.pdf: 1300687 bytes, checksum: f028dc5aba5d9f92f1b2ee949e3e3a3d (MD5)
Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-02-29T22:14:44Z (GMT) No. of bitstreams: 1 2015_LindomarJoséRocha.pdf: 1300687 bytes, checksum: f028dc5aba5d9f92f1b2ee949e3e3a3d (MD5)
Made available in DSpace on 2016-02-29T22:14:44Z (GMT). No. of bitstreams: 1 2015_LindomarJoséRocha.pdf: 1300687 bytes, checksum: f028dc5aba5d9f92f1b2ee949e3e3a3d (MD5)
Diversos ramos do conhecimento humano fazem uso de autovalores e autovetores, dentre eles têm-se Física, Engenharia, Economia, etc. A determinação desses autovalores e autovetores pode ser feita utilizando diversas rotinas computacionais, porém umas mais rápidas que outras nesse senário de ganho de velocidade aparece a opção de se usar a computação paralela de forma mais especifica a CUDA da Nvidia é uma opção que oferece um ganho de velocidade significativo, nesse modelo as rotinas são executadas na GPU onde se tem diversos núcleos de processamento. Dada a tamanha importância dos autovalores e autovetores o objetivo desse trabalho é determinar rotinas que possam efetuar o cálculos dos mesmos com matrizes tridiagonais simétricas reais de maneira mais rápida e segura, através de computação paralela com uso da CUDA. Objetivo esse alcançado através da combinação de alguns métodos numéricos para a obtenção dos autovalores e um alteração no método da iteração inversa utilizado na determinação dos autovetores. Temos feito uso de rotinas LAPACK para comparar com as nossas rotinas desenvolvidas em CUDA. De acordo com os resultados, a rotina desenvolvida em CUDA tem a vantagem clara de velocidade quer na precisão simples ou dupla, quando comparado com o estado da arte das rotinas de CPU a partir da biblioteca LAPACK. ______________________________________________________________________________________________ ABSTRACT
Severa branches of human knowledge make use of eigenvalues and eigenvectors, among them we have physics, engineering, economics, etc. The determination of these eigenvalues and eigenvectors can be using various computational routines, som faster than others in this speed increase scenario appears the option to use the parallel computing more specifically the Nvidia’s CUDA is an option that provides a gain of significant speed, this model the routines are performed on the GPU which has several processing cores. Given the great importance of the eigenvalues and eigenvectors the objective of this study is to determine routines that can perform the same calculations with real symmetric tridiagonal matrices more quickly and safely, through parallel computing with use of CUDA. Objective that achieved by some combination of numerical methods to obtain the eigenvalues and a change in the method of inverse iteration used to determine of the eigenvectors, which was used LAPACK routines to compare with routine developed in CUDA. According to the results of the routine developed in CUDA has marked superiority with single or double precision, in the question speed regarding the routines of LAPACK.
Ziad, Abderrahmane. "Contributions au calcul numérique des valeurs propres des matrices normales." Saint-Etienne, 1996. http://www.theses.fr/1996STET4001.
Full textHuang, Yuguang. "Algorithm design for structured matrix computations." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325925.
Full textZhang, Wei. "GMRES ON A TRIDIAGONAL TOEPLITZ LINEAR SYSTEM." UKnowledge, 2007. http://uknowledge.uky.edu/gradschool_diss/549.
Full textLarriba, Pey Josep Lluís. "Design and evaluation of tridiagonal solvers for vector and parallel computers." Doctoral thesis, Universitat Politècnica de Catalunya, 1995. http://hdl.handle.net/10803/6012.
Full textArchid, Atika. "Méthodes par blocs adaptées aux matrices structurées et au calcul du pseudo-inverse." Thesis, Littoral, 2013. http://www.theses.fr/2013DUNK0394/document.
Full textWe study, in this thesis, some numerical block Krylov subspace methods. These methods preserve geometric properties of the reduced matrix (Hamiltonian or skew-Hamiltonian or symplectic). Among these methods, we interest on block symplectic Arnoldi, namely block J-Arnoldi algorithm. Our main goal is to study this method, theoretically and numerically, on using ℝ²nx²s as free module on (ℝ²sx²s, +, x) with s ≪ n the size of block. A second aim is to study the approximation of exp (A)V, where A is a real Hamiltonian and skew-symmetric matrix of size 2n x 2n and V a rectangular matrix of size 2n x 2s on block Krylov subspace Km (A, V) = blockspan {V, AV,...Am-1V}, that preserve the structure of the initial matrix. this approximation is required in many applications. For example, this approximation is important for solving systems of ordinary differential equations (ODEs) or time-dependant partial differential equations (PDEs). We also present a block symplectic structure preserving Lanczos method, namely block J-Lanczos algorithm. Our approach is based on a block J-tridiagonalization procedure of a structured matrix. We propose algorithms based on two normalization methods : the SR factorization and the Rj R factorization. In the last part, we proposea generalized algorithm of Greville method for iteratively computing the Moore-Penrose inverse of a rectangular real matrix. our purpose is to give a block version of Greville's method. All methods are completed by many numerical examples
Edvardsson, Elisabet. "Band structures of topological crystalline insulators." Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-65536.
Full textCeresoli, Eliamar. "O método de divisão-e-conquista na solução de auto-sistemas de matrizes simétricas." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2002. http://hdl.handle.net/10183/1642.
Full textŠtrympl, Martin. "Výpočet vlastních čísel a vlastních vektorů hermitovské matice." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-242085.
Full textBooks on the topic "Matriz tridiagonal"
Blech, Richard A. Parallel Gaussian estimation of a block tridiagonal matrix using multiple microcomputers. Cleveland, Ohio: Lewis Research Center, 1989.
Find full textParallel Gaussian elimination of a block tridiagonal matrix using multiple microcomputers. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.
Find full textParallel Gaussian elimination of a block tridiagonal matrix using multiple microcomputers. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.
Find full textResearch Institute for Advanced Computer Science (U.S.), ed. An O(logN) parallel algorithm for computing the Eigenvalues of a symmetric tridiagonal matrix. [Moffett Field, Calif.?]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1989.
Find full textBook chapters on the topic "Matriz tridiagonal"
Lyche, Tom. "Diagonally Dominant Tridiagonal Matrices; Three Examples." In Numerical Linear Algebra and Matrix Factorizations, 27–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36468-7_2.
Full textStojčev, M. K., E. I. Milovanović, M. D. Mihajlović, and I. Ž. Milovanović. "Parallel algorithm for inverting tridiagonal matrix on linear processor array." In Parallel Processing: CONPAR 94 — VAPP VI, 229–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58430-7_21.
Full textKaveh, Ali, Hossein Rahami, and Iman Shojaei. "Numerical Solution for System of Linear Equations Using Tridiagonal Matrix." In Swift Analysis of Civil Engineering Structures Using Graph Theory Methods, 287–302. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45549-1_10.
Full textWakatani, Akiyoshi. "A Parallel Scheme for Solving a Tridiagonal Matrix with Pre-propagation." In Recent Advances in Parallel Virtual Machine and Message Passing Interface, 222–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39924-7_32.
Full textGhazali, Khadizah, Jumat Sulaiman, Yosza Dasril, and Darmesah Gabda. "Application of Newton-4EGSOR Iteration for Solving Large Scale Unconstrained Optimization Problems with a Tridiagonal Hessian Matrix." In Lecture Notes in Electrical Engineering, 401–11. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2622-6_39.
Full text"Spectral function of tridiagonal Hermitian matrix." In Translations of Mathematical Monographs, 19–23. Providence, Rhode Island: American Mathematical Society, 2018. http://dx.doi.org/10.1090/mmono/247/03.
Full text"Appendix A. A Tridiagonal Matrix Solver." In Introduction to Modeling Convection in Planets and Stars, 283. Princeton University Press, 2013. http://dx.doi.org/10.1515/9781400848904-015.
Full text"Construction of the tridiagonal matrix by given spectral functions." In Translations of Mathematical Monographs, 33–39. Providence, Rhode Island: American Mathematical Society, 2018. http://dx.doi.org/10.1090/mmono/247/05.
Full textIssakhov, Alibek. "Mathematical Modelling of the Thermal Process in the Aquatic Environment with Considering the Hydrometeorological Condition at the Reservoir-Cooler by Using Parallel Technologies." In Sustaining Power Resources through Energy Optimization and Engineering, 227–43. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9755-3.ch010.
Full text"Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator." In Conference Publications. AIMS Press, 2013. http://dx.doi.org/10.3934/proc.2013.2013.247.
Full textConference papers on the topic "Matriz tridiagonal"
Ran, Qi-Wen, Zhong-Zhao Zhang, De-Yun Wei, and Xue-Jun Sha. "Novel nearly tridiagonal commuting matrix and fractionalizations of generalized DFT matrix." In 2009 Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2009. http://dx.doi.org/10.1109/ccece.2009.5090192.
Full textHuang, Jingpin, Liman Chen, and Cong Shen. "Inverse arnoldi algorithm for construction of tridiagonal quaternion matrix." In 2018 Chinese Control And Decision Conference (CCDC). IEEE, 2018. http://dx.doi.org/10.1109/ccdc.2018.8407567.
Full textÖzay, Evrim Korkmaz. "Face recognition using tridiagonal matrix enhanced multivariance products representation." In ICNPAA 2016 WORLD CONGRESS: 11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences. Author(s), 2017. http://dx.doi.org/10.1063/1.4972675.
Full textKilic, Emrah, and Aynur Yalciner. "Explicit spectrum of a circulant-tridiagonal matrix with applications." In CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2019 (CEST). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5114548.
Full textHanna, Magdy Tawfik. "Orthonormal eigenvectors of the DFT-IV matrix by the eigenanalysis of a nearly tridiagonal matrix." In 2011 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2011. http://dx.doi.org/10.1109/iscas.2011.5937860.
Full textBaykara, N. A., and Metin Demiralp. "Infinite Vector Decomposition in Tridiagonal Matrix Enhanced Multivariance Products Representation (TMEMPR) Perspective." In 2014 International Conference on Mathematics and Computers in Sciences and in Industry (MCSI). IEEE, 2014. http://dx.doi.org/10.1109/mcsi.2014.25.
Full textAssi, I. A., H. Bahlouli, and A. D. Alhaidari. "Solvable potentials for the 1D Dirac equation using the tridiagonal matrix representations." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM 2015). Author(s), 2016. http://dx.doi.org/10.1063/1.4953124.
Full textZhang, Wei, and Timothy S. Fisher. "Simulation of Phonon Interfacial Transport in Strained Silicon-Germanium Heterostructures." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80053.
Full textGarcía-Illescas, M. A., and Luis Alvarez-Icaza. "On-Line Identification of Three-Dimensional Shear Building Models." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5102.
Full textGozukirmizi, Cosar, and Metin Demiralp. "The Influence of Initial Vector Selection on Tridiagonal Matrix Enhanced Multivariance Products Representation." In 2014 International Conference on Mathematics and Computers in Sciences and in Industry (MCSI). IEEE, 2014. http://dx.doi.org/10.1109/mcsi.2014.12.
Full textReports on the topic "Matriz tridiagonal"
Dongarra, J. J., G. A. Geist, and C. H. Romine. Computing the eigenvalues and eigenvectors of a general matrix by reduction to general tridiagonal form. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6502671.
Full text