Academic literature on the topic 'Maule Chile 2010 earthquake'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Maule Chile 2010 earthquake.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Maule Chile 2010 earthquake"
Quezada, Jorge, Edilia Jaque, Nicole Catalán, Arturo Belmonte, Alfonso Fernández, and Federico Isla. "Unexpected coseismic surface uplift at Tirúa-Mocha Island area of south Chile before and during the Mw 8.8 Maule 2010 earthquake: a possible upper plate splay fault." Andean Geology 47, no. 2 (May 29, 2020): 295. http://dx.doi.org/10.5027/andgeov47n2-3057.
Full textde la Llera, Juan Carlos, Felipe Rivera, Judith Mitrani-Reiser, Rosita Jünemann, Catalina Fortuño, Miguel Ríos, Matías Hube, Hernán Santa María, and Rodrigo Cienfuegos. "Data collection after the 2010 Maule earthquake in Chile." Bulletin of Earthquake Engineering 15, no. 2 (May 11, 2016): 555–88. http://dx.doi.org/10.1007/s10518-016-9918-3.
Full textBrunet, Santiago, Juan Carlos de la Llera, Andrés Jacobsen, Eduardo Miranda, and Cristián Meza. "Performance of Port Facilities in Southern Chile during the 27 February 2010 Maule Earthquake." Earthquake Spectra 28, no. 1_suppl1 (June 2012): 553–79. http://dx.doi.org/10.1193/1.4000022.
Full textRuiz, Sergio, Raúl Madariaga, Maximiliano Astroza, G. Rodolfo Saragoni, María Lancieri, Christophe Vigny, and Jaime Campos. "Short-Period Rupture Process of the 2010 Mw 8.8 Maule Earthquake in Chile." Earthquake Spectra 28, no. 1_suppl1 (June 2012): 1–18. http://dx.doi.org/10.1193/1.4000039.
Full textPeng, Zhigang, Jacob I. Walter, Richard C. Aster, Andrew Nyblade, Douglas A. Wiens, and Sridhar Anandakrishnan. "Antarctic icequakes triggered by the 2010 Maule earthquake in Chile." Nature Geoscience 7, no. 9 (August 10, 2014): 677–81. http://dx.doi.org/10.1038/ngeo2212.
Full textKawashima, Kazuhiko, Shigeki Unjoh, Jun-Ichi Hoshikuma, and Kenji Kosa. "Damage of Bridges due to the 2010 Maule, Chile, Earthquake." Journal of Earthquake Engineering 15, no. 7 (September 2011): 1036–68. http://dx.doi.org/10.1080/13632469.2011.575531.
Full textLew, Marshall, Farzad Naeim, Lauren D. Carpenter, Nabih F. Youssef, Fabian Rojas, G. Rodolfo Saragoni, and Macarena S. Adaros. "The significance of the 27 February 2010 offshore Maule, Chile earthquake." Structural Design of Tall and Special Buildings 19, no. 8 (November 29, 2010): 826–37. http://dx.doi.org/10.1002/tal.668.
Full textSaragoni, G. Rodolfo, Marshall Lew, Farzad Naeim, Lauren D. Carpenter, Nabih F. Youssef, Fabian Rojas, and Macarena Schachter Adaros. "Accelerographic measurements of the 27 February 2010 offshore Maule, Chile earthquake." Structural Design of Tall and Special Buildings 19, no. 8 (November 29, 2010): 866–75. http://dx.doi.org/10.1002/tal.673.
Full textMelnick, D., M. Moreno, M. Motagh, M. Cisternas, and R. L. Wesson. "Splay fault slip during the Mw 8.8 2010 Maule Chile earthquake." Geology 40, no. 3 (January 23, 2012): 251–54. http://dx.doi.org/10.1130/g32712.1.
Full textTréhu, Anne M., Alexander de Moor, José Mieres Madrid, Miguel Sáez, C. David Chadwell, Francisco Ortega-Culaciati, Javier Ruiz, Sergio Ruiz, and Michael D. Tryon. "Post-seismic response of the outer accretionary prism after the 2010 Maule earthquake, Chile." Geosphere 16, no. 1 (December 11, 2019): 13–32. http://dx.doi.org/10.1130/ges02102.1.
Full textDissertations / Theses on the topic "Maule Chile 2010 earthquake"
Hicks, Stephen Paul. "Seismic properties and processes along the subduction plate interface : the Februrary 2010 Mw 8.8 Maule, Chile earthquake." Thesis, University of Liverpool, 2015. http://livrepository.liverpool.ac.uk/2036999/.
Full textTryon, Ginger Emily. "Evaluation of Current Empirical Methods for Predicting Lateral Spread-Induced Ground Deformations for Large Magnitude Earthquakes Using Maule Chile 2010 Case Histories." BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/5852.
Full textWilliams, Nicole D. "Evaluation of Empirical Prediction Methods for Liquefaction-Induced Lateral Spread from the 2010 Maule, Chile, Mw 8.8 Earthquake in Port Coronel." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/6086.
Full textLieser, Kathrin [Verfasser]. "After the 2010 Mw 8.8 Maule earthquake : Tectonics in central Chile derived by an automated analysis of aftershocks from an amphibious seismic network / Kathrin Lieser." Kiel : Universitätsbibliothek Kiel, 2015. http://d-nb.info/1072410257/34.
Full textPalmer, Logan Matthew. "Development of a Simplified Analysis Approach for Predicting Pile Deflections of Piers Subjected to Lateral Spread Displacements and Application to a Pier Damaged During the 2010 Maule, Chile, M8.8 Earthquake." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7045.
Full textGonzález, Fuentealba Javiera Paulina. "Estudio del fenómeno de licuefacción en Chile para el terremoto del Maule, 2010." Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/137848.
Full textIngeniera Civil
En el terremoto del Maule del 27 de Febrero del 2010 (27-F) se produjo el fenómeno de licuación de los suelos en una gran cantidad de zonas. En el presente estudio, se efectuó un extenso catastro de los sitios que presentaron este fenómeno, encontrándose más de 180 sitios distribuidos desde La Calera hasta el Lago Llanquihue, abarcando una distancia aproximada de 950 km. De este catastro fue posible constatar fallas en terrenos planos, desplazamiento lateral (lateral spreading), daños a puentes y pasos a desnivel, puertos y muelles, terraplenes de acceso, fallas de taludes, terrenos ganados al mar, tranques de relaves y flotación de estructuras enterradas. En particular, las áreas más afectadas por licuación fueron al sur de la Región Metropolitana, Retiro-Parral y Concepción-Arauco. El lago Llanquihue se ubica a más de 150 km de Valdivia, donde se encontraba el acelerógrafo más austral y que midió un PGA igual a 0.14g, con una ventana de movimiento fuerte de unos 30 s. Esto deja en evidencia que en terremotos de gran magnitud, a grandes distancias de la zona epicentral, donde se producen movimientos de baja aceleración y duración, también pueden desarrollar licuación de suelos. Se realizó una revisión de los principales sismos de la historia reciente de Chile, encontrándose evidencia que permite identificar características propias del fenómeno de licuación en los terremotos de 1646, 1906, 1960 y 1985, entre otros. De estos sitios se constató la ocurrencia de licuación reiterada en varios sectores, corroborándose que terrenos que han licuado en el pasado pueden volver a licuar. Dentro de este estudio se identificaron tres sitios de especial interés, por las características y magnitud de los daños: Nancagua, Retiro y el Puerto de Coronel. En los casos de Nancagua y Retiro, los ensayos de laboratorio indican que los materiales se caracterizan por una elevada cantidad de material fino (35 y 55%) de baja plasticidad, clasificando según la USCS como SC y ML, respectivamente. Ambos materiales poseen un comportamiento contractivo con Su/σv' = 0.39 y 0.23, respectivamente. Utilizando el método simplificado de análisis de licuación, se obtiene que en ambos sectores, para aceleraciones superiores a 0.3g, el material es potencialmente licuable, condición compatible con lo observado en el terreno. En el Puerto de Coronel la estratigrafía del terreno consiste principalmente en arenas de compacidad variable y un estrato de fango. Se realizó un retroanálisis con el software FLAC 2D reproduciéndose el nivel de deformaciones observado, del cual se obtuvo una resistencia residual normalizada para el fango igual a Su/σv' = 0.07, valor compatible con este tipo de suelos. En este caso, el análisis realizado permitió concluir una falla doble: licuación de los estratos de arena suelta y deslizamiento a través del fango.
Muñoz, Linford Pamela Karina. "Caracterización sísmica del antearco marino en la zona epicentral del mega-terremoto del Maule 2010." Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/137787.
Full textLa acumulación y relajación de esfuerzos debido a la convergencia entre la Placa oceánica de Nazca y la Placa continental Sudamericana provoca en Chile terremotos de gran magnitud que pueden generar tsunamis, causando considerables pérdidas humanas y materiales, como el ocurrido el 27 de febrero del 2010 en la región del Maule ( ). Los registros históricos de grandes terremotos indican que el evento del Maule 2010 rompió la llamada “brecha sísmica de Darwin”, una zona que acumulaba energía desde 1853. Sin embargo, estudios de mega-terremotos recientes a nivel mundial han demostrado que esta información no es suficiente para entender los procesos de ruptura de grandes terremotos, para comprenderlo es fundamental conocer las estructuras globales y locales que participan en estos procesos. Esta tesis tiene como principal objetivo conocer detalladamente la estructura sísmica y plantear una interpretación tectónica del antearco marino y geometría del contacto interplaca frente a las costas del Maule a la latitud de ~ 35°S mediante datos de sísmica de alto ángulo pertenecientes al perfil P02 adquiridos por el Instituto GEOMAR (Helmholz Centre off Ocean research Kiel, Alemania) en marzo del 2008. En este trabajo se utilizó inversión tomográfica bidimensional de tiempos de viaje de ondas sísmicas compresionales refractadas y reflejadas. Los resultados muestran las estructuras principales del antearco marino, formado durante millones de años por la depositación de sedimentos provenientes desde el continente. Sedimentos depositados cercanos a la costa forman la base sur de la cuenca Mataquito, aquellos que llegan al frente de deformación han sido acrecionados y litificados debido a la compresión asociado al proceso de subducción en el margen convergente aumentando sus velocidades sísmicas desde la fosa hacia la costa formando el prisma de acreción frontal. Sedimentos más antiguos de roca consolidada metamórfica conforman el basamento continental (Cordillera de la Costa, prisma paleo acrecionario). Separando estas estructuras existe una zona de transición de velocidades sísmicas en la cual se encuentra el “backstop” (contacto entre el prisma de acreción y el basamento continental) coincidente con el límite oeste de los hipocentros de réplicas del Maule 2010 registrados por estaciones sísmicas locales. Hacia el este, la localización espacial de estos hipocentros bajo el basamento continental sugiere que el contacto entre las placas en la zona de subducción puede presentar un abrupto cambio de ángulo. En el manto oceánico superior se obtuvieron velocidades sísmicas menores a las típicas que caracterizan estas estructuras, esta disminución puede estar asociada con la hidratación del manto debido a la infiltración del agua de mar a través de las fallas normales ubicadas en el abombamiento de la placa oceánica.
Klein, Emilie. "Déformations post-sismiques après le séisme de Maule (Mw8.8, Chili, 2010) : mesures GPS et modélisation en éléments finis pour une asthénosphère viscoélastique." Thesis, Paris, Ecole normale supérieure, 2015. http://www.theses.fr/2015ENSU0046/document.
Full textThe study of giant earthquakes on subduction zone represents a main interest. They are indeedsufficiently powerful to excite the mantle and trigger its viscoelastic relaxation, over a very largespatial (thousands of kilometers) and temporal (several decades) scale. Postseismic deformation,monitored by spatial geodesy, are a proxy to the geometrical and rheological characteristics of thesubduction interface, that will allow us to study the whole seismic cycle.On February 27th 2010 in the region of Maule, Chile, occurs the Mw 8.8 megathrust earthquake.Yet, the subduction of the Nazca plate beneath the continental South-American plate offers, forthe first time, the opportunity to measure continuously and densely the postseismic deformationfollowing the earthquake, over more than 1500 km. Otherwise, more than a decade of GPS repeatedmeasurements allowed to image a very heterogeneous coupling all along the Chilean interface. Thevisible imbrication between postseismic deformation and interseismic loading, supported by historicaland instrumental seismicity, highlights interactions between the segments. Viscoelastic modelsof seismic cycle appears to be the only way to understand these interactions.This PhD focused on two main axes, that will lead to the development of viscoelastic modelsof seismic cycle. The first part was dedicated to the study of postseismic deformation followingthe Maule earthquake. Therefore, we processed and analyzed very precisely GPS data in orderto extract the postseismic pattern and modeled it using the finite elements method. A combinedmodel of afterslip and viscoelastic relaxation in the asthenosphere and in a low viscosity channel,extending deep along the slab, can reproduce the complex deformation pattern, horizontaly and inverticaly. The amplitude and complexity of the near-field deformation result from aseismic slip onthe fault plane, while the great uplift of the Cordillera is reproduced by relaxation in the channel.The far field extension, up to 1600 km, entirely results from relaxation in the asthenosphere. Onthe other hand, the continuity of campaign measurements was the occasion to fill the ultimate gapof data, and thus estimate a continuous interseismic velocity field from the North of the Maulerupture zone up to North Chile. Finally, even if the final viscoelastic models of seismic cycle couldnot be processed yet, the present postseismic model already brings new insights on interactionsbetween the different segments of the Chilean interface, following the last Chilean earthquake
Torres, Rojas Andrés Eduardo. "Licuación de suelos a grandes distancias de la zona de ruptura del terremoto del Maule de 2010 en sectores de Los Lagos Llanquihue y Ranco." Tesis, Universidad de Chile, 2017. http://repositorio.uchile.cl/handle/2250/147414.
Full textLos lugares más alejados que evidenciaron licuación durante el Terremoto del Maule Mw 8,8 de 2010 son la Playa Calcurrupe, en el Lago Ranco, y la localidad de Las Cascadas en el Lago Llanquihue, a 280 y 350 km de la zona de ruptura, respectivamente, superando el límite de licuación propuesto por Ambraseys (1988). Este trabajo evalúa el potencial de licuación de las zonas afectadas utilizando metodologías no invasivas de terreno, de laboratorio y numéricas. La metodología no invasiva de terreno considera el uso determinístico de la velocidad de onda de corte Vs de Andrus & Stokoe (2000), y el uso probabilístico de Kayen et al. (2013). En laboratorio, se obtienen las curvas de resistencia cíclica de muestras superficiales usando la metodología simplificada de Seed et al. (1975). La metodología numérica considera el uso del software de elementos finitos OpenSees® para estudiar el aumento de presiones de poro y los cambios en esfuerzos efectivos por la propagación de ondas de corte en una columna de suelo representativa de los sitios. Los resultados de este trabajo sugieren que la aproximación mediante Vs es capaz de predecir lo observado en terreno, aun cuando es la metodología más cuestionada para establecer el potencial de licuación; la metodología de Seed et al. (1975) sólo predice la ocurrencia de licuación para altas aceleraciones superficiales (0,18 g) lo que se explica por el comportamiento dilatante de las muestras en laboratorio; el modelamiento numérico muestra una significativa amplificación sísmica, sin evidenciar licuación, siendo el modelo constitutivo sensible a la permeabilidad y a los parámetros del modelo.
Vera, Andrea Soledad Roca. "Catástrofe, violência e estado de exceção: memórias de insegurança urbana após o terremoto de 2010 na cidade de Concepción, Chile." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/8/8132/tde-26052014-101850/.
Full textChileans, a population used to earthquakes, woke up with surprise in the morning of February 27th, 2010 since right after the earthquake that hit Concepción, the third largest metropolitan area in the country, massive looting to stores came about. Fed by rumors about roving mobs, Concepcion residents formed their own neighborhood defense squads to guard their homes, whereas the Chilean government declared State of Exception to restore the social order. Drawing on testimonies of men and women I interviewed in Concepción two years after the disaster, this exploratory and qualitative research examines the relationship between earthquake, collective violence, and urban insecurity. Following a theoretical discussion about collective memories, I explore how silence and forgetting are active elements in the process of collective remembering. In addition, this project analyzes the sense of exceptionality that my interviewees, other scholars, and state authorities have assigned to looting in the aftermath of the earthquake; events that, as I shall demonstrate, were interpreted as a symptom of moral decadence of Chilean society under the neoliberal regime. By scrutinizing historical data about past earthquakes, I look at traces of social and political conflicts associated with the occurrence of natural disaster like the one I describe here. Concerning the 2010 facts, I make use of the framework offered by Charles Tilly and Javier Auyero to present, at a micro-scale level, looting targets, dynamics and repertoires based on narratives collected empirically (among them, testimonies of storeowners who were victimized by the crowd). Finally, to explore the displacement of fearin particular, from the fear to earthquake to the fear of the othersI point out the need to pay attention to the ways in which different neighborhoods are conceived of as well as the role of rumors.
Books on the topic "Maule Chile 2010 earthquake"
Cárdenas-Jirón, Luz A. The Chilean Earthquake and Tsunami 2010: A multidisciplinary study of Mw8.8, Maule. Southampton: WIT Press, 2013.
Find full textauthor, Bachman Robert E., and Silva John F. author, eds. Chile earthquake of 2010: Assessment of industrial facilities around Concepción. Reston, Virginia: American Society of Civil Engineers, 2016.
Find full textMarkou, James T. Chilean Earthquake of 2010: Response and lessons. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textChile earthquake and tsunami of 2010: Performance of coastal infrastructure. Reston, Virginia: American Society of Civil Engineers, ASCE, COPRI, Coasts, Oceans, Ports & Rivers Institute, 2013.
Find full textEarthquake preparedness: What the United States can learn from the 2010 Chilean and Haitian earthquakes : hearing before the Ad Hoc Subcommittee on State, Local, and Private Sector Preparedness and Integration of the Committee on Homeland Security and Governmental Affairs, United States Senate, One Hundred Eleventh Congress, second session, September 20, 2010. Washington: U.S. G.P.O., 2011.
Find full textChile Earthquake Of 2010 Lifeline Performance. American Society of Civil Engineers, 2013.
Find full textLeadership Dispatches: Chile's Extraordinary Comeback from Disaster. Stanford Business Books, 2015.
Find full textPinilla Suárez, Juan Carlos, Santiago Barros Asenjo, and Carolina Valenzuela. Antecedentes sobre uso de barreras vegetales en borde costero. INFOR, 2013. http://dx.doi.org/10.52904/20.500.12220/20363.
Full textBook chapters on the topic "Maule Chile 2010 earthquake"
Omira, R., M. A. Baptista, and F. Lisboa. "Tsunami Characteristics Along the Peru–Chile Trench: Analysis of the 2015 Mw8.3 Illapel, the 2014 Mw8.2 Iquique and the 2010 Mw8.8 Maule Tsunamis in the Near-field." In The Chile-2015 (Illapel) Earthquake and Tsunami, 299–313. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57822-4_21.
Full textPlatt, Stephen. "Planning Recovery and Reconstruction After the 2010 Maule Earthquake and Tsunami in Chile." In Resilient Cities, 285–304. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76944-8_16.
Full textCastaños, Heriberta, and Cinna Lomnitz. "The 2010 Chile Earthquake." In SpringerBriefs in Earth Sciences, 47–53. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2810-3_7.
Full textVerdugo, Ramón. "Liquefaction Observed During the 2010 Chile Earthquake." In Perspectives on Earthquake Geotechnical Engineering, 365–90. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-10786-8_14.
Full textBoroschek, Rubén, Patricio Bonelli, José I. Restrepo, Rodrigo Retamales, and Víctor Contreras. "Lessons from the 2010 Chile Earthquake Chile earthquake Chile earthquake Chile earthquake Chile earthquake for Performance Based Design Performance based design Performance based design Performance based design and Code Development." In Performance-Based Seismic Engineering: Vision for an Earthquake Resilient Society, 143–57. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8875-5_11.
Full textBoroschek, Rubén Luis. "Structural Health Monitoring Performance During the 2010 Gigantic Chile Earthquake." In Springer Environmental Science and Engineering, 197–216. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5182-8_8.
Full textArchila, Manuel, Ruben Boroschek, Carlos E. Ventura, and Sheri Molnar. "Modal Testing of a Repaired Building After 2010 Chile Earthquake." In Topics in Dynamics of Civil Structures, Volume 4, 119–25. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6555-3_14.
Full textSun, Wenke, and Xin Zhou. "Computing Scheme of Co-seismic Change of Deflection of the Vertical and Applied in the 2010 Chile Earthquake." In International Association of Geodesy Symposia, 269–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37222-3_35.
Full textFarías, Ignacio. "Master Plans as Cosmograms: Articulating Oceanic Forces and Urban Forms After the 2010 Earthquake and Tsunami in Chile." In Relational Planning, 179–202. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60462-6_8.
Full textÇelebi, M., M. Sereci, R. Boroschek, R. Carreño, and P. Bonelli. "Preliminary Identification of Dynamic Characteristics of a Unique Building in Chile Following 27 February 2010 (Mw=8.8) Earthquake." In Nondestructive Testing of Materials and Structures, 1071–77. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0723-8_150.
Full textConference papers on the topic "Maule Chile 2010 earthquake"
Olsen, J. Michael, Sara Piaskowy, Solomon Yim, Luis Burgos, and Shawn Butcher. "LIDAR Study of the 2010 Maule Chile Earthquake." In Modern Methods and Advances in Structural Engineering and Construction. Singapore: Research Publishing Services, 2011. http://dx.doi.org/10.3850/978-981-08-7920-4_s1-r10-cd.
Full textXiaoshan Wang, Guiling Diao, Xiangdong Feng, and Yaqiong Yang. "Consistent CMT solutions before the 2010 Maule, Chile earthquake." In 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6002939.
Full textEdge, Billy, Martin Eskijian, Russ Boudreau, Miguel Carbuccia, Omar Jaradat, Marc Percher, Jaime Serrano, and Arul Arulmoli. "Investigation of the Damage to Areas of Coastal Chile Due to the Maule MW 8.8 Earthquake of February 27, 2010." In Solutions to Coastal Disasters Conference 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41185(417)31.
Full textYen, P. W., G. D. Chen, I. Buckle, T. Allen, D. Alzamora, J. Ger, and J. G. Arias. "Bridge Performance during the 2010 M8.8 Chile Earthquake." In Structures Congress 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41171(401)144.
Full textSonke, Mahendra K., and Rambhatla G. Sastry. "Co-seismic 3d gravity model for 2010 Chile earthquake." In International Conference on Engineering Geophysics, Al Ain, United Arab Emirates, 9-12 October 2017. Society of Exploration Geophysicists, 2017. http://dx.doi.org/10.1190/iceg2017-050.
Full textGurbuz, Gokhan, and Shuanggen Jin. "GPS observations of tropospheric disturbances following the 2010 MW=8.8 Chile earthquake." In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2017. http://dx.doi.org/10.1109/igarss.2017.8128055.
Full textSonker, Mahendra K., and Rambhatla G. Sastry. "GRACE GRAVITY BASED 3-D CRUSTAL DEFORMATION MODEL FOR 2010 CHILE EARTHQUAKE." In International Geophysical Conference, Beijing, China, 24-27 April 2018. Society of Exploration Geophysicists and Chinese Petroleum Society, 2018. http://dx.doi.org/10.1190/igc2018-366.
Full textKwon, O., A. S. Elnashai, B. Gencturk, S. Kim, S. Jeong, and J. Dukes. "Assessment of Seismic Performance of Structures in 2010 Chile Earthquake through Field Investigation and Case Studies." In Structures Congress 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41171(401)143.
Full textPradena, Mauricio. "THE CHILE EARTHQUAKE OF FEBRUARY 27, 2010: THE CASE OF THE REHABILITATION AT THE UNIVERSIDAD DE CONCEPCION." In SGEM2011 11th International Multidisciplinary Scientific GeoConference and EXPO. Stef92 Technology, 2011. http://dx.doi.org/10.5593/sgem2011/s06.123.
Full textWallace, John W. "February 27, 2010 Chile Earthquake: Preliminary Observations on Structural Performance and Implications for U.S. Building Codes and Standards." In Structures Congress 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41171(401)146.
Full textReports on the topic "Maule Chile 2010 earthquake"
Catlin, Ann Christine, and Santiago Pujol. NIST Disaster and Failure Studies Data Repository: The Chile Earthquake Database – Ground Motion and Building Performance Data from the 2010 Chile Earthquake – User Manual. National Institute of Standards and Technology, December 2015. http://dx.doi.org/10.6028/nist.gcr.15-1008.
Full text