Books on the topic 'Maxima and minima'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Maxima and minima.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Kaplan, Wilfred. Maxima and Minima with Applications. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1998. http://dx.doi.org/10.1002/9781118032794.
Full textMattei, Janet A. Maxima and minima of long period variables, 1949-1975. Cambridge, Mass., U.S.A: American Association of Variable Star Observers, 1990.
Find full textDingzhu, Du, and Pardalos P. M. 1954-, eds. Minimax and applications. Dordrecht: Kluwer Academic Publishers, 1995.
Find full textBiagio, Ricceri, and Simons S, eds. Minimax theory and applications. Dordrecht: Kluwer Academic Publishers, 1998.
Find full textG, Hristova Snezhana, ed. Differential equations with maxima. Boca Raton: Taylor & Francis, 2011.
Find full textT͡Sit͡siashvili, G. Sh. O vlii͡anii sluchaĭnykh vozmushcheniĭ na reshenii͡a optimizat͡sionnoĭ i minimaksnoĭ zadachi. Vladivostok: DVO AN SSSR, 1989.
Find full textBrent, R. P. Algorithms for minimization without derivatives. Mineola, N.Y: Dover Publications, 2002.
Find full textSukharev, A. G. Minimax models in the theory of numerical methods. Dordrecht: Kluwer Academic Publishers, 1992.
Find full textZavrieva, M. K. Kombinirovannyĭ metod shtrafov i stokhasticheskikh kvazigradientov dl͡ia poiska sv͡iazannogo maksimina. Moskva: Vychislitelʹnyĭ ͡tsentr AN SSSR, 1989.
Find full textNizhegorodskiĭ gosudarstvennyĭ universitet imeni N.I. Lobachevskogo., ed. Mezhgosudarstvennai͡a nauchnai͡a konferent͡sii͡a "Ėkstremalʹnye zadachi i ikh prilozhenii͡a: Tezisy dokladov. Nizhniĭ Novgorod: [s.n.], 1992.
Find full textHancock, Harris. Lectures on the theory of maxima and minima of functions of several. [Place of publication not identified]: Nabu Press, 2010.
Find full textMironov, A. A. Minimax under transportation constrains. Dordrecht: Kluwer Academic Publishers, 1999.
Find full textGabler, Siegfried. Minimax solutions in sampling from finite populations. New York: Springer-Verlag, 1990.
Find full textGabler, Siegfried. Minimax solutions in sampling from finite populations. New York: Springer-Verlag, 1990.
Find full textSergeevich, Mikhalevich Vladimir, Institut kibernetiki im. V.M. Glushkova., and Nauchnyĭ sovet AN Ukrainy po probleme "Kibernetika.", eds. Teorii͡a︡ optimalʹnykh resheniĭ: Sbornik nauchnykh trudov. Kiev: In-t kibernetiki im. V.M. Glushkova, AN Ukrainy, 1992.
Find full textFunatsu, Yoshiaki. Yūgen boshūdan kara no musakui fukuhyōhon ni yoru tōkeiryō ni taisuru kitaichi no seimitsu kōshikishū. Hino-shi: Funatsu Yoshiaki, 2002.
Find full textSergeevich, Mikhalevich Vladimir, Institut kibernetiki im. V.M. Glushkova., and Navukova rada z kibernetyky (Akademii͡a︡ nauk Ukraïnsʹkoï RSR), eds. Metody reshenii͡a︡ ėkstremalʹnykh zadach i smezhnye voprosy: Sbornik nauchnykh trudov. Kiev: Akademii͡a︡ nauk Ukrainskoĭ SSR, In-t kibernetiki im. V.M. Glushkova, 1989.
Find full textSergeevich, Mikhalevich Vladimir, Naukova rada z kibernetyky (Akademii͡a︡ nauk Ukraïnsʹkoï RSR), and Institut kibernetiki im. V.M. Glushkova., eds. Teorii͡a︡ optimalʹnykh resheniĭ: Sbornik nauchnykh trudov. Kiev: In-t kibernetiki im. V.M. Glushkova AN USSR, 1987.
Find full textMinchenko, L. I. Different͡s︡ialʹnye svoĭstva marginalʹnykh funkt͡s︡iĭ i ikh prilozhenii͡a︡ k zadacham optimizat͡s︡ii. Minsk: "Navuka i tėkhnika", 1992.
Find full textHenrot, Antoine. Extremum problems for eigenvalues of elliptic operators: Antoine Henrot. Basel, Switzerland: Birkhäuser Verlag, 2006.
Find full textTyni︠a︡nskiĭ, N. T. Sedlovye funkt︠s︡ii. Moskva: Izd-vo Moskovskogo universiteta, 1985.
Find full textCifoletti, Giovanna Cleonice. La méthode de Fermat: Son statut et sa difussion : algèbre et comparaison de figures dans l'histoire de la méthode de Fermat. Paris: Société française d'histoire des sciences et des techniques, 1990.
Find full textHenrot, Antoine. Extremum problems for eigenvalues of elliptic operators: Antoine Henrot. Basel, CH: Birkhäuser Verlag, 2006.
Find full textVoloshinov, V. V. Nelokalʹnoe parametricheskoe ot͡senivanie funktsii optimuma ėkstremalʹnykh zadach. Moskva: Vychislitelʹnyĭ t͡sentr AN SSSR, 1989.
Find full textPshenichnyĭ, B. N. Metody reshenii︠a︡ ėkstremalʹnykh zadach: Sbornik nauchnykh trudov. Kiev: In-t kibernetiki im. V.M. Glushkova NAN Ukrainy, 1996.
Find full textJayaprada, M., and M. Saiprasad B Sc (math) B E (civil) MIE (India). Increasing Decreasing Functions: Maxima Minima. Independently Published, 2018.
Find full textJayaprada, Ms M., and M. Saiprasad BSc (maths) BE (Civil) MIE (India). Increasing Decreasing Functions: Maxima Minima. Independently Published, 2018.
Find full textSaiprasad, M., and Ms Jayaprada M. Sc (maths). Guide to Maxima Minima: Calculus. Independently Published, 2017.
Find full textJayaprada, Ms M., and M. Saiprasad BSc (maths) BE (Civil) MIE (India). Increasing Decreasing Functions: Maxima Minima. Independently Published, 2018.
Find full textSaiprasad, M., and M. Jayaprada. Increasing Decreasing Functions: Maxima Minima. Independently Published, 2018.
Find full textM. Saiprasad B.Sc (maths) B.E (civil) MIE (India). Increasing Decreasing Functions: Maxima Minima. Independently Published, 2018.
Find full textM. Saiprasad B Sc (math) B E (civil) MIE (India) and Ms M. Jayaprada. Increasing Decreasing Functions: Maxima Minima. Independently Published, 2018.
Find full textPrasad, Sai, and M. Jayaprada. Increasing Decreasing Functions: Maxima Minima. Independently Published, 2018.
Find full textStories about maxima and minima. Providence, R.I: American Mathematical Society, 1990.
Find full textAndreescu, Titu, Oleg Mushkarov, and Luchezar Stoyanov. Geometric Problems on Maxima and Minima. Birkhäuser Boston, 2005.
Find full textGeometric Problems on Maxima and Minima. Boston, MA: Birkhäuser Boston, 2006. http://dx.doi.org/10.1007/0-8176-4473-3.
Full textAndreescu, Titu, Oleg Mushkarov, and Luchezar Stoyanov. Geometric Problems on Maxima and Minima. Springer, 2007.
Find full textM. Saiprasad B.Sc (maths) B.E (civil) MIE (India). Increasing and Decreasing Functions Maxima Minima: Calculus. Independently Published, 2018.
Find full textFrisch, R. Maxima and Minima: Theory and Economic Applications. Springer London, Limited, 2013.
Find full text