Academic literature on the topic 'Maximum likelihood estimation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Maximum likelihood estimation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Maximum likelihood estimation"

1

Chung, Sai-Ho. "Modified maximum likelihood estimation." Communications in Statistics - Theory and Methods 27, no. 12 (January 1998): 2925–42. http://dx.doi.org/10.1080/03610929808832264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jaki, Thomas, and R. Webster West. "Maximum Kernel Likelihood Estimation." Journal of Computational and Graphical Statistics 17, no. 4 (December 2008): 976–93. http://dx.doi.org/10.1198/106186008x387057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bertsimas, Dimitris, and Omid Nohadani. "Robust Maximum Likelihood Estimation." INFORMS Journal on Computing 31, no. 3 (July 2019): 445–58. http://dx.doi.org/10.1287/ijoc.2018.0834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kwasniok, Frank. "Semiparametric maximum likelihood probability density estimation." PLOS ONE 16, no. 11 (November 9, 2021): e0259111. http://dx.doi.org/10.1371/journal.pone.0259111.

Full text
Abstract:
A comprehensive methodology for semiparametric probability density estimation is introduced and explored. The probability density is modelled by sequences of mostly regular or steep exponential families generated by flexible sets of basis functions, possibly including boundary terms. Parameters are estimated by global maximum likelihood without any roughness penalty. A statistically orthogonal formulation of the inference problem and a numerically stable and fast convex optimization algorithm for its solution are presented. Automatic model selection over the type and number of basis functions is performed with the Bayesian information criterion. The methodology can naturally be applied to densities supported on bounded, infinite or semi-infinite domains without boundary bias. Relationships to the truncated moment problem and the moment-constrained maximum entropy principle are discussed and a new theorem on the existence of solutions is contributed. The new technique compares very favourably to kernel density estimation, the diffusion estimator, finite mixture models and local likelihood density estimation across a diverse range of simulation and observation data sets. The semiparametric estimator combines a very small mean integrated squared error with a high degree of smoothness which allows for a robust and reliable detection of the modality of the probability density in terms of the number of modes and bumps.
APA, Harvard, Vancouver, ISO, and other styles
5

Talakua, Mozart W., and Jefri Tipka. "ESTIMASI PARAMETER DISTRIBUSI EKPONENSIAL PADA LOKASI TERBATAS." BAREKENG: Jurnal Ilmu Matematika dan Terapan 1, no. 2 (December 1, 2007): 1–7. http://dx.doi.org/10.30598/barekengvol1iss2pp1-7.

Full text
Abstract:
The common method in Estimating Parameter Distribution Exponential at Finite Location is Maximum Likelihood Estimation (MLE).The best estimator is consistent estimator. Because of The Mean Square Error (MSE) can be used in comparing some detectable estimators that it had looking for with Maximum Likelihood Estimation (MLE) so can find the consistent estimator in Estimating Parameter Distribution Exponential At Finite Location
APA, Harvard, Vancouver, ISO, and other styles
6

Currie, Iain D. "Maximum Likelihood Estimation and Mathematica." Applied Statistics 44, no. 3 (1995): 379. http://dx.doi.org/10.2307/2986044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Milligan, Brook G. "Maximum-Likelihood Estimation of Relatedness." Genetics 163, no. 3 (March 1, 2003): 1153–67. http://dx.doi.org/10.1093/genetics/163.3.1153.

Full text
Abstract:
Abstract Relatedness between individuals is central to many studies in genetics and population biology. A variety of estimators have been developed to enable molecular marker data to quantify relatedness. Despite this, no effort has been given to characterize the traditional maximum-likelihood estimator in relation to the remainder. This article quantifies its statistical performance under a range of biologically relevant sampling conditions. Under the same range of conditions, the statistical performance of five other commonly used estimators of relatedness is quantified. Comparison among these estimators indicates that the traditional maximum-likelihood estimator exhibits a lower standard error under essentially all conditions. Only for very large amounts of genetic information do most of the other estimators approach the likelihood estimator. However, the likelihood estimator is more biased than any of the others, especially when the amount of genetic information is low or the actual relationship being estimated is near the boundary of the parameter space. Even under these conditions, the amount of bias can be greatly reduced, potentially to biologically irrelevant levels, with suitable genetic sampling. Additionally, the likelihood estimator generally exhibits the lowest root mean-square error, an indication that the bias in fact is quite small. Alternative estimators restricted to yield only biologically interpretable estimates exhibit lower standard errors and greater bias than do unrestricted ones, but generally do not improve over the maximum-likelihood estimator and in some cases exhibit even greater bias. Although some nonlikelihood estimators exhibit better performance with respect to specific metrics under some conditions, none approach the high level of performance exhibited by the likelihood estimator across all conditions and all metrics of performance.
APA, Harvard, Vancouver, ISO, and other styles
8

MINAMI, Mihoko. "The Restricted Maximum Likelihood Estimation." Japanese journal of applied statistics 25, no. 2 (1996): 73–78. http://dx.doi.org/10.5023/jappstat.25.73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gallant, A. Ronald, and Douglas W. Nychka. "Semi-Nonparametric Maximum Likelihood Estimation." Econometrica 55, no. 2 (March 1987): 363. http://dx.doi.org/10.2307/1913241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jaki, Thomas, and R. Webster West. "Symmetric maximum kernel likelihood estimation." Journal of Statistical Computation and Simulation 81, no. 2 (February 2011): 193–206. http://dx.doi.org/10.1080/00949650903232664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Maximum likelihood estimation"

1

Ruprecht, Jürg. "Maximum likelihood estimation of multipath channels /." [S.l.] : [s.n.], 1989. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=8789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Horbelt, Werner. "Maximum likelihood estimation in dynamical systems." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963810812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sabbagh, Yvonne. "Maximum Likelihood Estimation of Hammerstein Models." Thesis, Linköping University, Department of Electrical Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2061.

Full text
Abstract:

In this Master's thesis, Maximum Likelihood-based parametric identification methods for discrete-time SISO Hammerstein models from perturbed observations on both input and output, are investigated.

Hammerstein models, consisting of a static nonlinear block followed by a dynamic linear one, are widely applied to modeling nonlinear dynamic systems, i.e., dynamic systems having nonlinearity at its input.

Two identification methods are proposed. The first one assumes a Hammerstein model where the input signal is noise-free and the output signal is perturbed with colored noise. The second assumes, however, white noises added to the input and output of the nonlinearity and to the output of the whole considered Hammerstein model. Both methods operate directly in the time domain and their properties are illustrated by a number of simulated examples. It should be observed that attention is focused on derivation, numerical calculation, and simulation corresponding to the first identification method mentioned above.

APA, Harvard, Vancouver, ISO, and other styles
4

Leeuw, Johannes Leonardus van der. "Maximum likelihood estimation of exact ARMA models /." Tilburg : Tilburg University Press, 1997. http://www.gbv.de/dms/goettingen/265169976.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schnitzer, Mireille. "Targeted maximum likelihood estimation for longitudinal data." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114242.

Full text
Abstract:
Semiparametric efficient methods in causal inference have been developed to robustly and efficiently estimate causal parameters. As in general causal estimation, the methods rely on a set of mathematical assumptions that translate into requirements of causal knowledge and confounder identification. Targeted maximum likelihood estimation (TMLE) methodology has been developed as a potential improvement on efficient estimating equations, in that it shares the qualities of double robustness (unbiasedness under partial misspecification) and semiparametric efficiency, but can be constructed to provide boundedness of parameter estimates, robustness to data sparsity, and a unique estimate.This thesis, composed primarily of three manuscripts, presents new research on the analysis of longitudinal and survival data with time-dependent confounders using TMLE. The first manuscript describes the construction of a two time-point TMLE using a generalized exponential distribution family member as the loss function for the outcome model. It demonstrates the robustness of the continuous version of this TMLE algorithm in a simulation study, and uses a modified version of the method in a simplified analysis of the PROmotion of Breastfeeding Intervention Trial (PROBIT) where evidence for a protective causal effect of breastfeeding on gastrointestinal infection is obtained.The second manuscript presents a description of several substitution estimators for longitudinal data, a specialized implementation of a longitudinal TMLE method, and a case study using the full PROBIT dataset. The K time point sequential TMLE algorithm employed (theory previously developed), implemented nonparametrically using Super Learner, differs fundamentally from the strategy used in the first manuscript, and offers some benefits in computation and ease of implementation. The analysis compares different durations of breastfeeding and the related exposure-specific (and censoring-free) mean counts of gastrointestinal infections over the first year of an infant's life and concludes that a protective effect is present. Simulated data mirroring the PROBIT dataset was generated, and the performance of TMLE was again assessed.The third manuscript develops a methodology to estimate marginal structural models for survival data. Utilizing the sequential longitudinal TMLE algorithm to estimate the exposure-specific survival curves for all exposure patterns, it demonstrates a way to combine inference in order to model the outcome using a linear specification. This article presents the theoretical construction of two different types of marginal structural models (modeling the log-odds survival and the hazard) and presents a simulation study demonstrating the unbiasedness of the technique. It then describes an analysis of the Canadian Co-infection Cohort study undertaken with one of the TMLE methods to fit survival curves and a model for the hazard function of development of end-stage liver disease (ESLD) conditional on time and clearance of the Hepatitis C virus.
Des méthodes d'analyse causale semi-paramétriques et efficaces ont été développées pour estimer les paramètres causaux efficacement et de façon robuste. Comme c'est le cas en général pour l'estimation causale, ces méthodes se basent sur un ensemble d'hypothèses mathématiques qui impliquent que la structure causale et les facteurs de confusion doivent être connus. La méthode d'estimation par le maximum de vraisemblance ciblé (TMLE) se veut une amélioration des équations d'estimation efficaces: elle a les propriétés de double robustesse (sans biais même avec une erreur de spécification partielle) et d'efficacité semi-paramétrique, mais peut également garantir des estimés finis pour les paramètres et la production d'un seul estimé en plus d'être robuste si les données sont éparses. Cette thèse, composée essentiellement de trois manuscrits, présente de nouvelles recherches sur l'analyse avec le TMLE de données longitudinales et de données de survie avec des facteurs de confusion variant dans le temps. Le premier manuscrit décrit la construction d'un TMLE à deux points dans le temps avec une distribution de la famille exponentielle généralisée comme fonction de perte du modèle de la réponse. Il démontre à l'aide d'une étude de simulation la robustesse de la version continue de cet algorithme TMLE, et utilise une version Poisson de la méthode pour une analyse simplifiée de l'étude PROmotion of Breastfeeding Intervention Trial (PROBIT) qui donne des signes d'un effet causal protecteur de l'allaitement sur les infections gastrointestinales. Le deuxième manuscrit présente une description de plusieurs estimateurs de substitution pour données longitudinales, une implémentation spéciale de la méthode TMLE longitudinale et une étude de cas du jeu de données PROBIT entier. Un algorithme TMLE séquentiel à K points dans le temps est utilisé (théorie déjà développée), lequel est implémenté de façon non-paramétrique avec le Super Learner. Cet algorithme diffère fondamentalement de la stratégie utilisée dans le premier manuscrit et offre des avantages en terme de calcul et de facilité d'implémentation. L'analyse compare les moyennes de dénombrements du nombre d'infections gastrointestinales dans la première année de vie d'un nouveau-né par durée d'allaitement et avec aucune censure, et conclut à la présence d'un effet protecteur. Des données simulées semblables au jeu de données PROBIT sont également générées, et la performance du TMLE de nouveau étudiée. Le troisième manuscrit développe une méthodologie pour estimer des modèles structurels marginaux pour données de survie. En utilisant l'algorithme séquentiel du TMLE longitudinal pour estimer des courbes de survie spécifiques à l'exposition pour tous les patrons d'exposition, il montre une façon de combiner les inférences pour modéliser la réponse à l'aide d'une spécification linéaire. Cet article présente la construction théorique de deux différents types de modèles structurels marginaux (modélisant le log du rapport des chances de survie et le risque) et présente une étude de simulation démontrant l'absence de biais de la technique. Il décrit ensuite une analyse de l'Étude de la Cohorte Canadienne de Co-Infection à l'aide d'une des méthodes TMLE pour ajuster des courbes de survie et un modèle pour la fonction de risque du développement de la maladie chronique du foie (ESLD) conditionnellement au temps et à l'élimination du virus de l'hépatite C.
APA, Harvard, Vancouver, ISO, and other styles
6

Ehlers, Rene. "Maximum likelihood estimation procedures for categorical data." Pretoria : [s.n.], 2002. http://upetd.up.ac.za/thesis/available/etd-07222005-124541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zou, Yiqun. "Attainment of Global Convergence in Maximum Likelihood Estimation." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mariano, Machado Robson José. "Penalised maximum likelihood estimation for multi-state models." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10060352/.

Full text
Abstract:
Multi-state models can be used to analyse processes where change of status over time is of interest. In medical research, processes are commonly defined by a set of living states and a dead state. Transition times between living states are often interval censored. In this case, models are usually formulated in a Markov processes framework. The likelihood function is then constructed using transition probabilities. Models are specified using proportional hazards for the effect of covariates on transition intensities. Time-dependency is usually defined by parametric models, which can represent a strong model assumption. Semiparametric hazards specification with splines is a more flexible method for modelling time-dependency in multi-state models. Penalised maximum likelihood is used to estimate these models. Selecting the optimal amount of smoothing is challenging as the problem involves multiple penalties. This thesis aims to develop methods to estimate multi-state models with splines for interval-censored data. We propose a penalised likelihood method to estimate multi-state models that allow for parametric and semiparametric hazards specifications. The estimation is based on a scoring algorithm, and a grid search method to estimate the smoothing parameters. This method is shown using an application to ageing research. Furthermore, we extend the proposed method by developing a computationally more efficient method to estimate multi-state models with splines. For this extension, the estimation is based on a scoring algorithm, and an automatic smoothing parameters selection. The extended method is illustrated with two data analyses and a simulation study.
APA, Harvard, Vancouver, ISO, and other styles
9

Weng, Yu. "Maximum Likelihood Estimation of Logistic Sinusoidal Regression Models." Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc407796/.

Full text
Abstract:
We consider the problem of maximum likelihood estimation of logistic sinusoidal regression models and develop some asymptotic theory including the consistency and joint rates of convergence for the maximum likelihood estimators. The key techniques build upon a synthesis of the results of Walker and Song and Li for the widely studied sinusoidal regression model and on making a connection to a result of Radchenko. Monte Carlo simulations are also presented to demonstrate the finite-sample performance of the estimators
APA, Harvard, Vancouver, ISO, and other styles
10

DeGroot, Don Johan. "Maximum likelihood estimation of spatially correlated soil properties." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/15282.

Full text
Abstract:
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Civil Engineering, 1985.
MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING.
Bibliography: leaves 109-110.
by Don Johan DeGroot.
M.S.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Maximum likelihood estimation"

1

Eliason, Scott. Maximum Likelihood Estimation. 2455 Teller Road, Newbury Park California 91320 United States of America: SAGE Publications, Inc., 1993. http://dx.doi.org/10.4135/9781412984928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Eggermont, P. P. B., and V. N. LaRiccia. Maximum Penalized Likelihood Estimation. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-0716-1244-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

LaRiccia, Vincent N., and Paul P. Eggermont. Maximum Penalized Likelihood Estimation. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/b12285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

N, LaRiccia V., ed. Maximum penalized likelihood estimation. New York: Springer, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Millar, Russell B. Maximum Likelihood Estimation and Inference. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470094846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jeffrey, Pitblado, Sribney William, and Stata Corporation, eds. Maximum likelihood estimation with stata. 3rd ed. College Station, Tex: Stata Press, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

S, Pitblado Jeffrey, and Poi Brian, eds. Maximum likelihood estimation with Stata. 4th ed. College Station, Tex: Stata Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nagelkerke, Nico J. D. Maximum Likelihood Estimation of Functional Relationships. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2858-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nagelkerke, Nico J. D. Maximum likelihood estimation of functional relationships. Berlin: Springer-Verlag, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ruprecht, Jürg. Maximum-likelihood estimation of multipath channel. Konstanz: Hartung-Gorre, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Maximum likelihood estimation"

1

Kelley Pace, R. "Maximum Likelihood Estimation." In Handbook of Regional Science, 1–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-36203-3_88-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Myoung-jae. "Maximum Likelihood Estimation." In Methods of Moments and Semiparametric Econometrics for Limited Dependent Variable Models, 41–67. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4757-2550-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nguyen, Hung T., and Gerald S. Rogers. "Maximum Likelihood Estimation." In Springer Texts in Statistics, 129–36. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4613-8914-9_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pan, Jian-Xin, and Kai-Tai Fang. "Maximum Likelihood Estimation." In Growth Curve Models and Statistical Diagnostics, 77–158. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-0-387-21812-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brown, Jonathon D. "Maximum-Likelihood Estimation." In Linear Models in Matrix Form, 69–104. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11734-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Krolzig, Hans-Martin. "Maximum Likelihood Estimation." In Lecture Notes in Economics and Mathematical Systems, 89–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-51684-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Haynes, Winston. "Maximum Likelihood Estimation." In Encyclopedia of Systems Biology, 1190–91. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_1235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pace, R. Kelley. "Maximum Likelihood Estimation." In Handbook of Regional Science, 1553–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-23430-9_88.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Glas, Cees A. W. "Maximum-Likelihood Estimation." In Handbook of Item Response Theory, 197–217. Boca Raton, FL: CRC Press, 2015- | Series: Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences.: Chapman and Hall/CRC, 2017. http://dx.doi.org/10.1201/b19166-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Denuit, Michel, Donatien Hainaut, and Julien Trufin. "Maximum Likelihood Estimation." In Springer Actuarial, 69–94. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25820-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Maximum likelihood estimation"

1

Trickett, Stewart. "Maximum‐likelihood‐estimation stacking." In SEG Technical Program Expanded Abstracts 2007. Society of Exploration Geophysicists, 2007. http://dx.doi.org/10.1190/1.2793015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, D. D., and R. L. Kashyap. "Robust maximum likelihood bearing estimation in contaminated Gaussian noise." In Fifth ASSP Workshop on Spectrum Estimation and Modeling. IEEE, 1990. http://dx.doi.org/10.1109/spect.1990.205555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Abramovich, Yuri I., and Ben A. Johnson. "Expected likelihood support for deterministic maximum likelihood DOA estimation." In 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM). IEEE, 2010. http://dx.doi.org/10.1109/sam.2010.5606744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Giannakis, G. B. "On identifiability, maximum-likelihood, and novel HOS based criteria." In Fifth ASSP Workshop on Spectrum Estimation and Modeling. IEEE, 1990. http://dx.doi.org/10.1109/spect.1990.205578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yunshan Hou, Lijie Zhang, and Jianguo Huang. "Unbiased Maximum Likelihood Estimator for Underwater DOA Estimation." In 2008 3rd IEEE Conference on Industrial Electronics and Applications. IEEE, 2008. http://dx.doi.org/10.1109/iciea.2008.4582660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sadia, Haleema, Sabahat Sherien, Hafsa Iqbal, Muhammad Zeeshan, Aimal Khan, and Saad Rehman. "Range estimation in radar using maximum likelihood estimator." In 2017 20th International Conference of Computer and Information Technology (ICCIT). IEEE, 2017. http://dx.doi.org/10.1109/iccitechn.2017.8281856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Yi, and Jamie Callan. "Maximum likelihood estimation for filtering thresholds." In the 24th annual international ACM SIGIR conference. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/383952.384012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Christensen, Mads Graesboll. "Multi-channel maximum likelihood pitch estimation." In ICASSP 2012 - 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2012. http://dx.doi.org/10.1109/icassp.2012.6287903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Balogh, Laszlo, Istvan Kollar, and Attila Sarhegyi. "Maximum likelihood estimation of ADC Parameters." In 2010 IEEE Instrumentation & Measurement Technology Conference Proceedings. IEEE, 2010. http://dx.doi.org/10.1109/imtc.2010.5488286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Paris, M. G. A. "Maximum-likelihood method in quantum estimation." In The twentieth international workshop on bayesian inference and maximum entropy methods in science and engineering. AIP, 2001. http://dx.doi.org/10.1063/1.1381908.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Maximum likelihood estimation"

1

Ljung, Lennart, Sanjoy K. Mitter, and Jose M. Moura. Optimal Recursive Maximum Likelihood Estimation,. Fort Belvoir, VA: Defense Technical Information Center, March 1987. http://dx.doi.org/10.21236/ada187980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ait-Sahalia, Yacine, and Robert Kimmel. Maximum Likelihood Estimation of Stochastic Volatility Models. Cambridge, MA: National Bureau of Economic Research, June 2004. http://dx.doi.org/10.3386/w10579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bates, David. Maximum Likelihood Estimation of Latent Affine Processes. Cambridge, MA: National Bureau of Economic Research, May 2003. http://dx.doi.org/10.3386/w9673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Avdis, Efstathios, and Jessica Wachter. Maximum likelihood estimation of the equity premium. Cambridge, MA: National Bureau of Economic Research, November 2013. http://dx.doi.org/10.3386/w19684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ainsleigh, P. L., J. D. George, and V. K. Jain. Maximum Likelihood Parameter Estimation for Acoustic Transducer Calibration. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada204923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Moore, Terrence, and Brian Sadler. Maximum-Likelihood Estimation and Scoring Under Parametric Constraints. Fort Belvoir, VA: Defense Technical Information Center, May 2006. http://dx.doi.org/10.21236/ada448612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Diebold, Francis, and Til Schuermann. Exact Maximum Likelihood Estimation of Observation-Driven Econometric Models. Cambridge, MA: National Bureau of Economic Research, April 1996. http://dx.doi.org/10.3386/t0194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hall, Jr, Lehnigk Charles E., Viswanath Siegfried H., and Guttalu R. Maximum-Likelihood Parameter Estimation of a Generalized Gumbel Distribution. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada207994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lake, Douglas. Efficient Maximum Likelihood Estimation for Multiple and Coupled Harmonics. Fort Belvoir, VA: Defense Technical Information Center, December 1999. http://dx.doi.org/10.21236/ada372834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gelfand, Alan E., and Bradley P. Carlin. Maximum Likelihood Estimation for Constrained or Missing Data Models. Fort Belvoir, VA: Defense Technical Information Center, May 1993. http://dx.doi.org/10.21236/ada266563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography