Academic literature on the topic 'Maximum likelihood estimation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Maximum likelihood estimation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Maximum likelihood estimation"
Chung, Sai-Ho. "Modified maximum likelihood estimation." Communications in Statistics - Theory and Methods 27, no. 12 (January 1998): 2925–42. http://dx.doi.org/10.1080/03610929808832264.
Full textJaki, Thomas, and R. Webster West. "Maximum Kernel Likelihood Estimation." Journal of Computational and Graphical Statistics 17, no. 4 (December 2008): 976–93. http://dx.doi.org/10.1198/106186008x387057.
Full textBertsimas, Dimitris, and Omid Nohadani. "Robust Maximum Likelihood Estimation." INFORMS Journal on Computing 31, no. 3 (July 2019): 445–58. http://dx.doi.org/10.1287/ijoc.2018.0834.
Full textKwasniok, Frank. "Semiparametric maximum likelihood probability density estimation." PLOS ONE 16, no. 11 (November 9, 2021): e0259111. http://dx.doi.org/10.1371/journal.pone.0259111.
Full textTalakua, Mozart W., and Jefri Tipka. "ESTIMASI PARAMETER DISTRIBUSI EKPONENSIAL PADA LOKASI TERBATAS." BAREKENG: Jurnal Ilmu Matematika dan Terapan 1, no. 2 (December 1, 2007): 1–7. http://dx.doi.org/10.30598/barekengvol1iss2pp1-7.
Full textCurrie, Iain D. "Maximum Likelihood Estimation and Mathematica." Applied Statistics 44, no. 3 (1995): 379. http://dx.doi.org/10.2307/2986044.
Full textMilligan, Brook G. "Maximum-Likelihood Estimation of Relatedness." Genetics 163, no. 3 (March 1, 2003): 1153–67. http://dx.doi.org/10.1093/genetics/163.3.1153.
Full textMINAMI, Mihoko. "The Restricted Maximum Likelihood Estimation." Japanese journal of applied statistics 25, no. 2 (1996): 73–78. http://dx.doi.org/10.5023/jappstat.25.73.
Full textGallant, A. Ronald, and Douglas W. Nychka. "Semi-Nonparametric Maximum Likelihood Estimation." Econometrica 55, no. 2 (March 1987): 363. http://dx.doi.org/10.2307/1913241.
Full textJaki, Thomas, and R. Webster West. "Symmetric maximum kernel likelihood estimation." Journal of Statistical Computation and Simulation 81, no. 2 (February 2011): 193–206. http://dx.doi.org/10.1080/00949650903232664.
Full textDissertations / Theses on the topic "Maximum likelihood estimation"
Ruprecht, Jürg. "Maximum likelihood estimation of multipath channels /." [S.l.] : [s.n.], 1989. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=8789.
Full textHorbelt, Werner. "Maximum likelihood estimation in dynamical systems." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963810812.
Full textSabbagh, Yvonne. "Maximum Likelihood Estimation of Hammerstein Models." Thesis, Linköping University, Department of Electrical Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2061.
Full textIn this Master's thesis, Maximum Likelihood-based parametric identification methods for discrete-time SISO Hammerstein models from perturbed observations on both input and output, are investigated.
Hammerstein models, consisting of a static nonlinear block followed by a dynamic linear one, are widely applied to modeling nonlinear dynamic systems, i.e., dynamic systems having nonlinearity at its input.
Two identification methods are proposed. The first one assumes a Hammerstein model where the input signal is noise-free and the output signal is perturbed with colored noise. The second assumes, however, white noises added to the input and output of the nonlinearity and to the output of the whole considered Hammerstein model. Both methods operate directly in the time domain and their properties are illustrated by a number of simulated examples. It should be observed that attention is focused on derivation, numerical calculation, and simulation corresponding to the first identification method mentioned above.
Leeuw, Johannes Leonardus van der. "Maximum likelihood estimation of exact ARMA models /." Tilburg : Tilburg University Press, 1997. http://www.gbv.de/dms/goettingen/265169976.pdf.
Full textSchnitzer, Mireille. "Targeted maximum likelihood estimation for longitudinal data." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114242.
Full textDes méthodes d'analyse causale semi-paramétriques et efficaces ont été développées pour estimer les paramètres causaux efficacement et de façon robuste. Comme c'est le cas en général pour l'estimation causale, ces méthodes se basent sur un ensemble d'hypothèses mathématiques qui impliquent que la structure causale et les facteurs de confusion doivent être connus. La méthode d'estimation par le maximum de vraisemblance ciblé (TMLE) se veut une amélioration des équations d'estimation efficaces: elle a les propriétés de double robustesse (sans biais même avec une erreur de spécification partielle) et d'efficacité semi-paramétrique, mais peut également garantir des estimés finis pour les paramètres et la production d'un seul estimé en plus d'être robuste si les données sont éparses. Cette thèse, composée essentiellement de trois manuscrits, présente de nouvelles recherches sur l'analyse avec le TMLE de données longitudinales et de données de survie avec des facteurs de confusion variant dans le temps. Le premier manuscrit décrit la construction d'un TMLE à deux points dans le temps avec une distribution de la famille exponentielle généralisée comme fonction de perte du modèle de la réponse. Il démontre à l'aide d'une étude de simulation la robustesse de la version continue de cet algorithme TMLE, et utilise une version Poisson de la méthode pour une analyse simplifiée de l'étude PROmotion of Breastfeeding Intervention Trial (PROBIT) qui donne des signes d'un effet causal protecteur de l'allaitement sur les infections gastrointestinales. Le deuxième manuscrit présente une description de plusieurs estimateurs de substitution pour données longitudinales, une implémentation spéciale de la méthode TMLE longitudinale et une étude de cas du jeu de données PROBIT entier. Un algorithme TMLE séquentiel à K points dans le temps est utilisé (théorie déjà développée), lequel est implémenté de façon non-paramétrique avec le Super Learner. Cet algorithme diffère fondamentalement de la stratégie utilisée dans le premier manuscrit et offre des avantages en terme de calcul et de facilité d'implémentation. L'analyse compare les moyennes de dénombrements du nombre d'infections gastrointestinales dans la première année de vie d'un nouveau-né par durée d'allaitement et avec aucune censure, et conclut à la présence d'un effet protecteur. Des données simulées semblables au jeu de données PROBIT sont également générées, et la performance du TMLE de nouveau étudiée. Le troisième manuscrit développe une méthodologie pour estimer des modèles structurels marginaux pour données de survie. En utilisant l'algorithme séquentiel du TMLE longitudinal pour estimer des courbes de survie spécifiques à l'exposition pour tous les patrons d'exposition, il montre une façon de combiner les inférences pour modéliser la réponse à l'aide d'une spécification linéaire. Cet article présente la construction théorique de deux différents types de modèles structurels marginaux (modélisant le log du rapport des chances de survie et le risque) et présente une étude de simulation démontrant l'absence de biais de la technique. Il décrit ensuite une analyse de l'Étude de la Cohorte Canadienne de Co-Infection à l'aide d'une des méthodes TMLE pour ajuster des courbes de survie et un modèle pour la fonction de risque du développement de la maladie chronique du foie (ESLD) conditionnellement au temps et à l'élimination du virus de l'hépatite C.
Ehlers, Rene. "Maximum likelihood estimation procedures for categorical data." Pretoria : [s.n.], 2002. http://upetd.up.ac.za/thesis/available/etd-07222005-124541.
Full textZou, Yiqun. "Attainment of Global Convergence in Maximum Likelihood Estimation." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511845.
Full textMariano, Machado Robson José. "Penalised maximum likelihood estimation for multi-state models." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10060352/.
Full textWeng, Yu. "Maximum Likelihood Estimation of Logistic Sinusoidal Regression Models." Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc407796/.
Full textDeGroot, Don Johan. "Maximum likelihood estimation of spatially correlated soil properties." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/15282.
Full textMICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING.
Bibliography: leaves 109-110.
by Don Johan DeGroot.
M.S.
Books on the topic "Maximum likelihood estimation"
Eliason, Scott. Maximum Likelihood Estimation. 2455 Teller Road, Newbury Park California 91320 United States of America: SAGE Publications, Inc., 1993. http://dx.doi.org/10.4135/9781412984928.
Full textEggermont, P. P. B., and V. N. LaRiccia. Maximum Penalized Likelihood Estimation. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-0716-1244-6.
Full textLaRiccia, Vincent N., and Paul P. Eggermont. Maximum Penalized Likelihood Estimation. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/b12285.
Full textN, LaRiccia V., ed. Maximum penalized likelihood estimation. New York: Springer, 2001.
Find full textMillar, Russell B. Maximum Likelihood Estimation and Inference. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470094846.
Full textJeffrey, Pitblado, Sribney William, and Stata Corporation, eds. Maximum likelihood estimation with stata. 3rd ed. College Station, Tex: Stata Press, 2006.
Find full textS, Pitblado Jeffrey, and Poi Brian, eds. Maximum likelihood estimation with Stata. 4th ed. College Station, Tex: Stata Press, 2010.
Find full textNagelkerke, Nico J. D. Maximum Likelihood Estimation of Functional Relationships. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2858-5.
Full textNagelkerke, Nico J. D. Maximum likelihood estimation of functional relationships. Berlin: Springer-Verlag, 1992.
Find full textRuprecht, Jürg. Maximum-likelihood estimation of multipath channel. Konstanz: Hartung-Gorre, 1989.
Find full textBook chapters on the topic "Maximum likelihood estimation"
Kelley Pace, R. "Maximum Likelihood Estimation." In Handbook of Regional Science, 1–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-36203-3_88-1.
Full textLee, Myoung-jae. "Maximum Likelihood Estimation." In Methods of Moments and Semiparametric Econometrics for Limited Dependent Variable Models, 41–67. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4757-2550-6_4.
Full textNguyen, Hung T., and Gerald S. Rogers. "Maximum Likelihood Estimation." In Springer Texts in Statistics, 129–36. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4613-8914-9_20.
Full textPan, Jian-Xin, and Kai-Tai Fang. "Maximum Likelihood Estimation." In Growth Curve Models and Statistical Diagnostics, 77–158. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-0-387-21812-0_3.
Full textBrown, Jonathon D. "Maximum-Likelihood Estimation." In Linear Models in Matrix Form, 69–104. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11734-8_3.
Full textKrolzig, Hans-Martin. "Maximum Likelihood Estimation." In Lecture Notes in Economics and Mathematical Systems, 89–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-51684-9_7.
Full textHaynes, Winston. "Maximum Likelihood Estimation." In Encyclopedia of Systems Biology, 1190–91. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_1235.
Full textPace, R. Kelley. "Maximum Likelihood Estimation." In Handbook of Regional Science, 1553–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-23430-9_88.
Full textGlas, Cees A. W. "Maximum-Likelihood Estimation." In Handbook of Item Response Theory, 197–217. Boca Raton, FL: CRC Press, 2015- | Series: Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences.: Chapman and Hall/CRC, 2017. http://dx.doi.org/10.1201/b19166-11.
Full textDenuit, Michel, Donatien Hainaut, and Julien Trufin. "Maximum Likelihood Estimation." In Springer Actuarial, 69–94. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25820-7_3.
Full textConference papers on the topic "Maximum likelihood estimation"
Trickett, Stewart. "Maximum‐likelihood‐estimation stacking." In SEG Technical Program Expanded Abstracts 2007. Society of Exploration Geophysicists, 2007. http://dx.doi.org/10.1190/1.2793015.
Full textLee, D. D., and R. L. Kashyap. "Robust maximum likelihood bearing estimation in contaminated Gaussian noise." In Fifth ASSP Workshop on Spectrum Estimation and Modeling. IEEE, 1990. http://dx.doi.org/10.1109/spect.1990.205555.
Full textAbramovich, Yuri I., and Ben A. Johnson. "Expected likelihood support for deterministic maximum likelihood DOA estimation." In 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM). IEEE, 2010. http://dx.doi.org/10.1109/sam.2010.5606744.
Full textGiannakis, G. B. "On identifiability, maximum-likelihood, and novel HOS based criteria." In Fifth ASSP Workshop on Spectrum Estimation and Modeling. IEEE, 1990. http://dx.doi.org/10.1109/spect.1990.205578.
Full textYunshan Hou, Lijie Zhang, and Jianguo Huang. "Unbiased Maximum Likelihood Estimator for Underwater DOA Estimation." In 2008 3rd IEEE Conference on Industrial Electronics and Applications. IEEE, 2008. http://dx.doi.org/10.1109/iciea.2008.4582660.
Full textSadia, Haleema, Sabahat Sherien, Hafsa Iqbal, Muhammad Zeeshan, Aimal Khan, and Saad Rehman. "Range estimation in radar using maximum likelihood estimator." In 2017 20th International Conference of Computer and Information Technology (ICCIT). IEEE, 2017. http://dx.doi.org/10.1109/iccitechn.2017.8281856.
Full textZhang, Yi, and Jamie Callan. "Maximum likelihood estimation for filtering thresholds." In the 24th annual international ACM SIGIR conference. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/383952.384012.
Full textChristensen, Mads Graesboll. "Multi-channel maximum likelihood pitch estimation." In ICASSP 2012 - 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2012. http://dx.doi.org/10.1109/icassp.2012.6287903.
Full textBalogh, Laszlo, Istvan Kollar, and Attila Sarhegyi. "Maximum likelihood estimation of ADC Parameters." In 2010 IEEE Instrumentation & Measurement Technology Conference Proceedings. IEEE, 2010. http://dx.doi.org/10.1109/imtc.2010.5488286.
Full textParis, M. G. A. "Maximum-likelihood method in quantum estimation." In The twentieth international workshop on bayesian inference and maximum entropy methods in science and engineering. AIP, 2001. http://dx.doi.org/10.1063/1.1381908.
Full textReports on the topic "Maximum likelihood estimation"
Ljung, Lennart, Sanjoy K. Mitter, and Jose M. Moura. Optimal Recursive Maximum Likelihood Estimation,. Fort Belvoir, VA: Defense Technical Information Center, March 1987. http://dx.doi.org/10.21236/ada187980.
Full textAit-Sahalia, Yacine, and Robert Kimmel. Maximum Likelihood Estimation of Stochastic Volatility Models. Cambridge, MA: National Bureau of Economic Research, June 2004. http://dx.doi.org/10.3386/w10579.
Full textBates, David. Maximum Likelihood Estimation of Latent Affine Processes. Cambridge, MA: National Bureau of Economic Research, May 2003. http://dx.doi.org/10.3386/w9673.
Full textAvdis, Efstathios, and Jessica Wachter. Maximum likelihood estimation of the equity premium. Cambridge, MA: National Bureau of Economic Research, November 2013. http://dx.doi.org/10.3386/w19684.
Full textAinsleigh, P. L., J. D. George, and V. K. Jain. Maximum Likelihood Parameter Estimation for Acoustic Transducer Calibration. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada204923.
Full textMoore, Terrence, and Brian Sadler. Maximum-Likelihood Estimation and Scoring Under Parametric Constraints. Fort Belvoir, VA: Defense Technical Information Center, May 2006. http://dx.doi.org/10.21236/ada448612.
Full textDiebold, Francis, and Til Schuermann. Exact Maximum Likelihood Estimation of Observation-Driven Econometric Models. Cambridge, MA: National Bureau of Economic Research, April 1996. http://dx.doi.org/10.3386/t0194.
Full textHall, Jr, Lehnigk Charles E., Viswanath Siegfried H., and Guttalu R. Maximum-Likelihood Parameter Estimation of a Generalized Gumbel Distribution. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada207994.
Full textLake, Douglas. Efficient Maximum Likelihood Estimation for Multiple and Coupled Harmonics. Fort Belvoir, VA: Defense Technical Information Center, December 1999. http://dx.doi.org/10.21236/ada372834.
Full textGelfand, Alan E., and Bradley P. Carlin. Maximum Likelihood Estimation for Constrained or Missing Data Models. Fort Belvoir, VA: Defense Technical Information Center, May 1993. http://dx.doi.org/10.21236/ada266563.
Full text