Dissertations / Theses on the topic 'Maximum likelihood estimation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Maximum likelihood estimation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ruprecht, Jürg. "Maximum likelihood estimation of multipath channels /." [S.l.] : [s.n.], 1989. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=8789.
Full textHorbelt, Werner. "Maximum likelihood estimation in dynamical systems." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963810812.
Full textSabbagh, Yvonne. "Maximum Likelihood Estimation of Hammerstein Models." Thesis, Linköping University, Department of Electrical Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2061.
Full textIn this Master's thesis, Maximum Likelihood-based parametric identification methods for discrete-time SISO Hammerstein models from perturbed observations on both input and output, are investigated.
Hammerstein models, consisting of a static nonlinear block followed by a dynamic linear one, are widely applied to modeling nonlinear dynamic systems, i.e., dynamic systems having nonlinearity at its input.
Two identification methods are proposed. The first one assumes a Hammerstein model where the input signal is noise-free and the output signal is perturbed with colored noise. The second assumes, however, white noises added to the input and output of the nonlinearity and to the output of the whole considered Hammerstein model. Both methods operate directly in the time domain and their properties are illustrated by a number of simulated examples. It should be observed that attention is focused on derivation, numerical calculation, and simulation corresponding to the first identification method mentioned above.
Leeuw, Johannes Leonardus van der. "Maximum likelihood estimation of exact ARMA models /." Tilburg : Tilburg University Press, 1997. http://www.gbv.de/dms/goettingen/265169976.pdf.
Full textSchnitzer, Mireille. "Targeted maximum likelihood estimation for longitudinal data." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114242.
Full textDes méthodes d'analyse causale semi-paramétriques et efficaces ont été développées pour estimer les paramètres causaux efficacement et de façon robuste. Comme c'est le cas en général pour l'estimation causale, ces méthodes se basent sur un ensemble d'hypothèses mathématiques qui impliquent que la structure causale et les facteurs de confusion doivent être connus. La méthode d'estimation par le maximum de vraisemblance ciblé (TMLE) se veut une amélioration des équations d'estimation efficaces: elle a les propriétés de double robustesse (sans biais même avec une erreur de spécification partielle) et d'efficacité semi-paramétrique, mais peut également garantir des estimés finis pour les paramètres et la production d'un seul estimé en plus d'être robuste si les données sont éparses. Cette thèse, composée essentiellement de trois manuscrits, présente de nouvelles recherches sur l'analyse avec le TMLE de données longitudinales et de données de survie avec des facteurs de confusion variant dans le temps. Le premier manuscrit décrit la construction d'un TMLE à deux points dans le temps avec une distribution de la famille exponentielle généralisée comme fonction de perte du modèle de la réponse. Il démontre à l'aide d'une étude de simulation la robustesse de la version continue de cet algorithme TMLE, et utilise une version Poisson de la méthode pour une analyse simplifiée de l'étude PROmotion of Breastfeeding Intervention Trial (PROBIT) qui donne des signes d'un effet causal protecteur de l'allaitement sur les infections gastrointestinales. Le deuxième manuscrit présente une description de plusieurs estimateurs de substitution pour données longitudinales, une implémentation spéciale de la méthode TMLE longitudinale et une étude de cas du jeu de données PROBIT entier. Un algorithme TMLE séquentiel à K points dans le temps est utilisé (théorie déjà développée), lequel est implémenté de façon non-paramétrique avec le Super Learner. Cet algorithme diffère fondamentalement de la stratégie utilisée dans le premier manuscrit et offre des avantages en terme de calcul et de facilité d'implémentation. L'analyse compare les moyennes de dénombrements du nombre d'infections gastrointestinales dans la première année de vie d'un nouveau-né par durée d'allaitement et avec aucune censure, et conclut à la présence d'un effet protecteur. Des données simulées semblables au jeu de données PROBIT sont également générées, et la performance du TMLE de nouveau étudiée. Le troisième manuscrit développe une méthodologie pour estimer des modèles structurels marginaux pour données de survie. En utilisant l'algorithme séquentiel du TMLE longitudinal pour estimer des courbes de survie spécifiques à l'exposition pour tous les patrons d'exposition, il montre une façon de combiner les inférences pour modéliser la réponse à l'aide d'une spécification linéaire. Cet article présente la construction théorique de deux différents types de modèles structurels marginaux (modélisant le log du rapport des chances de survie et le risque) et présente une étude de simulation démontrant l'absence de biais de la technique. Il décrit ensuite une analyse de l'Étude de la Cohorte Canadienne de Co-Infection à l'aide d'une des méthodes TMLE pour ajuster des courbes de survie et un modèle pour la fonction de risque du développement de la maladie chronique du foie (ESLD) conditionnellement au temps et à l'élimination du virus de l'hépatite C.
Ehlers, Rene. "Maximum likelihood estimation procedures for categorical data." Pretoria : [s.n.], 2002. http://upetd.up.ac.za/thesis/available/etd-07222005-124541.
Full textZou, Yiqun. "Attainment of Global Convergence in Maximum Likelihood Estimation." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511845.
Full textMariano, Machado Robson José. "Penalised maximum likelihood estimation for multi-state models." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10060352/.
Full textWeng, Yu. "Maximum Likelihood Estimation of Logistic Sinusoidal Regression Models." Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc407796/.
Full textDeGroot, Don Johan. "Maximum likelihood estimation of spatially correlated soil properties." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/15282.
Full textMICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING.
Bibliography: leaves 109-110.
by Don Johan DeGroot.
M.S.
John, Andrea. "Maximum likelihood estimation in mis-specified reliability distributions." Thesis, Swansea University, 2003. https://cronfa.swan.ac.uk/Record/cronfa42494.
Full textWhite, Scott Ian. "Stochastic volatility: Maximum likelihood estimation and specification testing." Thesis, Queensland University of Technology, 2006. https://eprints.qut.edu.au/16220/1/Scott_White_Thesis.pdf.
Full textWhite, Scott Ian. "Stochastic volatility : maximum likelihood estimation and specification testing." Queensland University of Technology, 2006. http://eprints.qut.edu.au/16220/.
Full textZaeva, Maria. "Maximum likelihood estimators for circular structural model." Birmingham, Ala. : University of Alabama at Birmingham, 2009. https://www.mhsl.uab.edu/dt/2009m/zaeva.pdf.
Full textTitle from PDF title page (viewed Jan. 21, 2010). Additional advisors: Yulia Karpeshina, Ian Knowles, Rudi Weikard. Includes bibliographical references (p. 19).
Fischer, Mareike. "Novel Mathematical Aspects of Phylogenetic Estimation." Thesis, University of Canterbury. Mathematics and Statistics, 2009. http://hdl.handle.net/10092/2331.
Full textXue, Huitian, and 薛惠天. "Maximum likelihood estimation of parameters with constraints in normaland multinomial distributions." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B47850012.
Full textpublished_or_final_version
Statistics and Actuarial Science
Master
Master of Philosophy
Cule, Madeleine. "Maximum likelihood estimation of a multivariate log-concave density." Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/237061.
Full textHartford, Alan Hughes. "Computational approaches for maximum likelihood estimation for nonlinearmixed models." NCSU, 2000. http://www.lib.ncsu.edu/theses/available/etd-20000719-081254.
Full textThe nonlinear mixed model is an important tool for analyzingpharmacokinetic and other repeated-measures data.In particular, these models are used when the measured response for anindividual,,has a nonlinear relationship with unknown, random, individual-specificparameters,.Ideally, the method of maximum likelihood is used to find estimates forthe parameters ofthe model after integrating out the random effects in the conditionallikelihood. However, closed form solutions tothe integral are generally not available. As a result, methods have beenpreviously developed to find approximatemaximum likelihood estimates for the parameters in the nonlinear mixedmodel. These approximate methods include FirstOrder linearization, Laplace's approximation, importance sampling, andGaussian quadrature. The methods are availabletoday in several software packages for models of limited sophistication;constant conditional error variance is requiredfor proper utilization of most software. In addition, distributionalassumptions are needed. This work investigates howrobust two of these methods, First Order linearization and Laplace'sapproximation, are to these assumptions. The findingis that Laplace's approximation performs well, resulting in betterestimation than first order linearization when bothmodels converge to a solution.
A method must provide good estimates of the likelihood at points inthe parameter space near the solution. This workcompares this ability among the numerical integration techniques,Gaussian quadrature, importance sampling, and Laplace'sapproximation. A new "scaled" and "centered" version of Gaussianquadrature is found to be the most accurate technique.In addition, the technique requires evaluation of the integrand at onlya few abscissas. Laplace's method also performswell; it is more accurate than importance sampling with even 100importance samples over two dimensions. Even so,Laplace's method still does not perform as well as Gaussian quadrature.Overall, Laplace's approximation performs betterthan expected, and is shown to be a reliable method while stillcomputationally less demanding.
This work also introduces a new method to maximize the likelihood.This method can be sharpened to any desired levelof accuracy. Stochastic approximation is incorporated to continuesampling until enough information is gathered to resultin accurate estimation. This new method is shown to work well for linearmixed models, but is not yet successful for thenonlinear mixed model.
Storer, Robert Hedley. "Adaptive estimation by maximum likelihood fitting of Johnson distributions." Diss., Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/24082.
Full textWang, Qiang. "Maximum likelihood estimation of phylogenetic tree with evolutionary parameters." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1083177084.
Full textTitle from first page of PDF file. Document formatted into pages; contains xi, 167 p.; also includes graphics Includes bibliographical references (p. 157-167). Available online via OhioLINK's ETD Center
Gandhi, Mital A. "Robust Kalman Filters Using Generalized Maximum Likelihood-Type Estimators." Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/29902.
Full textPh. D.
Strasser, Helmut. "The covariance structure of conditional maximum likelihood estimates." Oldenbourg Verlag, 2012. http://epub.wu.ac.at/3619/1/covariance_final.pdf.
Full textHu, Huilin. "Large sample theory for pseudo-maximum likelihood estimates in semiparametric models /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/8936.
Full textLeroux, Brian. "Maximum likelihood estimation for mixture distributions and hidden Markov models." Thesis, University of British Columbia, 1989. http://hdl.handle.net/2429/29176.
Full textScience, Faculty of
Statistics, Department of
Graduate
Kim, Hyunjung. "Unit Root Tests in Panel Data: Weighted Symmetric Estimation and Maximum Likelihood Estimation." NCSU, 2001. http://www.lib.ncsu.edu/theses/available/etd-20010823-091533.
Full textThere has been much interest in testing nonstationarity of panel data in the econometric literature. In the last decade, several tests based on the ordinary least squares and Lagrange multiplier methodhave been developed. In contrast to a unit root test in the univariate case,test statistics in panel data have Gaussian limiting distributions.This dissertation considers weighted symmetric estimation and maximum likelihood estimation in the autoregressive model with individual effects.The asymptotic distributions have been derived as the number of individuals and time periods become large. The power study from Monte Carloexperiments shows that the proposed test statistics perform substantiallybetter than those in previous studies even for small samples.As an example, we consider the real Gross Domestic Product per Capita for 12 countries.
Thornton, K. M. "The use of sample spacings in parameter estimation with applications." Thesis, Cardiff University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238217.
Full textGillan, Catherine C. "Using the piecewise exponential distribution to model the length of stay in a manpower planning system." Thesis, University of Ulster, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338317.
Full textCheng, Yang. "Maximum likelihood estimation and computation in a random effect factor model." College Park, Md. : University of Maryland, 2004. http://hdl.handle.net/1903/1782.
Full textThesis research directed by: Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Chotikakamthorn, Nopporn. "A pre-filtering maximum likelihood approach to multiple source direction estimation." Thesis, Imperial College London, 1996. http://hdl.handle.net/10044/1/8634.
Full textYang, Jian. "Semiparametric maximum likelihood estimation of nonlinear regression models and GARCH models." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0007/NQ27861.pdf.
Full textSkeen, Matthew E. (Matthew Edward). "Maximum likelihood estimation of fractional Brownian motion and Markov noise parameters." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/42527.
Full textYildirim, Sinan. "Maximum likelihood parameter estimation in time series models using sequential Monte Carlo." Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/244707.
Full textSOUZA, MARCIO ALBUQUERQUE DE. "MAXIMUM LIKELIHOOD ESTIMATION OF THE DIRECTION-OF-ARRIVAL OF PSK MODULATED CARRIERS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2004. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=5718@1.
Full textEm sistemas de comunicações móveis, a modulação digital em fase (PSK)é amplamente utilizada em esquemas de transmissão em rádio-propagação. Trabalhos anteriores consideraram alguns métodos baseados no critério de máxima verossimilhança (MV) para estimação de direção-de-chegada de sinais genéricos que atingem um conjunto (array) de sensores. Esta tese propõe um novo estimador MV para a direção-de-chegada, desenvolvido especificamente para sistemas de comunicação PSK. Dois modelos de transmissão são concebidos para estimação dos parâmetros: um mais idealizado, considerando todas as portadoras alinhadas no tempo com o receptor, e outro que considera este desalinhamento na forma de retardo. O número de parâmetros a serem conjuntamente estimados é significativamente reduzido ao se calcular o valor esperado dos sinais medidos no array de antenas com relação µas fases de modulação (dados de informação). O desempenho do estimador em vários cenários simulados é apresentado e comparado ao desempenho do estimador MV clássico desenvolvido sem considerar uma estrutura específica para o sinal. Limitantes de Cramér-Rao para os cenários de portadora única também são calculados. O método proposto se mostra mais robusto por apresentar melhor desempenho que o estimador MV clássico em todas as simulações.
In mobile communication systems, phase shift keying (PSK) modulation is widely used in digital transmission schemes. Previous works have considered several maximum likelihood (ML) methods for the direction-of-arrival (DOA) estimation of generic signals reaching a phased-array of sensors. This thesis proposes a new ML DOA estimator designed to be used in PSK communication systems. Two transmission models are considered for parameter estimation: a simpler one, considering all carrier clocks time-aligned with the receiver clock, and another that considers this misalignment as a delay for each carrier. The number of parameters to be jointly estimated is significantly reduced when the expected value of the antenna array measured signals with respect to the modulation phases is evaluated. The estimator performance in several simulation scenarios is presented and compared to the performance of a classic ML estimator designed for all sorts of signal models. Cramér-Rao bounds for single carrier scenarios are also evaluated. The proposed method robustly outperforms the classic ML estimator in all simulations.
Irineo, Joseph B. (Joseph Bernard) 1976. "An object-oriented, maximum-likelihood parameter estimation program for GARCH(p,q)." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80074.
Full textSchneider, Grant W. "Maximum Likelihood Estimation for Stochastic Differential Equations Using Sequential Kriging-Based Optimization." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1406912247.
Full textJin, Shaobo. "Essays on Estimation Methods for Factor Models and Structural Equation Models." Doctoral thesis, Uppsala universitet, Statistiska institutionen, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-247292.
Full textWang, Steven Xiaogang. "Maximum weighted likelihood estimation." Thesis, 2001. http://hdl.handle.net/2429/13844.
Full text"Optimal recursive maximum likelihood estimation." Sloan School of Management, Massachusetts Institute of Technology], 1987. http://hdl.handle.net/1721.1/2987.
Full textSeo, Byungtae. "Doubly-smoothed maximum likelihood estimation." 2007. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-2129/index.html.
Full textBuot, Max. "Genetic algorithms and maximum likelihood estimation /." 2003. http://wwwlib.umi.com/dissertations/fullcit/3108787.
Full textRichardson, Alice. "Maximum likelihood estimation of variance components." Master's thesis, 1991. http://hdl.handle.net/1885/133923.
Full textMai, Anh Tien. "Revisiting optimization algorithms for maximum likelihood estimation." Thèse, 2012. http://hdl.handle.net/1866/9828.
Full textMaximum likelihood is one of the most popular techniques to estimate the parameters of some given distributions. Under slight conditions, the produced estimators are consistent and asymptotically efficient. Maximum likelihood problems can be handled as non-linear programming problems, possibly non convex, that can be solved for instance using line-search methods and trust-region algorithms. Moreover, under some conditions, it is possible to exploit the structures of such problems in order to speedup convergence. In this work, we consider various non-linear programming techniques, either standard or recently developed, within the maximum likelihood estimation perspective. We also propose new algorithms to solve this estimation problem, capitalizing on Hessian approximation techniques and developing new methods to compute steps, in particular in the context of line-search approaches. More specifically, we investigate methods that allow us switching between Hessian approximations and adapting the step length along the search direction. We finally assess the numerical efficiency of the proposed methods for the estimation of discrete choice models, more precisely mixed logit models.
Ehlers, Rene. "Maximum likelihood estimation procedures for categorical data." Diss., 2003. http://hdl.handle.net/2263/26533.
Full textDissertation (MSc (Mathematical Statistics))--University of Pretoria, 2005.
Mathematics and Applied Mathematics
unrestricted
LIU, RONG-XUAN, and 劉鎔瑄. "Adversarial Image Description without Maximum Likelihood Estimation." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/c46qaj.
Full text國立中正大學
電機工程研究所
106
A fully visible belief network trained with maximum-likelihood is a typical strategy to learn a language model. However such an approach yields the exposure bias due to different behaviors at training and inference stage: To predict the next symbol, the model has provided with preceding information that is available at training stage but not at inference stage, when it could result in worse predictions along with accumulated errors and increased sentence length. On the contrary, we train another neural paradigm for the image description via an adversarial fashion from scratch. We do not adopt any maximum-likelihood manner and address exposure bias. The generative model takes the learning objective of minimizing the earth mover’s distance to make the generator’s distribution indistinguishable from the empirical distribution. We also employ Gumbel-max trick as a continuous approximation of the one-hot word encoding, conquering the “non-differentiable sampling problem”. In this case training both the discriminator and generator requires only generic end-to-end back-propagation and gradient-based optimization methods. Experimental results show that our adversarial approach improves the performance on several evaluation metrics of the image captioning task.
Choi, Ji Eun. "Stochastic Volatility Models and Simulated Maximum Likelihood Estimation." Thesis, 2011. http://hdl.handle.net/10012/6045.
Full textTsai, Wen-Chi, and 蔡紋琦. "Maximum Likelihood Estimation of a Monotone Regression Function." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/26048287023325781218.
Full text"Maximum likelihood sequence estimation from the lattice viewpoint." Chinese University of Hong Kong, 1991. http://library.cuhk.edu.hk/record=b5895365.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 1991.
Bibliographies: leaves 98-104.
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Channel Model and Other Basic Assumptions --- p.5
Chapter 1.2 --- Complexity Measure --- p.8
Chapter 1.3 --- Maximum Likelihood Sequence Estimator --- p.9
Chapter 1.4 --- The Viterbi Algorithm ´ؤ An Implementation of MLSE --- p.11
Chapter 1.5 --- Error Performance of the Viterbi Algorithm --- p.14
Chapter 1.6 --- Suboptimal Viterbi-like Algorithms --- p.17
Chapter 1.7 --- Trends of Digital Transmission and MLSE --- p.19
Chapter 2 --- New Formulation of MLSE --- p.21
Chapter 2.1 --- The Truncated Viterbi Algorithm --- p.21
Chapter 2.2 --- Choice of Truncation Depth --- p.23
Chapter 2.3 --- Decomposition of MLSE --- p.26
Chapter 2.4 --- Lattice Interpretation of MLSE --- p.29
Chapter 3 --- The Closest Vector Problem --- p.34
Chapter 3.1 --- Basic Definitions and Facts About Lattices --- p.37
Chapter 3.2 --- Lattice Basis Reduction --- p.40
Chapter 3.2.1 --- Weakly Reduced Bases --- p.41
Chapter 3.2.2 --- Derivation of the LLL-reduction Algorithm --- p.43
Chapter 3.2.3 --- Improved Algorithm for LLL-reduced Bases --- p.52
Chapter 3.3 --- Enumeration Algorithm --- p.57
Chapter 3.3.1 --- Lattice and Isometric Mapping --- p.58
Chapter 3.3.2 --- Enumerating Points in a Parallelepiped --- p.59
Chapter 3.3.3 --- Enumerating Points in a Cube --- p.63
Chapter 3.3.4 --- Enumerating Points in a Sphere --- p.64
Chapter 3.3.5 --- Comparisons of Three Enumeration Algorithms --- p.66
Chapter 3.3.6 --- Improved Enumeration Algorithm for the CVP and the SVP --- p.67
Chapter 3.4 --- CVP Algorithm Using the Reduce-and-Enumerate Approach --- p.71
Chapter 3.5 --- CVP Algorithm with Improved Average-Case Complexity --- p.72
Chapter 3.5.1 --- CVP Algorithm for Norms Induced by Orthogonalization --- p.73
Chapter 3.5.2 --- Improved CVP Algorithm using Norm Approximation --- p.76
Chapter 4 --- MLSE Algorithm --- p.79
Chapter 4.1 --- MLSE Algorithm for PAM Systems --- p.79
Chapter 4.2 --- MLSE Algorithm for Unimodular Channel --- p.82
Chapter 4.3 --- Reducing the Boundary Effect for PAM Systems --- p.83
Chapter 4.4 --- Simulation Results and Performance Investigation for Example Channels --- p.86
Chapter 4.5 --- MLSE Algorithm for Other Lattice-Type Modulation Systems --- p.91
Chapter 4.6 --- Some Potential Applications --- p.92
Chapter 4.7 --- Further Research Directions --- p.94
Chapter 5 --- Conclusion --- p.96
Bibliography --- p.104
Chen, I.-Hsuan, and 陳怡瑄. "Maximum likelihood estimation for parametric extended hazard model." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/89876452316438821122.
Full text國立中央大學
統計研究所
103
So far, in joint model approaches, semi-parametric survival model has been played an important role for modelling event time data. Although many approaches have been proposed, the estimation encounters difficulties in deriving standard error estimates through bootstrap method, which is extremely time consuming. Therefore, to complement the literature, we employ parametric survival model for the joint model with standard error estimates obtained from Fisher information. The estimation of parametric joint model is dramatically faster than that of semiparametric one and thus is feasible for practical application. We assume four common parametric distributions in survival analysis, Weibull, Loglogistic, Log-normal, and Gamma distribution. We use the maximum likelihood approach to estimate parameter and to calculate AIC value, and likelihood ratio statistic to do model selection. Since the extended hazard model is the generalized model for Cox model and AFT model, we regard the extended hazard model as the full model. Also, we consider Cox model and AFT model as reduced model. Therefore, LRT can be conducted to do model selection through nested structure.
Chen, Chih-Hua (Boen), and 陳志華. "Study of Maximum-likelihood Estimation for OFDM Systems." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/11663854574689852840.
Full text國立暨南國際大學
電機工程學系
91
Recently, OFDM has received a great deal of attention due to its effective transmission capability when dealing with various types of channel impairment, such as impulsive noise and multipath delay spread, and etc. However, there are still some pending problems in the OFDM systems, such as the inter-carrier interference (ICI), inter-symbol interference (ISI), and peak-to average power ratio (PAPR). If any of them occurs, it will cause fatal errors and dominate the system performance. The synchronization problem of timing delay and carrier frequency offset is very important in the OFDM systems. The main reason is that we must know where the useful data begins and where it ends. If we have no idea about the timing information, we will obtain incorrect data. Thus the system is no more reliable. On the other hand, if we have resolved the timing problem, but we do not take care of the problem caused by the carrier frequency offset, this will also severely degrade the system performance. In this thesis, we focus on the investigation of the problems caused by the carrier frequency offset, and try to search for some possible solutions. The effects of carrier frequency offset will result in the amplitude attenuation (so-called ICI) and phase rotation of the received signals. The manifestation of the ICI problem may be treated as that caused by the irreducible additive noise. We try to solve the problem of carrier frequency offset by applying the maximum-likelihood estimation (MLE) theory criterion. Then, we propose modified methods. Several simulation results have verified that the proposed methods can outperform the previous work, especially when they are working under the conditions of low signal-to-noise ratios (SNR’s).
WU, SHIN-CHAN, and 吳欣展. "Maximum Likelihood Estimation for Parametric Interval Symbolic Data." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/06315386930718200818.
Full text國立臺北大學
統計學系
104
The amount of global data is accumulated dramatically in the past 20 years. Many new developments in statistical science and information technology have been established. It shows that the era of big data is coming. In order to deal with massive data and integrating data, Diday (2006) proposed the symbolic data analysis, where each symbolic object known as a concept might be a category or a group. Since a symbolic object might contain many observations, variables featuring a symbolic object might not be a simple real number and could be an interval and so forth. Under certain parametric assumptions, Le-Rademacher and Billard (2011) discussed the maximum likelihood estimation for interval symbolic data and histogram symbolic data. However, their parametric assumption assumes that the internal variable follows a specific distribution. Normally, the feature of the underlying population is of interest. Instead, this thesis assumes that the variable of interest for the underlying population follows a specific distribution. The distribution of the variable for the symbolic objects is derived. The estimators of parameters are then obtained by the maximum likelihood estimation. Finally, Monte Carlo simulations are used to evaluate the performance of parameter estimates under various parameter situations.