Academic literature on the topic 'Maximum principle'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Maximum principle.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Maximum principle"

1

Štecha, Jan, and Jan Rathouský. "Stochastic maximum principle." IFAC Proceedings Volumes 44, no. 1 (January 2011): 4714–20. http://dx.doi.org/10.3182/20110828-6-it-1002.01501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yazhe, Chen. "Aleksandrov maximum principle and bony maximum principle for parabolic equations." Acta Mathematicae Applicatae Sinica 2, no. 4 (December 1985): 309–20. http://dx.doi.org/10.1007/bf01665846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ivochkina, Nina. "On the maximum principle for principal curvatures." Banach Center Publications 33, no. 1 (1996): 115–26. http://dx.doi.org/10.4064/-33-1-115-126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dmitruk, A. V., and A. M. Kaganovich. "The Hybrid Maximum Principle is a consequence of Pontryagin Maximum Principle." Systems & Control Letters 57, no. 11 (November 2008): 964–70. http://dx.doi.org/10.1016/j.sysconle.2008.05.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dufour, Francois, and Boris Miller. "SINGULAR STOCHASTIC MAXIMUM PRINCIPLE." IFAC Proceedings Volumes 38, no. 1 (2005): 29–34. http://dx.doi.org/10.3182/20050703-6-cz-1902.00865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Chunjie. "On Korenblum’s maximum principle." Proceedings of the American Mathematical Society 134, no. 7 (January 5, 2006): 2061–66. http://dx.doi.org/10.1090/s0002-9939-06-08311-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

LEDZEWICZ, URSZULA, and HEINZ SCHÄTTLER. "AN EXTENDED MAXIMUM PRINCIPLE." Nonlinear Analysis: Theory, Methods & Applications 29, no. 2 (July 1997): 159–83. http://dx.doi.org/10.1016/s0362-546x(96)00038-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Parr, Robert G., and Pratim K. Chattaraj. "Principle of maximum hardness." Journal of the American Chemical Society 113, no. 5 (February 1991): 1854–55. http://dx.doi.org/10.1021/ja00005a072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lugovtsov, B. A. "Principle of maximum discharge." Journal of Applied Mechanics and Technical Physics 32, no. 4 (1992): 563–64. http://dx.doi.org/10.1007/bf00851561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schwick, Wilhelm. "On Korenblum’s maximum principle." Proceedings of the American Mathematical Society 125, no. 9 (1997): 2581–87. http://dx.doi.org/10.1090/s0002-9939-97-03247-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Maximum principle"

1

Andersson, Daniel. "Contributions to the Stochastic Maximum Principle." Doctoral thesis, KTH, Matematik (Avd.), 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11301.

Full text
Abstract:
This thesis consists of four papers treating the maximum principle for stochastic control problems. In the first paper we study the optimal control of a class of stochastic differential equations (SDEs) of mean-field type, where the coefficients are allowed to depend on the law of the process. Moreover, the cost functional of the control problem may also depend on the law of the process. Necessary and sufficient conditions for optimality are derived in the form of a maximum principle, which is also applied to solve the mean-variance portfolio problem. In the second paper, we study the problem of controlling a linear SDE where the coefficients are random and not necessarily bounded. We consider relaxed control processes, i.e. the control is defined as a process taking values in the space of probability measures on the control set. The main motivation is a bond portfolio optimization problem. The relaxed control processes are then interpreted as the portfolio weights corresponding to different maturity times of the bonds. We establish existence of an optimal control and necessary conditons for optimality in the form of a maximum principle, extended to include the family of relaxed controls. The third paper generalizes the second one by adding a singular control process to the SDE. That is, the control is singular with respect to the Lebesgue measure and its influence on the state is thus not continuous in time. In terms of the portfolio problem, this allows us to consider two investment possibilities - bonds (with a continuum of maturities) and stocks - and incur transaction costs between the two accounts. In the fourth paper we consider a general singular control problem. The absolutely continuous part of the control is relaxed in the classical way, i.e. the generator of the corresponding martingale problem is integrated with respect to a probability measure, guaranteeing the existence of an optimal control. This is shown to correspond to an SDE driven by a continuous orthogonal martingale measure. A maximum principle which describes necessary conditions for optimal relaxed singular control is derived.
QC 20100618
APA, Harvard, Vancouver, ISO, and other styles
2

Degla, Guy Aymard. "A Maximum Principle for Conjugate BVPs." Doctoral thesis, SISSA, 2001. http://hdl.handle.net/20.500.11767/4320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fontana, Eleonora. "Maximum Principle for Elliptic and Parabolic Equations." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12061/.

Full text
Abstract:
Nel primo capitolo si riporta il principio del massimo per operatori ellittici. Sarà considerato, in un primo momento, l'operatore di Laplace e, successivamente, gli operatori ellittici del secondo ordine, per i quali si dimostrerà anche il principio del massimo di Hopf. Nel secondo capitolo si affronta il principio del massimo per operatori parabolici e lo si utilizza per dimostrare l'unicità delle soluzioni di problemi ai valori al contorno.
APA, Harvard, Vancouver, ISO, and other styles
4

Lobo, Pereira Fernando Manuel Ferreira. "A maximum principle for impulsive control systems." Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Касьянов, Володимир, and Андрій Гончаренко. "SUBJECTIVE ENTROPY MAXIMUM PRINCIPLE AND ITS APPLICATIONS." Thesis, Національний авіаційний університет, 2017. https://er.nau.edu.ua/handle/NAU/48996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Касьянов, Володимир, and Андрій Гончаренко. "SUBJECTIVE ENTROPY MAXIMUM PRINCIPLE AND ITS APPLICATIONS." Thesis, Національний авіаційний університет, 2017. http://er.nau.edu.ua/handle/NAU/30676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cai, Tingting. "The maximum power principle an empirical investigation /." [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE1000112.

Full text
Abstract:
Thesis (Ph. D.)--University of Florida, 2002.
Title from title page of source document. Document formatted into pages; contains vii, 175 p.; also contains graphics. Includes vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
8

Klinedinst, James. "A Maximum Principle in the Engel Group." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5248.

Full text
Abstract:
In this thesis, we will examine the properties of subelliptic jets in the Engel group of step 3. Step-2 groups, such as the Heisenberg group, do not provide insight into the general abstract calculations. This thesis then, is the first explicit non-trivial computation of the abstract results.
APA, Harvard, Vancouver, ISO, and other styles
9

Whiting, Peter Mark. "Reflection traveltime tomography and the maximum entropy principle." Thesis, The University of Sydney, 1993. https://hdl.handle.net/2123/26623.

Full text
Abstract:
Conventional reflection tomography creates an estimate of subsurface seismic velocity structure by inverting a set of seismic traveltime data. This is achieved by solving a least-squares optimisation problem that finds the velocity and depth model that minimises the difference between raytraced and measured traveltimes. Obtaining the traveltime data can be difficult as manual picking of reflection times is required and all picked reflection events must be associated with the reflector depths defined in the model. Even with good traveltime data the optimisation problem is very non-linear and the surface restriction of the sources and receivers makes the problem generally underdetermined. These issues result in severe ambiguity and local minima problems. This thesis shows that modifications to the conventional reflection tomography algorithm can make it a more practical and reliable procedure that is less likely to be trapped by local minima. The ray tracing procedure is changed so that reflector depths are not necessary and automatic traveltime interpretation can be successful. Entropy constraints are introduced (after being justified) which prevent unwarranted velocity structure from appearing. This feature adds significant stability and reduces the ambiguity problems. Staged smoothing of the optimisation function helps avoid local minima. Synthetic data examples show that the algorithm can be very effective on noise free data. Adding noise to synthetic data reduces the algorithms effectiveness, but inversions of real data sets produces updated velocity fields that result in superior pre-stack depth migrations.
APA, Harvard, Vancouver, ISO, and other styles
10

Daghighi, Abtin. "The Maximum Principle for Cauchy-Riemann Functions and Hypocomplexity." Licentiate thesis, Mittuniversitetet, Institutionen för tillämpad naturvetenskap och design, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-17701.

Full text
Abstract:
This licentiate thesis contains results on the maximum principle forCauchy–Riemann functions (CR functions) on weakly 1-concave CRmanifolds and hypocomplexity of locally integrable structures. Themaximum principle does not hold true in general for smooth CR functions,and basic counterexamples can be constructed in the presenceof strictly pseudoconvex points. We prove a maximum principle forcontinuous CR functions on smooth weakly 1-concave CR submanifolds.Because weak 1-concavity is also necessary for the maximumprinciple, a consequence is that a smooth generic CR submanifold ofCn obeys the maximum principle for continuous CR functions if andonly if it is weakly 1-concave. The proof is then generalized to embeddedweakly p-concave CR submanifolds of p-complete complexmanifolds. The second part concerns hypocomplexity and hypoanalyticstructures. We give a generalization of a known result regardingautomatic smoothness of solutions to the homogeneous problemfor the tangential CR vector fields given local holomorphic extension.This generalization ensures that a given locally integrable structureis hypocomplex at the origin if and only if it does not allow solutionsnear the origin which cannot be represented by a smooth function nearthe origin.
Uppsatsen innehåller resultat om maximumprincipen för kontinuerligaCauchy–Riemann funktioner (CR-funktioner) på svagt 1-konkava CRmångfalder,samt hypokomplexitet för lokalt integrerbara strukturer.Maximumprincipen gäller inte generellt för släta CR funktioner ochmotexempel kan konstrueras givet strängt pseudokonvexa punkter.Vi bevisar en maximumprincip för kontinuerliga CR-funktioner påsläta inbäddade svagt 1-konkava CR-mångfalder. Eftersom svagt 1-konkavitet också är nödvändigt får vi som konsekvens att för slätageneriska inbäddade CR-mångfalder i Cn gäller att maximum-principenför kontinuerliga CR-funktioner håller om och endast om CR-mångfaldenär svagt 1-konkav. Vi generaliserar satsen till svagt p-konkava CRmångfalderi p-kompletta mångfalder. Den andra delen behandlarhypokomplexitet och hypoanalytiska strukturer. Vi generaliserar enkänd sats om automatisk släthet för lösningar till de tangentiella CRekvationerna,givet existensen av lokal holomorf utvidgning. Generaliseringenger att en lokalt integrerbar struktur är hypokomplex iorigo om och endast om den inte tillåter lösningar nära origo som inteär släta nära origo.

Forskning finansierad av Forskarskolan i Matematik och Beräkningsvetenskap (FMB), baserad i Uppsala.

APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Maximum principle"

1

Pucci, Patrizia, and James Serrin. The Maximum Principle. Basel: Birkhäuser Basel, 2007. http://dx.doi.org/10.1007/978-3-7643-8145-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Boltyanski, Vladimir G., and Alexander S. Poznyak. The Robust Maximum Principle. Boston, MA: Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8152-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Donnenfeld, Shabtai. The principle of maximum product differentiation. Toronto, Ont: Dept. pf Economice, York University,[1989], 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kapur, Jagat Narain. The generalized maximum entropy principle (with applications). Waterloo, Ont: Sandford Educational Press, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karmeshu, ed. Entropy Measures, Maximum Entropy Principle and Emerging Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36212-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Burstein, Joseph. Sequential optimization: Dynamic programming, maximum principle, and extensions. Boston: Metrics Press, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

missing], [name. Entropy measures, maximum entropy principle, and emerging applications. Berlin: Springer Verlag, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Aseev, S. M. The Pontryagin maximum principle and optimal economic growth problems. Moscow: MAIK Nauka/Interperiodica, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

A stochastic maximum principle for optimal control of diffusions. Harlow, Essex, England: Longman, Scientific & Technical, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

A stochastic maximum principle for optimal control of diffusions. Harlow: Longman Scientific & Technical, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Maximum principle"

1

Górecki, Henryk. "Maximum Principle." In Optimization and Control of Dynamic Systems, 437–518. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62646-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Locatelli, Arturo. "The Maximum Principle." In Optimal Control, 147–220. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8328-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zabczyk, Jerzy. "The maximum principle." In Systems & Control: Foundations & Applications, 177–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44778-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cvitanić, Jakša, and Jianfeng Zhang. "Stochastic Maximum Principle." In Contract Theory in Continuous-Time Models, 183–227. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-14200-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pólya, George, and Gabor Szegö. "The Maximum Principle." In Problems and Theorems in Analysis I, 157–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-61983-0_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Camiola, Vito Dario, Giovanni Mascali, and Vittorio Romano. "Maximum Entropy Principle." In Mathematics in Industry, 29–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35993-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zabczyk, Jerzy. "The maximum principle." In Mathematical Control Theory, 152–69. Boston, MA: Birkhäuser Boston, 2008. http://dx.doi.org/10.1007/978-0-8176-4733-9_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vinter, Richard. "The Maximum Principle." In Optimal Control, 201–31. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-8086-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Boltyanski, Vladimir G., and Alexander S. Poznyak. "The Maximum Principle." In Systems & Control: Foundations & Applications, 9–43. Boston, MA: Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8152-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jost, Jürgen. "The Maximum Principle." In Partial Differential Equations, 37–57. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4809-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Maximum principle"

1

Bilich, F., R. DaSilva, Marcelo de Souza Lauretto, Carlos Alberto de Bragança Pereira, and Julio Michael Stern. "MAXIMUM ENTROPY PRINCIPLE FOR TRANSPORTATION." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 28th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2008. http://dx.doi.org/10.1063/1.3039007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Choque-Rivero, Abdon E., and Pedro Luis Castulo Cruz. "On Korobov's admissible maximum principle." In 2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). IEEE, 2016. http://dx.doi.org/10.1109/ropec.2016.7830634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Jianhua, Luhua Liu, and Guojian Tang. "Analysis of lateral maximal range based on maximum principle." In 2014 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). IEEE, 2014. http://dx.doi.org/10.1109/cgncc.2014.7007299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Qian. "Threshold Selection Using Maximum Autocorrelation Principle." In 2011 Fifth International Conference on Management of E-Commerce and E-Government (ICMeCG). IEEE, 2011. http://dx.doi.org/10.1109/icmecg.2011.36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aghayeva, Charkaz, and Gurban Abushov. "Stochastic maximum principle for switching systems." In 2012 IV International Conference "Problems of Cybernetics and Informatics" (PCI). IEEE, 2012. http://dx.doi.org/10.1109/icpci.2012.6486420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fradkov, Alexander, Anton Krivtsov, Ali Mohammad-Djafari, Jean-François Bercher, and Pierre Bessiére. "Speed-gradient principle for description of transient dynamics in systems obeying maximum entropy principle." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2011. http://dx.doi.org/10.1063/1.3573643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sussmann, Hector J. "Set separation and the lipschitz maximum principle." In 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. http://dx.doi.org/10.1109/cdc.2007.4434485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kantor, Paul B., and Jung Jin Lee. "The maximum entropy principle in information retrieval." In the 9th annual international ACM SIGIR conference. New York, New York, USA: ACM Press, 1986. http://dx.doi.org/10.1145/253168.253225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Suski, Damian, and Radoslaw Pytlak. "The weak maximum principle for hybrid systems." In 2016 24th Mediterranean Conference on Control and Automation (MED). IEEE, 2016. http://dx.doi.org/10.1109/med.2016.7535943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Duras, Maciej M. "Random quantal fields and maximum entropy principle." In SPIE Third International Symposium on Fluctuations and Noise, edited by Laszlo B. Kish, Katja Lindenberg, and Zoltan Gingl. SPIE, 2005. http://dx.doi.org/10.1117/12.609473.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Maximum principle"

1

Nishii, Ryuei. Maximum Likelihood Principle and Model Selection when the True Model is Unspecified. Fort Belvoir, VA: Defense Technical Information Center, February 1987. http://dx.doi.org/10.21236/ada186027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bai, Z. D., and J. C. Fu. Likelihood Principle and Maximum Likelihood Estimator of Location Parameter for Cauchy Distribution. Fort Belvoir, VA: Defense Technical Information Center, May 1986. http://dx.doi.org/10.21236/ada171860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Boyadzhiev, Georgi, and Nikolay Kutev. Strong Interior and Boundary Maximum Principle for Weakly Coupled Linear Cooperative Elliptic Systems. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, July 2019. http://dx.doi.org/10.7546/crabs.2019.07.02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tankin, Richard S., Long P. Chin, and P. C. Hsing. Use of Maximum Entropy Principle as a Guide in Design of Spray Nozzles. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada299119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bras, Rafael L., and Jingfeng Wang. Using the Maximum Entropy Principle as a Unifying Theory Characterization and Sampling of Multi-Scaling Processes in Hydrometeorology. Fort Belvoir, VA: Defense Technical Information Center, July 2015. http://dx.doi.org/10.21236/ad1007428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bras, Rafael L., and Jingfeng Wang. Using the Maximum Entropy Principle as a Unifying Theory for Characterization and Sampling of Multi-scaling Processes in Hydrometeorology. Fort Belvoir, VA: Defense Technical Information Center, February 2010. http://dx.doi.org/10.21236/ada519510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bras, Rafael L., Jingfeng Wang, and Veronica Nieves. Using the Maximum Entropy Principle as a Unifying Theory for Characterization and Sampling of Multi-scaling Processes in Hydrometeorology. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada585304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schaefer, Philip W. Conference on Maximum Principles and Eigenvalue Problems in Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada187870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Henson, V., G. Sanders, and J. Trask. Extremal eigenpairs of adjacency matrices wear their sleeves near their hearts: Maximum principles and decay rates for resolving community structure. Office of Scientific and Technical Information (OSTI), February 2013. http://dx.doi.org/10.2172/1084717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schlossnagle, Trevor H., Janae Wallace,, and Nathan Payne. Analysis of Septic-Tank Density for Four Communities in Iron County, Utah - Newcastle, Kanarraville, Summit, and Paragonah. Utah Geological Survey, December 2022. http://dx.doi.org/10.34191/ri-284.

Full text
Abstract:
Iron County is a semi-rural area in southwestern Utah that is experiencing an increase in residential development. Although much of the development is on community sewer systems, many subdivisions use septic tank soil-absorption systems for wastewater disposal. Many of these septic-tank systems overlie the basin-fill deposits that compose the principal aquifer for the area. The purpose of our study is to provide tools for waterresource management and land-use planning. In this study we (1) characterize the water quality of four areas in Iron County (Newcastle, Kanarraville, Summit, and Paragonah) with emphasis on nutrients, and (2) provide a mass-balance analysis based on numbers of septic-tank systems, groundwater flow available for mixing, and baseline nitrate concentrations, and thereby recommend appropriate septic-system density requirements to limit water-quality degradation. We collected 57 groundwater samples and three surface water samples across the four study areas to establish baseline nitrate concentrations. The baseline nitrate concentrations for Newcastle, Kanarraville, Summit, and Paragonah are 1.51 mg/L, 1.42 mg/L, 2.2 mg/L, and 1.76 mg/L, respectively. We employed a mass-balance approach to determine septic-tank densities using existing septic systems and baseline nitrate concentrations for each region. Nitrogen in the form of nitrate is one of the principal indicators of pollution from septic tank soil-absorption systems. To provide recommended septic-system densities, we used a mass-balance approach in which the nitrogen mass from projected additional septic tanks is added to the current nitrogen mass and then diluted with groundwater flow available for mixing plus the water added by the septic-tank systems themselves. We used an allowable degradation of 1 mg/L with respect to nitrate. Groundwater flow volume available for mixing was calculated from existing hydrogeologic data. We used data from aquifer tests compiled from drinking water source protection documents to derive hydraulic conductivity from reported transmissivities. Potentiometric surface maps from existing publications and datasets were used to determine groundwater flow directions and hydraulic gradients. Our results using the mass balance approach indicate that the most appropriate recommended maximum septic-tank densities in Newcastle, Kanarraville, Summit, and Paragonah are 23 acres per system, 7 acres per system, 5 acres per system, and 11 acres per system, respectively. These recommendations are based on hydrogeologic parameters used to estimate groundwater flow volume. Public valley-wide sewer systems may be a better alternative to septic-tank systems where feasible.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography